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ABSTRACT 

Vehicle driving and traveling with car are part of our daily life. More than 80% of all 

personal travels are done by car and only 20% are done by public transportation. Alone in 

Europe every year we have more than 3 million additional private cars on roads and 

highways. Due to the congestion and capacity limitations of both highways and roads every 

year we have more than 7500 kilometers of blocked roads in Europe. This congestion and 

traffic has a negative direct impact on the economy and on total social costs. The 

estimation of traffic congestion and traffic safety on social costs for European people is 

more than 130 billion euro per year; see Ref. [1-3] . Monitoring and controlling traffic and 

improving road safety can reduce this cost; but still every year 40,000 people die because 

of car accidents in Europe [1], [4-6] . There are two solutions for overcoming the critical 

issue of road safety:  improving the driver safety education programs and improving the 

vehicle safety using advance technology like ADAS (Advanced Driver Assistance System). 

One of the main factors in car accidents and traffic safety is the human factor. If the driver 

is tired or asleep the probability of accident will dramatically increase. A convenient way to 

avoid these types of accidents is using an assistance system.  

This thesis answers the following eight research questions which are related to the 

potential performance improvement of ADAS technology with respect to the involved real-

time image processing: 

x Research question 1:  What are the hard requirements of ADAS concerning real-
time image processing and design flexibility? How far do traditional approaches fail 
to satisfy these requirements? 

x Research question 2:  What are the major limitations of traditional high 
performance computing approaches   if   used   to   ensure   “real-time”   image  
processing?  

x Research question 3: What is the huge potential of neurocomputing involving 
either traditional neural networks (NN) or cellular neural networks (CNN) for high-
speed and flexible image processing for ADAS? Are there any limitations and how 
can these eventually be addressed? 

x Research question 4: What are the major template calculation schemes of relevance 
for CNN based image processing? How can these calculations be performed in a 
real-time high performance computing context? 
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x Research question 5: How far can the advantages of "analog computing" be 
used/gained through an emulation of analog computing on digital hardware 
platforms like FPGA (for the benefit of an ultrafast image processing)? 

x Research question 6: How far can an efficient implementation of CNN on FPGA and 
GPU be designed and implemented?  

x Research question 7: How far can CNN be used/involved in an evolutionary 
computing/control context example (for illustration)? 

 

To cover the research question-1, we have conducted a survey concerning different ADAS 

concepts. High definition cameras are playing a very important role in ADAS concept and 

almost every ADAS concept includes one camera or some form of visual radar. We could 

formulate the overall requirements that ADAS systems set to the image processing based 

sensor functionality. And to finish we have shown as an example that there are many 

common modules for different ADAS systems. 

Concerning research question-2, we have shown the limitations of traditional/sequential 

computing concepts for processing high quality images in the ADAS context and did 

propose a parallel processing model based on CNN. 

 

Concerning research question-3 we have shown the advantages of neuro-computing 

especially of CNN as a high performance computing system in terms of flexibility in design 

and robustness.  

 

Research question-4 is considering different methods for CNN template calculation. We did 

pass a review of the related state-of-the-art before proposing a genetic algorithm based 

approach for the calculation of complex templates. This concept can be implemented in 

hardware, for example of FPGA along with the CNN processor system. This should ensure a 

performance in real-time. 

 

Concerning research question-5 we have demonstrated that the advantage of analog 

computing can be used in a real time solution for solving complex dynamic systems. 

Further  we  have  shown  the  implementation  an  “analog  computing”  emulation  on  a  digital  

platform (FPGA); the implementation was based on the Digital Differential Analyzer (DDA) 

method which has shown to be thousand time faster than a CPU.  
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The research question 6 does concern the implementation of CNN in a discrete-time 

version on both FPGA and GPU. We have shown the advantages and drawbacks of each of 

the implementations. Overall we could realize a CNN implementation on both platforms 

and the performance was very good. 

 

Concerning the last research question 7, we have shown the efficient use of CNN and a 

genetic algorithm for controlling a legged-robot in the form of a neuro-evolutionary 

technique. The results did clearly demonstrate the effectiveness of the approach. 

 

The evaluation of image sequences with the purpose of extracting useful information 

(about the environment, vehicle situation and traffic) is the main and challenging issue in 

ADAS visual sensors. This process does however involve a huge computational effort. 

Therefore, to have a real time processing platform we need appropriate hardware and 

software architectures. Today, there are many platform options for machine vision: DSP, 

FPGA and GPU. The requirements related to image quality, image size and frame rate per 

second for a processing in hardware are increasing. Overall we do face a tradeoff between 

processing time, power consumption on one hand, and video quality and precision on the 

other hand. This challenge does motivate research related to new architectures and 

software algorithms for video and signal processing. Designing and implementing a “single  

task”   image  processing   functionality   in  hardware   in  not  a  big   issue.  However,   the   “multi  

tasking”  case  is  much  challenging.    Having  a  good  model  for  image  processing  will  reduce  

hardware resources. A CNN model has this potential as by dynamically changing the 

related templates values we can change the functionality of the system and thereby 

without any further hardware or software explicit reconfiguration. Taking advantage of the 

inherent parallel processing nature of CNN processors a strong integration of both 

hardware and software can be ensured. This thesis does address two main challenging 

issues in ADAS technology: a) a universal model and architecture for a real time visual 

processing; and b) the implementation of a prototype system on both GPU and FPGA.  

  



 
 

 

5 
 

Chapter 1 

1. Introduction 

1.1 Motivation and general context 
 

Two of the main factors in transportation (urban and suburban traffic) are the issues of 

safety and efficiency (including fuel consumption). According to recorded statistics human 

fault is the major cause of road accidents [7, 8]. Most of the dangerous cases are highly 

depending on the behavior of the drivers and not on technical problems. Fatigue, micro-

sleep and alcohol can dramatically increase the accident probability [8]. To overcome these 

core problems that influence the safety of the driving process  a combination of different 

technologies has been developed during the last couple of decades [8, 9]. The integrating 

platform for them is known as Advanced Driver Assistance System (ADAS). Generally, these 

technologies involve the combination of different sensors, controllers and actuators to 

either give a warning or take part of the control in emergency situations.   

ADAS systems are highly dependent on the sensory data information, fusion modules 

and control intelligence. There are various sensors involved such as laser scanner, LIDAR, 

radar, ultrasonic sensors  and different type of cameras [10]. Generally, we can classify DAS 

systems in two main classes: active and passive.  Active ADAS can have a control over the 

humane decision. This means that in a critical situation the system will react and change 

the driving parameters such as speed and steering angle. Contrary passive systems do only 

provide warnings and information the driver (for example about a dangerous situation) [8, 

10].  

The  most  effective  sensor  which  used  in  almost  every  new  car  is  the  “camera”.  Cameras  

can provide visual information about the scene and the overall situation of the car on the 

road. Depending on the specific ADAS solution different types of cameras can be involved 

such as night camera, HD-camera  and  ‘high  frame  rates’  cameras.       

A historical look at the evolution of ADAS shows a quick introduction of these 

technologies in vehicles. Increasing the reliability of ADAS, increasing computing capacity 
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and decreasing the price are very important factors for both developers and system 

producers.  Most of the ADAS solutions are camera-based and are using video processing 

for monitoring either the road or the driver to detect abnormal behaviors during driving. 

By fusing various sensors (cameras, radars, laser scanners, etc.) the field of view is 

enlarged,  and the perception precision of objects in the relevant regions for the driving 

process is significantly increased [11]. Fusing data and information with different levels of 

quality and sampling rates is another challenging issue in ADAS technology. Darms et al.  

have proposed a modular system architecture for sensor data processing and combining 

short range sensor, long range sensor, video information, actuators feedbacks, and vehicle 

dynamics sensors in ADAS technology [12]. In general, ADAS has three data processing 

levels which are sensor level, fusion level and application level. Figure 1 does show the 

abstract architecture of an ADAS system with respect to the different processing levels. 

 

 
 

Figure 1-1: ADAS processing levels architecture 
 
 

The following list does give a sample of functionalities provided by different ADAS 

solutions involving visual information and a digital camera: 

x Lane departure warning system (LDWS) 

x Traffic sign recognition 

x Pedestrian detection 

x Fatigue detection 

x Adaptive cruise control 

The large amount of data provided by cameras requires a huge processing effort. 

Speeding up the processing is therefore extremely important especially while  facing real-

time constraints [13]. Some algorithms such as stereo vision and depth estimation are 

particularly demanding in terms processing. Some algorithms have dependency and it is 

Sensor Level:

Sensor and 
Signal 

Processing

Fusion Level:

Association, 
Classification 

and Verification

Application 
Level
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not trivial to speed up them by the using pipelining or parallel processing and it needs 

different model of processing [13]. 

1.2 Research questions and objectives of the thesis  
 

In the following we do briefly describe and justify the key research questions of this thesis 

as well as the core of answers/solutions that have been obtained for each of them. Overall, 

we have formulated seven key questions concerning ADAS technology, importance of high 

performance computing and hardware implementation. 

 

Research question 1: What are the hard requirements of ADAS concerning real-time 
image processing and design flexibility? How far do traditional 
approaches fail to satisfy these requirements? 

One of the main issues to design an ADAS system is high processing speed and robustness 

of the environment perception (image processing based). The maximum interval for 

processing frames should not be greater than 20ms. In some cases such as lane departure 

warning and collision detection this level changes to maximum 10 ms processing time [14, 

15]. The fundamental issue in all image processing systems is robustness and accuracy. In 

ADAS technology which is based on image processing and machine vision we have to 

guarantee the stability and robustness of detection, identification and recognition of 

features [16]. For example a lane departure warning system should work in any 

environmental condition and lighting [16, 17].  

Concerning video- based ADAS solutions different image processing filters and appropriate 

hardware architectures are required. Some filters are very complex and very demanding in 

terms of processing run time. Hence, we are interested in heavy parallel processing and 

task concurrency. In most of different ADAS concepts we one is using the same processing 

modules with different connectivity and topology. Hence, if we have a reconfigurable 

architecture or a universal model we do not need to reserve hardware resources for each 

different concept.  

While following traditional methodological ways of doing and design one does use/involve 

sequential processing architecture, time sharing and multi-threading 
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algorithms/processing. The weakness of this traditional way of doing concerning 

processing   performance   is   that   it   results   in   a   ‘too   long’   processing   time   and   therefore  

making it very difficult to satisfy real-time constraints.   The real-time constraints expect a 

completion of the processing of a frame within a time window that is less than the 

capturing time of that frame. Therefore, for a 60 FPS (frames per second) rate we do have a 

maximum of 15 milliseconds to finish all the processing. And since one does generally need 

about 6~10 different high definition (HD) image preprocessing modules whereby each of 

them takes around 5ms per frame we thus do reach a total ranging between 30 ms and 

50ms of processing time if one tries to use the traditional processing schemes. This figure 

of 50 ms does fail to fulfill the real-time  constraint  of  “maximum  15  ms”  processing  time  

per frame. It is therefore clear that traditional processing schemes are not capable of 

fulfilling the real-time constraints of visual sensors in/for ADAS.. Examples of ADAS 

solution of relevance for visual sensors are: the Lane Departure Warning (LDW), Adaptive 

Cruise Control (ACC), Emergency Brake Assistant (EBA) and Blind Spot Detection (BSD), etc.  

The different ADAS solutions should be able to re-use the same components/modules for 

the image processing. Another weakness of classical algorithms they do not enable an easy 

re-use of functional components.  Therefore we do need and are looking for a special 

architecture that is reconfigurable by software; such a concept will enable an easy re-use of 

the same platform for different functionalities and algorithms.  

 

Research question 2: What are the major limitations of traditional high performance 
computing approaches destined to real-time image processing?  

The main limitations of traditional computing schemes are due to the sequential 

processing on Von Neumann architecture concepts.   Further limitations are the following: 

x They are very slow especially with regard to a processing in real-time for high 

definition quality images  

x To reach a high performance one needs a very costly system 

x They need too much resources especially while compared to the capacity of  

embedded systems  

x Too high power consumption at high frame rates 
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x I Inflexibility in design and system modification (evolutive maintenance)  

Therefore, we can formulate two different classes of limitations: 

a)  Limitations at the level of software and algorithms for manipulating pixels and 

extracting meaningful data  

b)  Limitations at the level of hardware especially with regard to the flexibility in 

design and re-configurability 

 We are looking for a specific design and appropriate architecture(s) to cover both of these 

limitations. Cellular Neural Networks (CNN) do offer parallel processing paradigm that is 

robust for image processing. It is a highly parallel architecture with local connectivity 

between cells [18, 19]. This makes it a very interesting platform for an implementation on 

hardware. In contrast to sequential computing architectures that are highly dependent on 

bus bandwidth and width, amount of memory, cache memory size, buffering, processor 

clock rate, and CPU [20, 21],   CNN is highly scalable and flexible in design. 

 

Research question 3: What is the huge potential of neurocomputing involving either 
traditional NN or CNN for high-speed and flexible image 
processing for ADAS?  Are there some limitations; how can 
these be addressed? 

Artificial neural networks (ANN) with their remarkable potential to derive meaningful data 

from complicated data and information is getting more popular in the field of image 

processing [22, 23]. Detecting complex patterns, classification and prediction are only few 

examples showing the potential of these networks and systems. The main advantages of 

using ANN in ADAS systems are flexibility, robustness, adaptivity in learning, real time 

operation after the learning phase and fault tolerance. In the case of machine vision 

conventional concepts are not robust enough and depending on the complexity of the task 

we cannot always easily formulate a mathematical definition of the problem to be solved.  

ANN can process information in a similarly to the human brain. This means that we do not 

need any pre-defined model for either solving problems or extracting meaningful data. The 

network is composed of many connected nodes; after training they are capable of solving 
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the specific problems [22, 24]. CNNs are a special type of ANN consisting of a grid of cells 

which are connected to eachother locally. The local connectivity makes CNNs more suitable 

for hardware implementation (while compared to other ANN which require a global 

connectivity) [25]. The main advantage of CNN is that by changing two templates matrices 

one can change the functionality of the CNN processor without any hardware 

reconfiguration. CNN cells do work in parallel and therefore ensure an ultrafast 

manipulation of pixels [26].  

For processing information based on neuro-computing we have to consider parallel 

computation, learning method and adaptation [27]. Depending on the specific task, we can 

define a learning rule for training the network [28]. This method can play an important 

role for solving complex and time consuming problems in machine vision. Pattern 

recognition, optimization, classification and image enhancements are important tasks in 

ADAS concept for which we can use neuro-computing techniques [28]. In ADAS concepts, 

the key issues are real-time processing and robustness. Neuro-computing can provide very 

stable, accurate and ultra fast solutions for various problems. In most cases, the training 

phase is slow and time consuming but at the end, that is after the training phase, operating 

artificial neural networks it is very fast [24]. 

 

Research question 4: What are the major template calculation schemes of relevance 
for CNN based image processing? How can these calculations be 
performed in a real-time high performance computing context? 

Cellular neural networks technology provides a very powerful analog computing 

architecture for a variety of array computation and image processing. From a theoretical 

point of view the CNN concept offers the capability of modeling various image processing 

filters  and  operators  on  a  CNN  processors’  based  “Universal  Machine”.  A  CNN  processors  

array used in image processing has a feedback template, a feed-forward template and a 

bias. These three templates are matrices that can be used to reconfigure the CNN 

processors system without any hardware changes. The most challenging issue is however 

to find the appropriate and optimized templates for each application (filter, operator, etc.). 

Generally, there are three ways to calculate both feed-forward and feedback templates. 

One approach consists in the direct mapping of the mathematical model expressing the 



 
 

 

11 
 

required processing to CNN templates; the mathematical models are often in the form of 

either Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDE). The 

other approach consists in using heuristic search methods (i.e., genetic algorithm, iterative 

annealing, and etc). Most image processing operators are working around a central pixel 

such as calculating intensity gradient, finding edging or performing median or Gaussian on 

a pixel by involving the neighboring pixels in the processing of a central pixel. For each 

image processing operator there is a mathematical model and an approximation [29]. 

Using the central difference method we can approximate the original mathematical method 

and apply it on a digital image by using a convolution function. This enabled by the main 

characteristic of the central difference method, which is that we can easily clone/realize it 

by a 2D convolution operator. The forward template is a simple convolution that performs 

only one time in CNN. Therefore, a mathematical model can be used to extract the related 

forward templates of CNN. In case of multiple iterations we can also use the feedback 

templates in CNN. This template should perform on the output of all neighbor cells which 

are around the center cell. After the transient phase, all the values will converge to a stable 

level. Another template calculating approach is using heuristic search algorithm such as 

genetic algorithm and iterative annealing. The genetic algorithm does use a fitness function 

for evaluating the quality of partial results and minimizing the error gradient function. 

During the learning phase the partial training results of CNN will converge to a minimum 

error then one can store both feedback and feed-forward templates. 

Template calculation is a time consuming process. Depending on a given problem we have 

to calculate the appropriate templates. Using genetic algorithms is very time consuming; 

therefore we have to calculate different templates for different scenarios and keep it them 

in a template bank. There are many static templates that we can pre-calculate such as 

image noise removing, laplacian operator/find edges, corner detection, skeleton of regions, 

morphological operators, etc. Another way is using direct mathematical mapping with 

dynamic parameters. This form of CNN template determination can also perform in real 

time. Image enhancement, local thresholding, active contours,   etc are some form of 

‘dynamic  mathematical  mapping’  based  templates. 
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Research question 5: How far can the advantages of "analog computing" be 
used/gained through an emulation of analog computing on 
digital hardware platforms like FPGA? 

The  main   advantage  of   analog   computing   is   that  we   can   “nearly”   simultaneously   get   the  

result of complex mathematical differential equations. All signals are generated in parallel 

and in real-time and the electronic components do compute simultaneously [30-32]. In the 

traditional analog computing method one does face a scaling problem for the dynamic 

range of the computing process. The dynamic range of all components is limited and one 

additionally faces issues related to noise and high voltage. Therefore, is not possible to 

compute any dynamic range and one therefore has to always rescale the ranges 

appropriately. Another disadvantage of classical analog computing is that due to the fact 

that the solutions appear in real-time one cannot easily record them for further analysis 

purposes.   

We can cover/overcome all of these problems by using the advantages of digital systems 

like FPGA. Traditional analog computers are using operational amplifier based circuits to 

model  “addition”,”  subtraction”,  “multiplication”  and  “integration”  [32, 33]. These functions 

are the basis for analog computing. Therefore, since we can realize all of these functions by 

a  digital  circuit  an  emulation  of  “analog  computing”  on  FPGA  appears possible. We do use 

the   functional   block   “Digital   Differential   Analyzer   (DDA)”   to   compute   the   integral   of   a  

function over time. To get more speedup we can use fixed-point arithmetic calculation 

instead of a floating-point one. Therefore, we must thoroughly check the ranges of values 

and levels of accuracy for assigning  reserve  bits  for  both  “integer”  and  “fraction”  parts.  By  

emulating analog computing on digital hardware platform like FPGA we become capable of 

getting the solution in real-time without any limitation (contrarily to traditional analog 

computing) related to scaling voltages. The reason is that instead of voltages we are 

dealing with registers and fixed-point operators on data. A further advantage is that we do 

not need any additional converter for/before storing data into the memory. We have full 

control on the clock rate and this also represents a great advantage of using FPGA and a 

digital architecture. Concerning setup time, debugging effort and configurability the digital 

emulation  of  “analog  computing”  is  clearly  very  superior  to  the  traditional  “real  electronics  

components”  based  analog  computing  systems. 
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Research question 6: How far can an efficient implementation of CNN on either FPGA 
or GPU be designed and implemented? 

CNN is a complex design in terms of implementation and performance on traditional 

architectures of the von Neumann type (such as CPU and sequential processors). 

Therefore, we are looking for an appropriate architecture compatible with the parallel 

nature of CNN. Traditional ANNs display some form of global connectivity; this results in a 

difficult implementation in digital hardware. In contrast CNN has local connectivity of its 

cells; this results in a great potential for implementation of this architecture on either 

FPGA or GPU. FPGA macro cells and logical components can operate in a highly parallel 

manner. Further, due to a very flexible routing between them we can implement any 

complex digital circuit scheme or model on FPGA. To get more advantages from using 

FPGA one should use high level behavioral modeling languages such as VHDL, Verilog or 

SystemC. FPGA has a local and embedded memory; this is very important for storing the 

CNN states. Otherwise the memory access processes between the FPGA and and an 

external memory could be very time consuming and constitute a big bottleneck. Today 

most of FPGAs chips on the market do contain an internal dedicated standard CPU that has 

access to the hardware and to the logical field of the FPGA through the standard bus 

controller [34, 35]. There are many high level compilers based on ANSI-C standard for 

coding and debugging. This technology increases the system performance through 

integration of hardware and software. Therefore, the loading of initial states of the CNN 

cells,   of   the   templates   values,   and   setting   ‘time   scales’   and   other   parameters   can   be  

done/performed easily by the embedded CPU. The resources of FPGA are not endless and 

we have to consider this issue during designing the CNN architecture.  

Another interesting platform for CNN is GPU, which is getting more popular every day. The 

highly parallel structure  of  GPU’s  makes  them  more  efficient  for  image  processing  and  for  

processing large blocks of data. Due to the high memory bandwidth between CPU and GPU, 

the integration of GPU and CPU through standard protocols/API and running multi kernels 

scripts on GPU, GPU appears today to be a very interesting technology for an efficient and 

cost-effective implementation of CNN. Since 2003, GPU technology has been experiencing a 

fast growth. Further, in terms of design flexibility we can now implement very complex 

models and systems by using flexible and robust high-level tools for appropriate software 
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development. In OpenCL there is a standard API for communicating between CPU and GPU. 

This API does provide some essential commands for allocating memory, transferring 

memory content between host/CPUs RAM and device/GPUs RAM. There are some 

commands also for compiling GPU code which is a kernel file, and executing them. In 

OpenCL running multiple kernels is possible, and there is a direct and ultrafast channel for 

transferring memory and data between different kernels. These features make GPUs very 

flexible and reliable for designing complex architecture and models. 

 
Research question 7: How far can CNN be used/involved in an evolutionary 

computing/control context example?  

CNN has a great potential for signal processing tasks and it can generate very complex 

nonlinear waves and oscillation patterns at the output of CNN cells. Controlling both the 

kinematic and the inverse-kinematic of complex robots with high Degree of Freedom (DOF) 

is a very complex scenario whereby classical solutions fail to solve it easily. Complex ADAS 

solutions may also be seen as systems with a high degree of freedom, for example CACC 

(cooperative adaptive cruise control). Therefore, the evolution of CNN templates to 

generate the optimum wave for both the driving motor(s) and the robot actuators is a 

particularly   interesting   idea   for   research.   In   nature,   organisms’   systems   are   evolving   as  

explained by the theory of natural selection. Overall, the art is to define a fitness function 

for evaluating the performance of the actual robot locomotion. Hence, by evolving the CNN 

template using a genetic algorithm and a fitness function, we can generate very complex 

waves for optimally controlling the robot   hinges   without   directly   involving   the   robot’s  

kinematic equation in controller design. A two dimensional CNN should be sufficient for 

evolving  a  spatial  wave  over  time  for  controlling  the  robot’s  actuators  and  hinges.   

A fitness function is a particular type of objective function that quantifies the optimality of 

a solution [36]. Input data for the fitness function are based on measurements from robot 

parts’  orientations,   locations  and  displacements.   In   the   fitness   function  we  do  not  define  

any behavioral locomotion exactly. On the other hand, we define a function that satisfies 

the target or destination.  With this method involving genetic algorithms an optimum 

template ensures that the robot can move or act according to our desires. The most 
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important point in this learning method is that we do not need to (explicitly) predefine any 

robot’s  kinematics  for  movement  in  the  fitness  function.   

 

1.3 Summary of the key contributions of the thesis  

There are many different ADAS technologies offering various functionalities and levels of 

safety. According to literatures, cameras are playing a very important role in modern ADAS 

technology. Due to the large amount of visual data and the complexity of image processing 

algorithms as well as of algorithms for extracting meaningful data (i.e. image enhancement, 

noise removing, segmentation, classification, etc.) traditional methods fail to solve these 

challenges and are difficult to implement in hardware. This thesis mainly targets the 

development of concepts, hardware architecture(s) and related software concepts for 

ultra-fast image processing in ADAS. From a scientific point of view the goal is designing a 

fast and robust image processing system. CNN appears to be one of the best models that 

offers sufficient potential to solve these challenges. Most of the advanced filters and 

operators in image processing are mathematically based on PDEs. It is therefore 

motivating  that  CNN  is  very  appropriate  for  solving  various  types  of  PDE’s. 

 

1.3.1 Scientific  significance  of  the  thesis 

The core objective in this thesis is the development of an ultra fast and robust computer 

vision system based on cellular neural networks for ADAS. From a scientific perspective 

the aim is to develop a platform and architecture for performing very complex image 

processing filters and algorithms in dynamic environmental and different lighting 

conditions. The proposed system is a CNN platform which is based on an emulation of 

analog computing and can work in varying lighting conditions. This system opens the 

doors for performing different PDE based image processing models on videos. The major 

scientific contribution of this thesis is lying in the modeling of a CNN based image 

processing architecture through an emulation of the   traditional   “analog   computing”   on  

digital platforms (FPGA and GPU) to make a very robust and adaptive image processing 

system. Flexibility of design is another main major factor for developers that have been 
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considered in this thesis. One can map most of the classical image processing models on 

this system that then does operates in a parallel mode, and thereby ensuring high speed, 

accuracy and robustness. This thesis did also focus on a template calculation concept 

involving genetic algorithms. We have shown how to find appropriate templates for image 

enhancement, obstacle detection and for controlling joints of an unstructured robot in 

different scenarios. 

 

1.3.2 Practical  significance  of  the  thesis 

Stability and real time processing are   key issues in embedded systems and smart sensors. 

The concept of this thesis has the high potential of being easily implementable on a chip as 

a smart visual sensor. Visual computing on CNN can fulfill the real-time requirements of 

ADAS concepts. Processing visual data at sensor level does reduce the latency and the 

memory bottleneck, and at the same time it does increase the speed of processing while 

increasing  the  system’s  efficiency.  The  system  does  target  the  ADAS  concepts   in  terms  of  

real time processing, size, flexibility in design and configurability. The encapsulation of 

different ADAS concepts on a chip reduces the overall system cost. Integrating a system on 

chip with other peripheral is easier than designing a complex system which is not uniform. 

This design is particularly useful for developers that want to build different realtime ADAS 

concepts on the same platform. 
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Chapter 2 

2. Requirements of ADAS concerning real-time computing 
for the image processing based Sensors 

2.1 Context and Motivation 
 

In this chapter the focus lies on the following research question: “What are the hard 
requirements of ADAS concerning real-time image processing and design flexibility? How far 
do traditional approaches fail to satisfy these requirements?” 

High-end vehicles are equipped with different technologies for driver assistance in order 

to ensure more safety [7, 9]. In ADAS there are different sensors with different sampling 

frequencies. One layer above the raw data layer there is an additional layer in which data 

fusion, pattern recognition and classification are performed [9]. These last mentioned tasks 

are computationally heavy; therefore this second layer is the most critical part of ADAS 

technology in terms of processing time and speed. The third layer is the application layer.  

In Table 1 selected examples of ADAS solutions are presented whereby the respective 

computational effort is roughly classified. 

 
Table-1: Different types of ADAS solutions and processing power/effort needed 

(Low: <10 GFLOPS; Medium: 10~50 GFLOPS; High: 50~150 GFLOPS; Very High: >150 GFLOPS) 
 

 
ADAS solution Sensor types involved + 

Infrastructure 
Processing power/effor 

needed –to ensure real-time 
processing 

Night vision Thermal or  IR camera Medium 
Lane departure warning HD camera Medium 
Near field collision warning Radar-24 GHZ High 
Curve and speed limit info Gyroscope and accelerometer Low 
Lane keeping assistance HD camera Medium~high 
Adaptice cruise control Lidar  High 
Automatic parking HD camera + ultrasonic sensors Medium 
Pre-crash collision system Lidar High 
Obstacle warning Stereo camera Very high 
Fatigue detection HD camera + IR camera Very high 
Autonomous driving Multiple sensors and multi sensor 

fusion 
Very high 

Traffic Sign Recognition HD Camera High~very high 
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In many ADAS cases the driver will be warned if a potentially dangerous situation is 

detected. But in some other cases, depending on the type of assistance, the ADAS system 

can take over the control (partially or fully) over the car by sending appropriate 

commands to the actuators. In such cases of control takeover the signal/video processing 

must be ultrafast to ensure very hard real-time requirements.  

Two main issues while designing an ADAS system are the processing speed and the 

robustness. A robust system should work in dynamic environmental condition, dynamic 

illumination and lighting [7]. Some distortion like sun in background and shadows can 

disturb the vision system and provide wrong information. To ensure that system is 

working in different condition we need a highly adaptable framework with dynamic 

coefficient. 

Depending on the type of video-based ADAS applications we do need different appropriate 

software/hardware architectures as well as different combinations of image processing 

filters. Some filters are very complex in term of processing computational effort. A good 

example of a complex filters is the stereo vision for depth estimation and collision 

avoidance. For such complex processing tasks one does need a specific hardware and 

software architectures that amongst others enable and support parallel processing and 

tasks concurrency. .  

Traditionally one has been using sequential processing architectures, time sharing and 

multi-threading algorithms [9, 37, 38]. The main weakness of this traditional way of 

processing with respect to performance and speed is that  processing time is too slow for a 

real-time ADAS application [9]. Therefore, the traditional approach has only limited ways 

to reach a certain speeding-up: to extend the hardware, and use more powerful processors.  

To ensure a real-time processing of high quality images   the system should able to 

complete the processing of a frame within less than therequired time for capturing a frame. 

Consequently, for a 60 FPS we do have a maximum 15 milliseconds for all processing. And 

if we have 6~10 different sequential high definition (HD) image preprocessing 

modules/function whereby each one takes around 5ms on traditional (embedded) 

processing platforms/architecture, it would take, overall, approximately 30 ms to50 ms. By 

those processing times one does clearly fail to satisfy the real-time requirement/deadline 

of 15 milliseconds.  
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2.2 State of the art of real-time ADAS platforms 
 
A huge on-going research and several projects are and have been conducted in various 

aspects of ADAS technology [39-42].   The sensory system within ADAS does provide all 

necessary data and information which is needed to estimate the traffic situation and state 

of the vehicle in real-time [43]. For processing images captured by HD cameras [39] people 

have been using FPGA and DSP platforms with processing frames with 20~100 FPS. 

Examples of systems where this can be observed are [14, 44, 45], lane markings detection 

and obstacle detection. One has switched to hardware implementation (i.e. on FPGA or 

DSP) in order to reduce the CPU load; see reference [39]. In reference [43], Mr Wada has 

been using a normal PC for the development of advanced parking assistance systems. 

Further, in reference [46], authors Vitabile et al do propose a lane keeping system based on 

FPGA that can process up to  39 frames per second; this safety system has been capable of 

identifying a dangerous situation and react in real-time. A main drawback of all of 

traditional ADAS systems is that they are using different platforms for different tasks. 

Thereby a combination of all different tasks does need/consume too much  hardware 

resources [12, 47]. 

 

Figure   2-1: Comparison of two different ADAS system. (a) Lane departure warning, (b) 
Licence plate recognition 
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Figure 2-1 shows the comparison of two different types of ADAS concept. Both systems are 

using the same modules of video capturing, region of interest, dynamic thresholding and 

dilation. Therefore, without a dynamic architecture we should have to unnecessarily 

reserve resources for each of the systems.  

 

2.3 Contribution for real-time ADAS  

In this thesis, a new architecture for both hardware and software is proposed. In the 

proposed platform concept we can perform the ADAS algorithms related to the visual 

sensor processing within the fixed real-time constraint/deadline of 15 ms. Chapter 8 

proposed a hardware and software model for implementing a robust ADAS system based 

on GPU. As described with more details in another chapter of this thesis chapter 7; a 

combination  of  FPGA  and  the  “Cellular  Neural  Networks”  paradigm  does  offer  a powerful 

and robust platform concept that does ensure a real-time image processing for various 

ADAS solutions. FPGA is a field reconfigurable hardware that is generally specified by a 

hardware description languages such as VHDL, Verilog or SystemC [48]. The integration of 

hardware (hard core) and software (soft core) within FPGA does represent a great 

advantage of FPGA technology as it ensure a great flexibility and robustness. Due to the 

huge amount of logic cells, basic logical operators and a routing system that is dedicated in 

FPGA   like   a   “switch   matrix”,   one   is   able   to   implement   very   complex   functionalities   for  

processing data through FPGA.  

Developers are able to realize the integration of FPGA and external I/O (i.e. input/output) 

peripherals. Hence one can capture videos or data from the outside of the FPGA. In this 

thesis, the integration of a HD-camera with the FPGA through a small daughter-board is 

proposed. The FPGA logic cells and the internal CPU will have an access to the high-level 

data through this daughter board and can load frames of data for processing. It is known 

that FPGAs are perfectly suitable for performing parallel tasks for signal and image 

processing.  One of the promising paradigms for ultrafast image processing is based on 

Cellular Neural Network (CNN) [26]. Many forms/architectures/versions of CNN do exist, 

that are discrete-time CNN (DT-CNN), non-linear CNN (NL-CNN), etc.  But  the DT-CNN 

appears to be more appropriate for image processing because it does require less 
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hardware resources [25]. Each CNN cell consists of some basic mathematical operator such 

as addition, subtraction, integration module, and a sigmoid function. Beside the integration 

of CNN and FPGA as a target platform for ultrafast ADAS related image processing we do 

also propose and have developed an alternative concept that does integrate CNN and 

another also actually promising technology, the GPU. Details of this additional proposal 

(that combines CNN and GPU) are presented in two other chapters of this thesis; see 

chapters 7 and 8.   The GPU technology does also offer a series of advantages ranging from 

design flexibility, availability, costs, the possibility of an easy integration with other 

framework such as Open Computing Language (OpenCL), and much more. The company 

AMD has released an embedded GPU to provide high performance in mobile and 

embedded systems. AMD Radeon E6760 is an embedded discrete graphics processor that 

supports OpenCL and it has a good performance for parallel processing. Hence, having a 

high-performance system in the scale of embedded system is possible. 
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Chapter 3 

3. Major limitations of traditional high performance 
computing concepts 

 

In this chapter the focus lies on the following research question:  “What  are  the  major  
limitations of traditional high performance computing approaches destined to real-time 
image  processing?”   

 

3.1 Motivation and general context 

The main goal for the use of ADAS solutions in cars is for increasing road safety [46]. ADAS 

do enable a better response to dangerous situations that may occur on the road in a very 

robust and fast manner [7, 46]. Traditional architectures for ADAS have been based on 

sequential processing on mainly von Neumann types of architecture. They are 

consequently not fast and flexible enough for processing huge amount of visual data [49, 

50] within hard real-time constraints.  

In fact, processing images on a Central Processing Unit (CPU) has many limitations. A 

computing problem (in this case, an image processing one) can generally be broken down 

into a discrete series of instructions where pixels will be manipulated individually. There 

are two major limitations of classical sequential algorithms performing sequentially on 

CPU hardware  [26, 49].  

First of all, in contrast to parallel processing systems, sequential techniques/algorithms 

are very slow for high definition quality images. Therefore, while using these techniques a 

real-time image processing can only be reached through a costly system having a relatively 

very high performance computing. Thereby the main drawback will be the size of system 

as well as the power consumption; both will result in increasing the total cost of the 

solution. One further limitation is the strong inflexibility with regard to design and 

modification potential of the system for different types of algorithms/processings. Thus 
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one can formulate two different classes of limitations that are:  a) the one related to the 

software architecture and to the algorithms for manipulating pixels and afterwards 

extracting meaningful data; and b) hardware limitations and inflexibility of design. A much 

better solution for image processing is the use of a parallel processing architecture. 

Multiple Instructions - Multiple Data streams (MIMD) is the most common architecture for 

parallel processing; most modern computers fall into this category [51, 52]. In this model 

of processing every processing unit may access to different memory and data streams. For 

increasing the performance for reaching a sufficient speedup, dedicated hardware for each 

algorithm has been suggested.  Hence, designers implement each application on different 

platform, and this redundancy in hardware increases the price and complexity of the 

system [53, 54]. 

A direct mapping of algorithms on the hardware is often viewed as the best way of 

processing [53, 55, 56]. The only issue that should be considered in this case is the low 

flexibility of the system concerning design time. Therefore, the only drawbacks of this 

approach are: a) the complexity of mapping many image processing operators/functions 

onto the hardware, and b) the limitation of hardware resources.  

Hence, we are looking for a reconfigurable model/concept/architecture that can change 

(or be reconfigured) into different functions and thereby significantly saving hardware 

resources. Another important factor of this model is parallel processing of pixels. 

 

3.2 State of the art in traditional processing method 

As the processing potential of processor is increasing, the computation requirements are 

also getting higher over time [57]. No matter how fast processors become the  technology 

of parallel processing is growing up to make them even faster as before [58]. Today, 

computer are highly complex and they are made up by complex components and 

architectures [59]. Most of them are using some kind of low level parallel computing at the 

level of instructions. They can load different instructions and perform different operations 

at  the  same  time.  This  is  generally  called  “instruction  level  parallelism”  [58]. 



 
 

 

25 
 

 Recently computer architects have started to direct their attention onto other techniques 

for improving both the processing time and hardware performance. Shared-Memory 

Parallel (SMP) computing is very popular technique for speeding up the processing time 

[60-62]. Isaac G. et al do propose in reference  [63] an heterogeneous computing concept 

which is a combination of a general purpose CPUs with an accelerator to improve the 

execution efficiency. This model is based on shared memory parallel technique.  

J. Batlle et al proposed in reference [49] a dedicated parallel architecture based on FPGA 

and DSP for real-time image processing. This system has been designed to deal with 

pipeline procedures and operators. They have broken the image processing algorithm into 

three major steps: preprocessing, intermediate processing and, at the end, a post-

processing. All low level functions are performed at the preprocessing level. In the 

intermediate level of processing we have some algorithms like segmentation, motion 

estimation and features extraction. In the post-processing level we involve statistical 

analysis and artificial intelligence [49].  

D. Demigny et al proposed in reference [64] a high speed reconfigurable FPGA system for 

processing images in real-time. They have considered different architectures and models of 

processing architectures such as Multiple Instruction - Single Data (MISD) and Single 

Instruction - Multiple Data (SIMD). The SIMD architecture is very interesting for image 

processing because we have the same instruction for multiple data streams. The main 

drawbacks of all mentioned architectures are however: a) that there is no homogenous 

design that can cover different image processing algorithms, and b) that for any new 

design one has to reconfigure the hardware. It may be possible to design a real-time and 

robust image processing architecture for a specific task, but it not easy at all to reconfigure 

it for different tasks and procedures.  

3.3 Contribution of Ideal ADAS architecture 

Our main goal is developing a relatively universal processing architecture for image 

processing which should be running on hardware and work in a highly parallel manner. 

Hence, we have considered two different platforms based on FPGA and GPU. Developing 

highly parallel systems needs a proper platform which should be flexible and robust. In 
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traditional parallel processing models many processors have access to a shared memory. 

Message Passing Interface (MPI) and directive-based interface are two important 

approaches in shared memory techniques. Figure 3-1 does illustrate the essentials of this 

model. 

 

 

 

 

 

Figure   3-1: Shared  memory’s  parallel  processing  model 

 

The main advantage of this processing model/architecture is that one can calculate very 

complex algorithms on the stream of data with a shared memory. A major drawback of this 

model is however the latency and bottleneck in memory as well as the complexity of the 

task scheduling. Nevertheless, by coupling a simple distributed memory as the state 

variable of a single element and a simple processing unit in form of a 2-dimensional grid, to 

a nonlinear operation that is coupled also to the neighbors through local connections one 

can overcome too many problems of classical parallel image processing. Figure   3-2 has 

shown this type of architecture. 
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Figure   3-2: General idea for distributed processing 

 

Worth a mentioning is that CNN is providing a similar model for processing data and 

images. By changing templates we can define a new model for different 

operations/functions. Coupling more than one layer of CNN can enable the designer to 

model very complex image processing operators [65, 66]. Due to the related robustness 

modeling   image   processing   by   PDE’s   is   getting   more   popular   [67, 68]. Some equations 

comes from minimizing energy function and some others are designed using geometrical 

arguments like mean curvature motion [69]. There are many application based on PDE 

such as inpainting for recovering corrupted regions in image [70], image segmentation 

[71], noise reduction edge preservation [72]. All of these examples and similar techniques 

are essential for video processing in ADAS. The procedure of solving PDEs in CNN is by 

transforming a PDE to set of ODEs. After transforming a continuous spatial PDE to an array 

of discrete interactive systems which are ODEs, we can map it on CNN cells. Because CNN is 

natural and flexible paradigm for modeling a simple locally interconnected dynamical 

system which are grid base. 

 The  CNN  architecture  is  very  close  to  PDE’s  and  even  a  direct  mapping  of  PDE’s  into  a  CNN  

processor matrix is possible [73]. In the case of linear PDEs we can map each independent 

variable with related partial derivative of that to a CNN layer. If we have more than one 
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independent variable we have to couple many CNN layer together to provide the solution.  

By defining the right templates one can model the behavior of PDEs through a CNN 

processor system that will generate the solution. T. Roska et al have shown in [73]  a way 

of how to simulate a space invariant nonlinear PDE by CNN. They have described the 

dynamics  of  three  different  systems  (i.e.  2D  heat  equation,  Burgers’  equation  and  Navier-

Stokes equation) by sets of equations. Mapping a two-dimensional heat equation which is 

modeled by the Laplace operator has been solved in [73]. Equation 3-1 is showing this heat 

model. 

(3-1) 

𝜕𝑢(𝑥,𝑦, 𝑡)
𝜕𝑡

= 𝑐∇2u(x, y, t) 

 

In this equation, ∇2 is the Laplace operator and it is applied to the intensity which is 

𝑢(𝑥, 𝑦, 𝑡). After spatial discretization of this equation, the PDE is transformed into a system 

of ODEs. If we discrete the equation in space by steps of ∆𝑥 = ∆𝑦 = ℎ, then we can map the 

𝑢(𝑥,𝑦, 𝑡) on a CNN layer. Before that we need a numerical solution of the equation based 

on Taylor-series. Equation 3-2 has shown this approximation. 

(3-2) 

𝜕2𝑢
𝜕𝑥2

~
1
ℎ2

[𝑢(𝑥 + ℎ,𝑦) − 𝑢(𝑥,𝑦) − (𝑢(𝑥,𝑦) − 𝑢(𝑥 − ℎ,𝑦))] 

=
1
ℎ2

[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗] 

 

Using this approximation, it is easy to map this equation onto the CNN template. 
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(3-3) 

𝐴 =

⎣
⎢
⎢
⎢
⎡0

1
௛2 0

1
௛2

−4
௛2

1
௛2

0 1
௛2 0 ⎦

⎥
⎥
⎥
⎤
 ,𝐵 = 0,                𝐼 = 0 

 

The time evolution of the CNN processors using this template will therefore give the 

solution of heat equation. 

For image processing there is a discrete time version of CNN that is easy to implement on 

digital platforms like CPU and FPGA. Out first trial/exercise has consisted of two simple 

cells which are connected to each other for solving a 2nd order ODE. Each CNN cell has an 

internal integrator which fits for solving 1st order derivative equations. For solving higher 

order equation such as 2nd or 3rd and etc, we should couple them as a system of simple 1st 

order derivative equations. In chapter 6 we have shown how to solve a nonlinear Rössler 

equation by this technique. Later on, it is possible to model CNN by direct coupling of cells 

and integrators by local connections. 
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 Chapter 4 

4. Potential of Neurocomputing including Cellular Neural 
Networks for ultrafast image processing 

 
In this chapter the focus lies on the following research question: “What is the huge 
potential of neurocomputing involving either traditional NN or CNN for high-speed and 
flexible image processing for ADAS?  Are there some limitations; how can these be 
addressed?” 
 

4.1 Context and Motivation 

Artificial Neural Networks (ANNs) are inspired by biological science; they mimic model 

and behavior of biological neurons and perceptrons. In a sense, ANNs are a kind of 

computing concept that are trained based on specific history and information in order to 

mimic the same as behavior as that of the brain neurons. They implicitly ensure some form 

of remembering of those historical information from the past [74].  

 

Figure   4-1: Model of a feed-forward neural network with four inputs and one output 
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Figure 4-1 shows a simple feed-forward neural network with four inputs and four cells as a 

hidden layer and one output. Information can flows from input layer to hidden layer and 

then to output layer through the connection which are generally called links or synapses. 

Each layer except the input layer has an activation function. Flow of information from 

input to output called feedforward. After training, the operation mode is feedforward 

mode. Means loading information in input layer and system calculate the proper output 

according to weight and topology of the network [75]. The most common learning method 

for teaching and training   the  MLP  networks   is  backpropagation.   It’s  a  supervised   learing  

method and it is derivation of delta rule method. For training we need to perform 

propagation phase and then updating weight. In propagation phase, we need to perform 

forward propagation of training pattern and get the result from output layer activation 

functions. After that, performing backpropagation of these output data by considering 

target in order to generate the delta of output and hidden neurons. For updating the 

weights we need to multiply output delts of each layer and input activation to calculate the 

gradient of the weight and then updating the direction of gradient by subtracting the ratio 

of synapse from the weight. This ratio is corresponding to the speed and quality of 

learning. 

There are many applications in image processing and machine vision for which one can use 

this type of neural networks for processing. Traffic signs recognition could be a good 

example. Hereby, the main problem for traffic sign recognition is the design of an algorithm 

that is scale-variant and rotation-variant for recognition and classification of different 

traffic signs. This means system is not sensitive to the scale and angle of signs. During 

driving camera can see the sign from different angle of view and different scale. Therefore 

this is feature of ANN is important. 

This type of neural network has potential to learn multi-scale and multi-variant traffic 

signs [76]. This means we can train ANN for different size and different traffic sign. The use 

of artificial neural networks with their remarkable potential to derive meaning data from 

complicated/complex data and information is getting more popular in the field of image 

processing [76]. Detecting complex pattern, classification, and prediction are only few 

examples illustrating the huge potential of neural networks for image processing.  
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The main advantages of using ANN in ADAS technology is flexibility, robustness, adaptivity 

in learning, real time operation after the learning phase and fault tolerance [77] [78].  It is 

known that many conventional algorithms for image processing and machine vision are 

not at all sufficiently fast in view the complexity of the tasks. It is furthermore relatively 

very difficult to define an appropriate mathematical model for solving those problems. 

ANNs however, can process the information in a similar way to the human brain. This 

means that a predefined model for solving the problems and extracting meaningful data is 

not necessary [79]. Artificial neural networks do offer many advantages. For example it 

requires less formal statistical training; another advantage is the ability of detecting highly 

complex and nonlinear relationships among independent and dependent variables. Finally, 

it has also the potential for multiple training algorithms [79]. Due to the massive 

parallelism, neural network are much faster than conventional methods. 

 If the modeling of a system is not trivial and thus complex and if it is hard to formulate an 

explicit algorithm as a solution/model one should use artificial neural networks[80]. There 

is a main difference between von Neumann models for computing which are based on 

memory/processors and artificial neural networks. In an artificial neural network we are 

using a parallel architecture similar the biological brains. We do not know details of the 

complex mechanisms within the human brain; but we do know the main principles of 

neurons operations either individually or globally [81]. Another main factor of artificial 

neural networks is scalability and adaptivity in the learning phase. The system can change 

its structure based on training information. We can model very complex models and 

relation between input and output. 

Basically ANNs are appropriate for processing images [81]. However, they do have some 

weak points such as  over-fitting during the training phase, their black-box nature and the 

complexity of a related hardware implementation [82].   

Designing and implementing a computing system based on artificial neural networks in 

software for a high resolution image is very complex but can thereby even not  be fast 

enough with regard to the  real-time requirements of ADAS [80]. Therefore, we are 

interested in implementing it in hardware. There are two main problems faced by the 

hardware implementation of artificial neural networks. A first problem is the huge 
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complexity of the network due to too many connections between cells. Another challenge 

is how to design a reconfigurable architecture that can  be reconfigured to execute 

different tasks [80]. To find a general purpose hardware platform and architecture concept 

capable of solving/computing different types of problems of image processing is not a 

trivial.   

 

4.2 A survey of the related state-of- the art on image processing 
based on ANN. 

 

An artificial neural network is a mathematical model or computational model of biological 

neural network. These are essentially a very simple mathematical model for mapping input 

to output. The things that make ANN attractive are learning possibility. Means during the 

learning phase, by giving a class of function system can find an optimum solution. We have 

many different type of neural network such as Feedforward Multi-layer Perceptron Neural 

Network (MLP), Radial Basis function (RBF), Kohonen Self-Organizion Network (SOM), 

Hopefield Network, Bi-directional Neural Network (BRNN), Associate Neural Network 

(ASNN) and etc that are useful for different application. The most common type of artificial 

neural network in the field of image processing is MLP. This model as it mentioned in 

Figure 4-1, has many input, hidden layer and output. Each neuron in one layer is connected 

the other neuron in another layer. Therefore we have fully connection between each layer 

to another layer. Depending to the type of data and information we have to reshape them 

for feeding them in our network. For example for loading an image into the network we 

have to reshape the 2D picture in form of vector. Figure 4-2 has shown this concept. We 

have to consider many issues before loading data to the network for training or in 

operational mode. For image processing, in many cases we need to perform a color 

conversion, normalization and quantization of values before feeding data into the network.  
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Figure   4-2: Reshaping and normalizing 2D image data for loading in a MLP network 

 

Now let us look to the human brain potential; the human brain is a very complex 

processing unit. There are also some problems that are not easy for the brain to solve them 

within a proper time duration; an example is multiplication [80]. In recognition problems, 

the organic brain is more efficient than conventional digital computing systems at a factor 

of 10଼ times [80]. This efficiency is not due to the processing speed; it is rather due to the  

processing paradigm.  There are many problems in machine vision and image processing 

that we can use ANN. Feed-forward neural networks are one of the most popular ANN type 

for image processing especially for classification and recognition. For training such an ANN 

one does need a vector of solutions and input data. This is called supervised learning.   

There are two main types of learning for training ANN: supervised learning and 
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unsupervised learning. Concerning supervised learning the aim is to train a network which 

should express a specific function [83]. One does have a set of data pairs which are 

combinations of inputs and targets values. More details on supervised learning can be 

found in literature [84-87].  In contrast to supervised learning there is the unsupervised 

learning. In this form of learning one has a set of values and a cost function that has to be 

minimized. The main areas which are targeted by this kind of learning are: estimation 

problems, clustering application, the estimation of statistical distributions, filtering and 

data compression. More details on unsupervised learning can be found in literature [85, 

88, 89].  

There is another type of artificial neural networks proposed by Chua et al and called 

cellular neural network (CNN). CNN is   a combination of cellular automata and traditional 

artificial neural networks [90-92]. CNN consists of huge number of cells which are 

connected   locally, that is,   each cell is only connected to its neighbors. CNN is getting very  

popular in image processing [93]. One can train it by heuristic learning methods such as 

genetic algorithms and iterative annealing [94].  Another way to train the CNN is direct 

mapping of equation on the CNN. If we have PDE with two or more independent variable, it 

is possible to convert it to set of ODEs with one independent variable. We know that CNN is 

consisting of many integrators and some other active and passive elements which are 

coupled together with a specific topology. These coupled integrators are helpful for solving 

ODEs. Hence, if we solve these sets of ODE on a single CNN layer, the solution of complete 

system is solution of our PDE.  

 

4.3 Contribution to an image processing platform for ADAS 

In ADAS systems we need different types of filters and image processing components 

which are very complex and time consuming.   We need a uniform platform as an image 

processing framework. Flexibility in design, the capability of reconfiguration of modules, 

the capability of redesigning the system architecture and a very short processing time 

along robustness are the main characteristic and properties of the ideal framework. In this 

thesis, a hardware architecture implementing a CNN processor matrix for performing 
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different image processing filters and algorithms is provided. For implementing CNN on a 

digital platform we need an accurate approximation of the CNN equation in a discrete 

mode [95-97].  In this thesis the architecture of a CNN implementation based on GPU and 

FPGA are proposed. Figure 4-3 does show the abstract model of the GPU based system 

which has been proposed.  

 

 

 

 

 

 

 

Figure   4-3: Architecture of system for processing images based on CNN 

 

To have more flexibility in design and accuracy in result, software based implementation of 

CNN is a good option. The only drawback is that by increasing the CNN size, the CNN 

performance will be very poor. Therefore we proposed a parallel implementation of CNN 

on GPU. Instead of programming in pixel level by vertex engine and fragment engine we 

proposed an implementation on OpenCL platform. OpenCL which is a heterogeneous 

platform for high performance computing on GPU and CPU devices provided a sort of APIs 

for execution of kernels on computing devices and communication between them. Kernels 

are distributed in the form of one, two and three dimensional and they following 

hierarchical abstraction mode. In GPU device there is local, global and constant memory for 

computing and each computing unit has a local memory. OpenCL can manage easily local 

communication between these memories between different kernels. Figure 4-4 has shown 

the overview of the CNN GPU design, this part has been describe in details in chapter 8. 

CNN 
Templates 

Bank/Memory 

CNN on 

GPU 
CPU 

Global 
Memory 



 
 

 

37 
 

 

 

 

 

 

 

 

 

 

 

Figure   4-4: CNN architecture based on GPU. 

 

In many cases because of power consumption, size and price using computer for 

processing is not a good idea; therefore we should choose another alternative platform like 

embedded system, system on chip or FPGA board. In chapter 7 we have proposed a CNN 

implementation on FPGA. In contrast to developing on GPU, traditional method of FPGA 

designing is not very flexible and easy. There are many obstacle and reasons behind this 

issue, such as low and middle level programming, hardware and software integration, low 

level programming for peripherals I/O and leak of high level debugging tool. But new 

technology in FPGA developers exist that called Impulse-CTM. This package and software 

allows developers to write C-language for designing a digital system. Impulse-C directly 

can optimize for XILINXTM FPGAs family from C-language. This tool can also integrate the 

hardware and software as a mixed system. We used this system for capturing video from 

camera daughter board which is connected to the FPGA board. Another main advantage of 

this system is communication channels between software and hardware using Fastest 

Simple Link (FSL) and Processor Local Bus (PLB).  We design complete architecture of CNN 

module in C in form of fixed-point. Impulse-C provided a very powerful debugger based on 
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Microsoft Visual StudioTM editor and Eclipse IDE. During the design and debugging phase 

we used this debugger for loading image into the CNN model and test the functionality of 

different modules and complete system. After debugging system we generate the 

optimized FPGA hardware and software interface and programmed on the FPGA by XILINX 

EDK TM. Details of complete system are described in chapter 7. 
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Chapter 5 

5. CNN template calculation schemes with a particular focus 
on the learning/training based approach through Genetic 
Algorithms 

 

In this chapter the focus lies on the following research question: “What are the major 
template calculation schemes of relevance for CNN based image processing? How can these 
calculations be performed in a real-time  high  performance  computing  context?” 

 

5.1 Introduction 

Cellular Neural Networks technology provides a very powerful analog computing 

architecture for a variety of array computation and image processing tasks [94]. From a 

theoretical point of view CNN model offers a huge potential for modeling image processing 

filters and operators on a CNN Universal Machine.  Each CNN processor matrix used in 

image processing has a feedback template, a feed-forward template and a bias template. 

These three templates can reconfigure the CNN model without any changes in hardware. 

The most challenging issue is to find an optimum set of proper template values for each 

specific application[98]. Figure 5-1, shows this CNN architecture. Overall, there are three 

major ways to calculate the feed-forward and feedback templates:  

 

(a) The Intuitive method:  

This first method is needs intuitive thinking of the designer [99]. Depending on the 

designer’s   experience   in   either   processing   images   or   dynamics   of   arrays,  we   can  have   a  

template. There is no guarantee to find a template for all image processing operators and 

could be very difficult to find a template for complex solution. Experts are familiar with 

template of basic image processing operators and they can combine different templates or 

performing them on CNN individually one by one. For example, we know the template of 

Laplacian of Gaussian for finding edges and also template for smoothing image. If we 
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combine these two templates on a control template and feedback template respectively, 

results will be an enhanced image with sharpen edges. 

 

 

 

 

  

 

 

 

 

Figure   5-1: CNN Architecture 

 

 (b) The heuristic based learning method:  

Another method for template designing is the learning/training method [99]. This method 

is very popular in image processing. During the learning phase, there is a pair of input and 

target images that is supposed to be generated with a better and better becoming template. 

After every iteration step a fitness function evaluates the error between the input image 

and the target image. In some cases output of CNN is very sensitive to changing template. 

Hence, it’s very difficult for GA to find a proper template and the learning algorithm never 

stosp because the error-level remains high and an appropriate template therefore does not 

exist. Another problem is that it could take too much time and the error will never 

converges to the minimum level [99],[94]. This does happen when the learning 

method/process is trapped in some form of local minimum.  
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 (iii) Direct template derivation method: 

The third method is the direct template design for those desired functions that are exactly 

explicit. This method is accurate but it is not always trivially possible to map any desired 

function onto the CNN system model. Depending on the function, enhancing the CNN is 

possible, such as adding a new layer or a specific nonlinear term [98]. We know that there 

are many application based on different PDE model, such as inpainting for recovering 

corrupted regions in image [70], image segmentation [71], noise reduction edge 

preservation [72]. The procedure of solving PDEs in CNN is by transforming a PDE to set of 

ODEs as a coupled system. After transforming a continuous spatial PDE to an array of 

discrete interactive systems which are ODEs, we can map it on CNN cells. Because CNN is 

natural and flexible paradigm for modeling a simple locally interconnected dynamical 

system which are grid base. Detail of this template modeling is already described in sub-

chapter 3-3. 

Our goal in this chapter is to give a practical introduction to template design. We however 

focus on the heuristic method based on genetic algorithms. 

 

5.2 Genetic algorithm based template optimization for a vision 
system 
 

A concept is developed for training and optimizing the templates of a cellular neural 

network involved in obstacle detection. The concept uses a genetic algorithm (GA) for 

training the cellular neural network. The traditional genetic algorithm method involves the 

creation of an initial population of random solutions (chromosomes) in binary format, the 

so called chromosomes encoding. But our genetic algorithm approach defines the 

chromosomes in the form of real numbers, thus eliminating the need of encoding and 

decoding of the chromosomes. The results do not differ, by no means, with those of the 

traditional methods. This method is used here for obstacle detection for autonomous 
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vehicles giving two stereo images of a sequence as inputs. The output results for various 

different image processing tasks are also presented.  

 

5.2.1 General background 

The problem of obstacle detection for the vehicles driving with or without driver 

assistance is one of the major challenges in the field of robotics and machine vision. A 

robust mechanism inspired by the most complicated and accurate vision system, i.e., that 

of human beings, needs to be sorted out properly. The problem of identifying the changing 

environment of the roads, detecting the potential obstacles and avoiding them are 

tremendous tasks in the field of machine vision. The basic aim of obstacle detection is to 

extract/identify feature points/parts in images and removing all the other image contents. 

The most important factor which is always needed to be fine-tuned is the speed. This 

process needs to be accurate and should be carried out with a very fast speed. The 

common approaches in this context use analytical and statistical methods like motion 

estimation or the generation of maps. One of these methods involves features extraction, 

subsequent displacement vector estimation and a robust estimation of the motion 

parameters. Since this procedure is composed of several processing steps, the error 

propagation of the successive steps often leads to inaccurate results [100]. Through using 

CNN a direct obstacle detection can be performed which eliminates the above mentioned 

problems. The parallel computation paradigm of CNN provides a fast processing 

mechanism.  Presenting two stereo images of a sequence to CNN, to highlight the 3D 

objects as potential obstacles in the image, provides a fast and robust mechanism for 

obstacle detection.   

For obstacle detection using CNN, there is a need of training CNN for highlighting the 3D 

objects in the image. The training process includes parameter optimization for CNN. This 

approach has also been used in [100] which uses the so-called iterative annealing [101] 

method for parameters optimization. For carrying out this task, a CNN with 5-by-5 

neighborhood and a polynomial cell coupling of degree 3 is used in this work. One of the 

drawbacks in iterative annealing is the possibility of trapping into local minima and ending 

with an incorrect solution.  The approach presented above is adapted in this work by 
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carrying out the same task by using a 3-by-3 CNN processor matrix. For 

template/parameter optimization, we do use a genetic algorithm. A genetic algorithm is a 

learning algorithm based on the mechanism of natural selection and genetics, which has 

proven to be effective in a number of applications [102]. Suitable selections of its operators 

enable the algorithm not to fall into local minima. The common approach of genetic 

algorithm involves creating an initial population of binary numbers that represent the 

possible solutions. The search evolves with these initial population members (called 

chromosomes) and manipulates them in order to achieve an accurate or optimal solution. 

The population of binary numbers needs repeated encoding and decoding process. Also the 

sizes of chromosomes are very large and vary proportionally to the problem variables.  We 

do  use   a   ‘real   coded’   approach  of   genetic   algorithm   that  exploits   an   initial   population  of  

real numbers rather than binary numbers. This eliminates the need of repeated encoding 

and decoding of chromosomes and improves both efficiency and speed of the algorithm. 

The approach was not only used for finding obstacles in the images but also for other 

image processing tasks: e.g. thresholding, noise removal, filling etc. Even in the lastly 

mentioned cases the concept was found to produce good results.  

The next section discusses a brief introduction of CNN and genetic algorithm as a good 

candidate for CNN parameter optimization. The obstacle detection using CNN based on the 

real coded approach of a genetic algorithm is considered as well. Various output results for 

different image processing tasks are also presented.   

 

5.2.2 Principles of Cellular Neural Network  

The Cellular Neural Network (CNN) concept was introduced by Leon O. Chua and Ling 

Yang in 1988. It is a massive parallel processing paradigm which combines some of the 

features of Cellular Automata (Discrete states, concept of neighborhood) [103] and 

Artificial Neural Networks (simple processing elements, continuous states and parallel 

computation) [92].  CNN is an n-dimensional array of mainly identical systems, called cells 

[83]. What distinguishes CNN from traditional Artificial Neural Networks is the locality of 

connections. Unlike artificial neural networks, every cell in cellular neural network 

communicates directly to its nearest neighbors only. The locality of couplings contributes 



 
 

 

44 
 

to the amazingly enhanced processing speed in cellular neural networks. Each cell is made 

up of a linear capacitor, a non-linear Voltage-controlled current source and a few resistive 

linear circuit elements, as shown in Figure 5-2 [104].   

 

Figure   5-2: Basic architecture of CNN cell: the equivalent electrical circuit 

 

In Figure 5-2, C is a linear capacitor; R୶  and R୷ are linear resistors; I   is an independent 

voltage source;  I୶୳ and I୶୷ are linear voltage controlled current sources with the 

characteristics I୶୷(i, j; k, l) = A(i, j; k, l)u୷୩୪ and I୶୳(i, j; k, l) = B(i, j; k, l)u୳୩୪ for all 

  C(i, j)ЄN(i, j);    I୶୷ is a piecewise-linear voltage-controlled current source. Applying 

Kirchhoff’s   Current   Law (KCL) and Kirchhoff’s   Voltage   Law (KVL), the following state 

equation of CNN can be derived. 

 

        (5-1) 

𝑥̇௜,௝ = −𝑥௜,௝ + ෍ 𝐴(𝑖, 𝑗; 𝑘, 𝑙)𝑦௞,௟ +
௖(௞,௟)∈ே(௜,௝)

෍ 𝐵(𝑖, 𝑗; 𝑘, 𝑙)𝑢௞,௟ +
௖(௞,௟)∈ே(௜,௝)

𝐼 

 

 

 

Where  x୧୨ is the state of the cell C (i,j); A(i,j;k,l) and B(i,j;k,l) are the feedback and control 

templates respectively for all cells C(k,l) in the neighborhood N(i,j) of cell C(i,j).  

The output equation is given as: 
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                                 (5-2) 

y୧୨ =
1
2
(ห𝑥௜௝ + 1ห − ห𝑥௜௝ − 1ห) 

 

The feedback template (A), the control template (B) and the Bias (I) are all core parts of a 

CNN processor concept and contribute to the determination its output for a given input.    

 

5.2.3 Genetic algorithms  

The         ‘genetic  algorithm’  concept  was  developed  by   John  Holland   in  1960s   [105]. It is an 

effective method for determining the parameters for CNN. This method is inspired by the 

mechanism of natural selection and genetics. It has been effectively used for solving 

difficult search, optimization and machine-learning problems. It works by creating 

genotypes (set of chromosomes) that represent the possible randomly chosen solutions. 

The search evolves to improve the quality of chromosomes until the best chromosome is 

found that represents the optimal solution[94]. The process of evolution occurs in the form 

of generations and in each generation better chromosomes are sorted out.  The parameters 

of genetic algorithm that play an important role in the process of evolution and of finding 

the best solution are the following: initial population, selection, reproduction,  crossover, 

mutation, and fitness function [94]. 

 

5.2.4 Initial population for the genetic algorithm 

An initial random population of the chromosomes is generated. Each chromosome 

represents a possible problem solution. All chromosomes are composed of a fixed number 

of genes.  The approach we used in genetic algorithms represents the chromosomes in the 

form of real numbers instead of binary digits. This creates chromosomes of relatively 

smaller sizes and the repeated operations of encoding and decoding are eliminated. For a 

3×3 CNN, the total numbers of genes contained in a chromosome are 19. Thus, 9 genes are 

for the control template; 9 for the feedback template and 1 for the bias. Similarly, if used 

for 5×5 CNN, the total number of genes in a chromosome would be 51. 
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5.2.5 Selection theory in the genetic algorithms 

As the process of evolution creates new generations and since every new generation 

contains better chromosomes than the previous one, the process of selecting better 

chromosomes for a next generation is very important. The selection process does not 

consider the chromosomes merely on the basis of fitness. This process is rather random, 

through which the parents for the new generations are selected randomly based on their 

fitness. The method of selection used in our genetic algorithm approach is based on 

selecting parents from half of the population. After evaluating the fitness of all the 

chromosomes, the population is sorted in descending order. The best chromosomes 

occupy higher locations in the list. Every time the two chromosomes are selected randomly 

for crossover and mutation from half of the population. In order to increase the probability 

of selecting good parents, the parents can be selected from a specified fraction of the half of 

the population. For example, the first parent can be selected from half of the population 

and the second can be selected from 30% of the half of the population from the pool of 

much better parents.  

 

5.2.6 Reproduction in the genetic algorithms 

The reproduction phase involves generating a new population for the next generation from 

the selected parents by applying two genetic operators, crossover and mutation on the 

selected parents. These two processes result in the next generation population of 

chromosomes that is different from the previous generation. In our approach, after 

parents’  selection,  crossover,  mutation  and   fitness  evaluation,   the   two  children  can  go   to  

the next generation only when the fitness of each one of them is greater than the worst 

child. The first child is compared with the worst parent and if its fitness is greater than the 

worst parent, it is replaced by the worst parent and the population is sorted in descending 

order. The same is done with the second child. 
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5.2.7 Crossover and mutation in the genetic algorithms 

After selecting parents from the population by any suitable mechanism, the genetic 

algorithm operator crossover is applied on the selected parents. Crossover breeds the 

selected parents to produce new children for the next generation. For the reproduction 

phase and to produce the next generation, breeding the parents to produce new children is 

necessary, otherwise the evolution process cannot proceed to better solutions. Crossover 

can (but not every time) produce children that have better fitness than the parents. We use 

a 2-point  crossover  in  which  two  crossing  sites  are  selected  in  the  parent’s  chromosomes  

randomly and the genes between the crossing sites are interchanged between the two 

parents.  Mutation is a genetic operator that maintains genetic diversity from one 

generation of a population to the next. The purpose of mutation is to prevent trapping into 

local minima. In our approach of genetic algorithm that uses real number chromosomes, 

any arbitrary number (gene) in a randomly selected parent is changed by a randomly 

selected number that falls in the interval to which all the chromosomes genes belong.  

 

5.2.8 Fitness function in the genetic algorithm  

Fitness function plays an important role in determining the exact solution. It determines 

the fitness for every chromosome in every generation by comparing it with the original 

solution. The exact solution can be reached when an exact (or near to exact) match is found 

between a chromosome and the original solution. The search may also finish when a 

specified number of populations/iterations has been completed. The fitness function used 

to compare every output image with the target image in our genetic algorithm approach is 

based on Euclidean distance between the two images. It first calculates a cost which is a 

measure of to which extent two images differ from each other.  

This cost value is then mapped to a fitness value which represents the fitness of the output 

image. Throughout the evolution process, the genetic process aims to minimize the cost 

function and increase the fitness value.   
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(5-3) 

𝐶𝑜𝑠𝑡  (𝑖, 𝑗) =
∑ ∑ (𝐼(𝑖, 𝑗) − 𝑇(𝑖, 𝑗))ଶெ

௝ୀଵ
ே
௜ୀଵ

4𝑀𝑁
 

 

(5-4) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = 1 − 𝐶𝑜𝑠𝑡 
 

In Equation 5-3, I represents an M×N input image into the CNN processor and T does 

represent a M × N target or reference image. The Euclidean distance is useful to find the 

pixelwise difference between the input and the target image. The denominator 4×M×N is 

used for normalizing the cost between 0 and 1. The input image is normalized in the range 

[-1, +1] before being fed into the CNN.  

 

5.2.9 Obstacle detection through the developed concept 

Collision prevention for autonomously navigating moving vehicles driving without driver 

assistance needs a robust prediction of potential objects. The basic aim of obstacle 

detection is to extract feature points in images.  Two images of a synthetical image 

sequence are presented in Figure 5-3 showing a ride over a textured plane on which three 

dimensional objects are located; the image has been recorded by a moving camera. As in 

real traffic scenes, the motion direction and the viewing direction are identical. The goal is 

to find the templates of a CNN processor that is able to extract the three dimensional 

objects by presenting two images of such a sequence [100]. The task can be performed by 

removing all the details inside the image except the 3D objects that represent the obstacles.  

The approach used in [100] performs the edge extraction of the two images and then 

thresholding as shown in Figure 5-4. For this, the two thresholded images are presented as 

input to CNN for training along with another target image. For the sake of comparison, we 

have used the same images. We found that using suitable CNN parameters, a direct 

thresholding of the image can also remove the background and highlight only the 

foreground objects. A direct thresholding for textured plane removal is shown in Figure 5-
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5. The next step is to remove the objects present on the plane and to extract only the 3D 

objects in the image that represents the obstacles. This is done by presenting two 

thresholded images of this sequence to CNN along with a reference or target image.  

Figure 5-6 shows the initial condition, the input and the target images applied to the CNN 

processor. A target image is constructed by removing all the plane objects and by leaving 

only those above the plane. The targeting is achieved just after 170 iterations and thereby 

producing the following CNN parameters:  

 

(5-5) 

 

 

Figure 5-7   shows   the  output  of   the  concept’s   simulator.   It   can  be   seen   that   all   the  plane  

textures are removed and only the objects above the plane remain. The final output image 

does not contain the lower edges of the objects since there is no way to discriminate the 

lower edges of the objects   and   the   edge   pixel   of   texture   on the plane.  

 

        

 

Figure   5-3: Two images of a synthetically generated image sequence 

(a) (b) 
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Figure   5-4: (a), (b), (c): Input image, edge extracted image and threshold image respectively 

 

  

              

 

Figure   5-5: (a) Input image and (b) thresholded image having no textured plane 

 

(a) (b) 

(c) 

(a) (b) 
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Figure   5-6: (a) initial condition image (b) input image (c) target image  

(a) (b) 

(c) 
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Figure   5-7: (a), (b): Two input images of a sequence; (c): Target Image; (d): CNN generated 
output image. 

 

Other images of the sequence were also tested in the same way and the results are similar. 

 

5.3 Experimental results  

We tested the real coded approach of genetic algorithm for a number of images. Some 

sample results are shown in Figure 5-8 to 5-11. In these figures, (a) represents the input 

image, (b) the target image and (c) the CNN generated output. The CNN generated 

parameters are also given with corresponding results. 

Figure 5-8 shows the separation of a rectangular part from a square as specified in the 

target image. 

 

(a) (b) 

(c) (d) 
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(5-6) 

 

 

Figure   5-8: Removing the rectangle part from the figure 

 

As it appears in Figure 5-9 (a), a noisy image is considered as input and a target is provided 

for noise removal. Figure 5-9 (c) shows the output without noise. 

(5-7) 

 

 

Figure   5-9: Removing noise from the image 
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An image having a tube is fed to the CNN, as shown in Figure 5-10(a). The aim is to fill the 

tube with a given dotted pixel. Figure 5-10(c) shows the output as specified by target. 

 

(5-8) 

 

 

 

Figure   5-10: Filling a long tube with a dotted pixel 

 

In Figure 5-11, a changing gradient image was provided as input. The aim is thresholding 

up to a specified limit as shown in the target image. Figure 5-11(c) shows the output image 

for the following set of parameters. 

 

(5-9) 
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Figure   5-11: Thresholding to a specified limit 

 

Obstacle detection was performed by a sequence of stereo images using Cellular Neural 

Networks. The CNN parameters were determined by a genetic algorithm based on real 

number chromosomes. Using real number chromosomes, repeated encoding and decoding 

of the chromosomes is not required. Unlike binary chromosomes, relatively smaller 

chromosomes are produced. This approach was successfully implemented for obstacle 

detection and also it was found to produce good results for many other image processing 

tasks. In future, we aim to implement this approach on hardware level for enhancing 

efficiency and speed. 

 

5.4 Real-time computing issues for the genetic algorithm based 
CNN  template’s  calculations  

Adaptive image processing and image analysis is very important for ADAS concepts. 

Processing image under different and environmental visual conditions such as fog, rain, 

and sun in background is not trivial. To overcome problems in this form we need to involve 

adaptive image processing techniques. Our CNN platform can process images with a 

performance of 100 FPS. For dynamic processing, CNN needs dynamic templates or set of 

templates. To have a fast response, CNN needs to access different templates very fast. 

There are three ways for real-time template accessing. Template pre-calculation is one 

solution. There are many standard and classic templates like thresholding, contrast 

enhancement, dilation, opening, erosion, closing, find edging, median filter, etc that can be 

pre-calculated and stored in a list. And depending on the situation the procedure system 
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can call different templates. Figure 5-12 shows this structure for pre-calculation of 

templates. 

 

 

 

 

 

 

Figure   5-12: Processing scenario by pre-calculated CNN templates 

 

Another way is using that type of  template  which  is  calculated  by  PDE’s.  If  we  map  PDEs  to  

templates in a parametric way then we are able to change the parameters in real-time for 

adaptivity. In [106], A Gacsádi et al proposed a PDE based template for contrast 

enhancement. They consider the energy function E as indicated in Equation 5-10, and try 

to minimize this function. 

(5-10) 

𝐸(𝜙, 𝐺) = ඵ‖∇𝜙‖ଶ𝑑𝑥𝑑𝑦 +𝜆|𝐺| 

 

The first term of this equation is a smoothness constraint and the second part is an edge 

penalty. During the minimization, there is a tradeoff between image smoothness and image 

deblurring. The following Equation 5-11, is an approximation of the contrast enhancement 

equation in a single layer CNN.  

(5-11) 

𝐴 = ൥
0 0.25 0

0.25 0 0.25
0 0.25 0

൩ , 𝐵 = ൥
0 −𝜆 0
−𝜆 4 ∗ 𝜆 −𝜆
0 −𝜆 0

൩, I=0 

 

CNN CPU 

Templates Bank 
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In this template 𝜆 is a scalar coefficient as a ratio between contrast enhancement and 

smoothness level. Mapping any PDEs with parametric coefficient is possible; therefore 

depending on the situation, a main controller can change these coefficients to adapt the 

CNN result. By this way we can pre-calculate templates for a wide range of problems and 

use them dynamically in a real-time situation.  

There is a hardware based solution also for template calculation. Theoretically genetic 

algorithm is a time consuming optimization technique in any domain of science. There are 

two issues that make GA slow. The first issue is the nature of the selection process. This 

means that for optimizing a solution we have to perform the objective function to a huge 

amount of chromosomes until it converges to the global minimum. Another problem comes 

from the performance of the system. In our case (i.e. Finding template for CNN) for 

evaluating a quality of chromosomes as a solution, the system needs to decode the 

chromosomes and apply it on the CNN and check the results according to the objective 

function. In [107] D. Balya et al did analyse several papers to study techniques of template 

calculation based on genetic algorithms and proposed an analogic implementation of the 

genetic algorithm based template calculation on FPGA. In genetic algorithms the fitness 

function is a soft computing module and the rest of the system could be implement on any 

hybrid or homogenous machine. Figure 5-13 shows the schematic of ideal system for 

calculating the CNN templates. 

 

 

 

 

 

 

 

Figure   5-13: Integration of CNN on FPGA with PowerPC for speeding up of genetic 
algorithm 
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Chapter 6 

6. Emulation of analog computing on FPGA 

 
In this chapter the focus lies on the following research question: “How   far   can   the  
advantages of analog computing be used/gained through an emulation of analog computing 
on  digital  hardware  platforms  like  FPGA?” 

 

6.1 Introduction 
 

The main advantage of analog computing is that we can simultaneously get the result of 

complex mathematic equations [108] [109]. All signals are running in parallel and in real-

time and electrical elements can compute simultaneously. In the traditional analog 

computing approach/concepts we do face a scaling problem for the dynamic range of 

computing. All the components are limited in the range of their respective dynamics and 

one does also face problems related to noise and high voltage. Therefore, it is not possible 

to compute any dynamic range and one has to always rescale the ranges. Another 

disadvantage of classical analog computing is that the solutions appear immediately in 

real-time and eventually on cannot easily record or analyze them. We can alleviate all of 

these problems by using the advantages of digital systems like FPGA.  

Traditionally, analog computers were using OP-AMP’s   (operation   amplifiers)   to   model  

“adder”,   “subtraction”,   “multiplier”,   and   “integrator”.  We   can   however  model   all   of   these  

functions by digital   circuits   in   FPGA.   The   “Digital   Differential   Analyzer   (DDA)”   is   a  

functional block to compute the integral of a function over time. To get more speedup we 

can use fix- point calculations instead of floating point one. Therefore, we must check the 

range of values and the level of accuracy for assigning sufficient reserve bits for both the 

integer and the fraction part. By emulating analog computing on a digital platform like 

FPGA we can get the solution in real-time without any limitation in scaling voltage since  

instead of voltages we are dealing (in digital circuits) with registers, fixed-point operators 
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and data. Another advantage is that one does not need any extra converter for storing data 

in memory as they are already in digital form. Further, we have full control on the clock 

rate; and this also a great advantage of using FPGA and digital architectures. Setup time, 

debugging and reconfiguring the digital emulation of analog computing is are so fast and 

flexible that the digital emulation appears immensely much better than the traditional 

analog computing systems. 

 

6.2 New  computational  modeling  for  solving  higher  order  ODE’s  
based on FPGA 

In this research we propose a method for solving complex higher order ordinary 

differential equations (ODE) based on an emulation of the analog computing paradigm on 

digital hardware platforms. In this case, we mimic real analog system elements by digital 

discretized models. Due to the flexibility and reconfigurability of FPGA and also the 

possibility of system behavioral modeling through hardware description languages (HDL), 

we are able to create all fundamental elements that are necessary to both simulating 

complex systems and the modeling of any ordinary differential equations (ODE) or a 

system simulation based on ODEs. We therefore propose a novel methodology of solving 

systems and higher order ODEs. This technique is similar to the analog computing but with 

the key difference that we possess more flexibility and are able to control at will the 

precision level wanted/needed. Further features are values scaling of both the results and 

internal variables. 

 

6.3 General background 

Solving ordinary differential equations is essential in most scientific fields [110]. Around 

the 1950s, analog computing was the only solution/technology for solving the differential 

equations and simulating complex dynamic systems by using analog electronic 

components. In the last decades this method has been pushed away by the digital 

computing revolution. Almost all researchers have switched to numerical and algorithmic 
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methods for solving ODEs. But the digital computing has also its limitations. Thus, recently 

some researchers are exploring ways to return to the use of the analog computing method 

again [111], especially in cases where ultrafast speed of the solving process is needed (see 

realtime simulation needs for example). There are many reasons behind this decision. The 

first and most important issue is the processing speed. Much of the physical phenomena in 

the real world are measured/expressed by calculus; therefore with analog computing we 

can simulate these models very fast. Due to the inherent process and computing 

parallelization, analog computers are capable of producing complex solutions in real time. 

In the early days of the analog computing age (more than 40 years ago) they were facing a 

series of limitations due amongst others to the use of discrete electronic components of 

this analog computing paradigm: imperfect connections between elements, limitation in 

the voltage scaling, variability of elements characteristics during the process due to the 

temperature, etc [32], [108]. Also the precision of the component characteristics values is a 

serious technological non-scalable limitation. In a real analog computer, there is a 

limitation of the voltage scaling. The voltage is limited between the noise level and the high 

voltage level. Because of this physical limitation one cannot reach solutions that are out of 

this  boundary  (interval).  Since  the  1980’s  up  to  now,  many  researchers  have  been  trying  to  

implement analog computation systems for specific problems in VLSI chips [112, 113]. In 

VLSI chips, one can rescale the voltages within CMOS or TTL ranges. One particular 

weakness of this approach (i.e., analog VLSI implementation) is that the circuit is not re-

configurable and for solving a new problem we have to design another chip, what is a very 

expensive issue. Another problem is that we are not able to re-scale the time in this case. In 

some cases, for coupling system components, time synchronization becomes necessary. 

Due to the limitations of the VLSI approach, we have started thinking of an alternative that 

consists in the essence of an emulation concept of the analog computer on top of 

reconfigurable and scalable digital platforms, especially FPGA chips [111, 112, 114, 115]. 

This research shows that this emulation has been successful and that we are capable of 

modeling and solving any type of higher order even nonlinear ODE at an ultra-fast speed 

on this fully digital structure. 
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6.4 HDL Description and system architecture for the analog 

computing emulation concept of FPGA 

Hardware description languages are similar to the normal programming languages. The 

main difference between sequential programming and HDL programming is that in HDL 

one describes the operations of digital circuits by code at either low level gates or at 

behavioral level [111]. But in sequential programming we have a flow chart and an 

algorithm that should sequentially run on a single execution CPU. In contrast to a software 

programming language, HDL syntax and semantics include explicit notations for 

expressing time and concurrency, which are the primary attributes of hardware. There are 

many types of HDL descriptions that can cover from low level gates up to behavioral 

modeling, such as Verilog, SystemC, VHDL, HandelC and so on. Verilog is the only language 

that can cover the whole of this domain. It means that for description of system operations 

there is the possibility to use a mix of gate level programming and behavioral 

programming. Also, Verilog is easy to understand, and one can describe the functionality of 

complex circuits by using this language.  

To get good performance we have to execute operations such that as many operations as 

possible are in parallel mode. This is due to the low clock rate in FPGA if compared to a 

dedicated CPU. For implementing a system simulation or solving an ODE by a flow 

diagram, we need some basic and fundamental arithmetic components, such as 

summation, subtraction, multiplier, and integrator. For solving ODEs by analog computing, 

there is no general solution, as each differential equation requires its own unique circuit or 

bus connections. However, one could in theory create a series of reconfigurable matrix 

switches that would be rewired for obtaining circuits and bus structures to different 

arrangements depending on the problem (ODE) at hand. The implementation of these 

functions on a digital platform (here FPGA) is easy, however with the exception of the 

analog   “Integrator”.   For   this,  we   use   and   adapt   an   old  method   called  Digital Differential 

Analyzer (DDA) for computing time integrals. In the next section, this technique is 

presented. 
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Figure   6-1: Flow diagram for modelling the Rössler Equation (see Equation (6-2)) in the 
analog computing scheme emulated on FPGA 

 

Depending on the accuracy needed either for a given system simulation or for ODE solving, 

we can define a specific data type for modules and basic elements. For each basic element 

such as subtraction, addition and multiplier we define a fix-point data type with proper 

“integer”   and   “precision”   ranges.   Depending   on   the   complexity   of   the   equations,  we   can  

extend  the  number  of  bits  used  for  storing  both  the  “integer”  and  “precision”  values.  The  

Most Significant Bit (MSB)  bit   is   for  sign,  and   for  subtraction  we  use   the  2’s  complement 

method. The key advantage of a fix-point data coding in this case is the processing time and 

also the saving of FPGA resources. In a floating point representation alternative data 

coding we should have to use complex modules and architectures and it would 

need/require more resources on the FPGA when compared to the fix-point alternative. Still 

now, there is no general purpose architecture for solving any type of ODE equations [115], 

but we propose a method for designing a system and solving ODEs in a straight forward 

process (flow diagram). The flow diagram is consisting of many basic elements that are 

coupled together.  

Figure 6-1 shows a flow diagram for solving the so-called  “Rössler  equation”  (see  Equation  

6-2). In this diagram, outputs are registers, and internal connections are bus wires. The 

data bus width for connecting the components is the same in all parts of the diagram. We 
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use 33 bits for sign registers, sign wires and storing the values and integrators. All 

components are synchronous and the system is operated by a common clock. 

 

6.5 The  “Digital  Differential  Analyzer”  method 

A  digital  differential  analyzer  (DDA),  also  sometimes  called  “digital  integrating  computer”,  

is a digital implementation of the differential analyzer. The integrators in DDA are 

implemented as accumulators, whereby the numerical results are converted back to a 

pulse rate by the overflow of the accumulator. The main advantage of the digital integrator, 

when compared to an analog integrator, is the scalable precision. Also, in a digital 

integrator   based   on   DDA,   we   don’t   have   drift   errors   and   noise   [116] due to the 

imperfection of electronic components. By accumulation over time of values in a register 

we can calculate the integral of signals. The basic digital integrator is expressed by 

Equation 6-1. 

(6-1) 

𝑋௡ାଵ = 𝑋௡ + 𝐾. 𝑆 

In Equation 6-1,  X୬ାଵ denotes the next state of the accumulator used for calculating the 

integral.  The coefficient K is a constant factor that is less than 1; it is used for time scaling. 

In this equation S denotes the input signal for integration. We can map this technique on 

FPGA very easily by writing a behavioral code. After each rising clock pulse, the equation 

updates the integral value. In this integrator, rounding or truncation errors are only due to 

the limitation of registers. Therefore, by increasing the register sizes we have a way to 

control/reduce this error. This error is cumulative. Thus, for low precision registers a lack 

of accuracy will be observed after long time. The only way to overcoming to this problem is 

setting proper register sizes. 
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6.6 Integration of hardware and software 

The hardware implementation of systems for solving ODE equations by this DDA method is 

one issue. Another issue is to ensure the communication of this module or system with the 

physical world for setting parameters, coefficients, and initial conditions. For making a 

System-on-chip (SoC) we need a central processor, a standard bus, and IO cores that are 

integrated together. The IBM Processor Local Bus (PLB) is a technology that can support 

and manage all of these facilities. PLBs are supported slave and master for controlling the 

IP (Intellectual Property) on the bus. There is a possibility to passing the parameters and 

values either through simple registers in PLB or by a first in first out method (FIFO) in PLB. 

In Xilinx Virtex-4 family we can design a system based on PLB and custom IPs. In this case, 

we integrated a PowerPC 405 (PPC) and Verilog modules as a custom IP by a 32bit PLB. 

PPC is a hardcore 32bit processor that can provide good performance as a central 

processor for controlling the custom IP and other peripherals. Through this bus also we 

are able to send interrupt signals, so that Verilog modules can send a signal to PPC 405 as 

an interrupt for doing some process on the output data. When the output of the module is 

valid, it sends an interrupt signal through PLB to PPC 405. PLB and everything that is 

connected to this bus is synchronous due to a common clock. By using System ACE 

(Advanced Configuration Environment) CF (Compact Flash cards) technology we can 

record results data in files. Then transferring or sending these data files to a computer (PC) 

through either the normal or high speed serial link is then feasible. On the PC the results 

will be visualized, saved or used for other purposes. In some Xilinx family there is a 

possibility of using a softcore CPU like MicroBlaze, instead of a hardware-core (PPC405). It 

is obvious that for using software-core CPU like MicroBlaze we need more logic slice 

resources. Therefore, for saving logic slice resources in software integration, we applied a 

hardware-core CPU (PPC 405).   
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6.7 Experimental results 

For checking the accuracy of the developed system, we have implemented a Rössler 

equation. Equation 6-2 shows this Rössler equation, which is a set of three highly non-

linear ordinary differential equations. This system can, depending on the set of parameters, 

generate chaotic signals at the output. Equation 6-3 shows the set of parameters we have 

used for generating chaotic waves. Traditional methods for solving the Rössler equation in 

digital computers are based on numerical methods, such as Euler or Runge-kutta 

algorithms. Depending on the initial conditions and the set of parameters, the system can 

converge to specific orbits, to a point or diverge to infinity. For modeling this equation by 

HDL we needed 6 multipliers, 3 integrators, and 4 adders. For realizing subtractions, we do 

apply  additions  by  the  2’s  complement  method.  For  coupling  these  components,  we  have  to  

use wire bus connections. Also, for storing the values of the states we need registers. There 

is no exact rule for the definition/fixation of the number of bits for both integer and 

precision parts of the fix-point data coding. Depending on the complexity of the system at 

hand we can define a safe range for sign register and wires. For Rössler we have set in this 

work a 33bit bus for connections between modules and accumulating the values in 

integrators. Further, we have respectively set 1 bit for sign, 8 bit for the integer and 24 bit 

for the fraction parts. With this setting for the variables and connections, the solutions of 

the Rössler equation (x, y and z) will be limited within maximum range of ±255 (1-bit sign, 

8-bit integer and 24-bit fraction). We have implemented this equation on a Xilinx ML405 

evaluation board with a 100Mhz clock rate. This board is based on Virtex-4 FX20 family, 

with 20k logic cells and 32 DSP48 slices. 

(6-2) 

𝑑𝑥
𝑑𝑡

= −𝑦 − 𝑧 

𝑑𝑦
𝑑𝑡

= 𝑥 + 𝑎𝑦 

𝑑𝑧
𝑑𝑡

= 𝑏 + 𝑧(𝑥 − 𝑐) 
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(6-3) 

 a = 0.41 

b = 1.15 

c = 4.16 

At its most basic level, a DSP48 is a multiplier with a combination of adders and many 

optional operations. It has an 18-bit sign input signal and a 36-bit sign output result. This 

result is then sign extended to 48-bits, it can either be fed into the adder or connected 

directly to the output of a DSP48. Pipeline registers are a unique advantage of the DSP48 

block compared to other FPGA DSP architectures [7]. Xilinx has dedicated many DSP48 

slice in Virtex-4 and Virtex-5 family for speeding-up of calculations. The amount of 

resources used after synthesis for solving the Rössler equation in terms of DSP48 slices, 

Flip-Flop slices and 4-Input LUT Slices is shown in the Table 6-1.   

 
Table 6-1: FPGA Resources used for Implementation of an Emulated Analog  

Computing Solver of the Rössler Equation on FPGA 

 

Integrated Software Environment (ISE) is the Xilinx® design software suite that allows you 

to take your design from design entry through Xilinx device programming. By disabling the 

DSP48 slices in this program, the system tries to synthesize the code and design by normal 

logic slices. The FPGA synthesis report is in Table 6-2.  For the 2 scenarios with and 

without DSP48 slices; the Table 6-2 shows what difference there is in terms of FPGA 

resources use/consumption between the two alternatives.   
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Table 6-2: Benchmarking of resources used for FPGA synthesis report for implementing  a 33-bit ODE solver of 
the Rössler Equation 

 

 

In some Xilinx family FPGA, there is no DSP48 slice for implementing integrators, 

multipliers and basic elements. Thus we need more logic cells to implementing these 

resources. According to Table 6-2, 62% DSP48 (20 slice DSP48 in Virtex-4, FX20 FPGA) is 

equal to 21% (3600 slice, 4-bit LUTs in Virtex-4 FX20 FPGA) of basic logic slices. 

 

Figure   6-2: Rössler equation output graph that is generated after a solving by the analog 
computing emulation on the FPGA board 
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Solving the Rössler equation for 6000 iterations in Matlab (time step size selected is 10^-9, 

on a 3GHZ Dual Core CPU), takes 5400 ms, but in solving the same equation by hardware 

through the emulated analog computing on FPGA with 300 MHz clock  takes only 5 

microseconds. The extremely high speed-up (compared to CPU) of many orders of 

magnitude (more than several ten thousands) is evident. Figure 6-2 shows the XY plot of 

Rössler equation output. 

 

6.7.1 Future work 

In the future, we are going to implement a system for generating the HDL code for solving 

equations by a flow diagram. For modeling an ODE the future program will be node-based. 

After coupling nodes by either code or a GUI, the program will be able to generate a gate 

level HDL code for direct programming on FPGA. By this technique we can speed up the 

design and implementation process of analog computing solvers on FPGA, which will be 

capable of solving complex ODE equations and simulating complex systems in real time on 

FPGA. 

 

6.8 Concluding remarks 

Each 18-bit integrator takes 1% of the FPGA resources, and each multiplier takes 2% 

resource. In Xilinx Virtex-5 family there is a powerful chip (XC5VSX240T), which does fit 

very well to the requirements of our analog computing emulation. This chip has 1k DSP48 

slices, what is quite good for implementing integrators and multiplexers. The FPGA 

synthesis program can combine one integrator and one or two multipliers and adders in 

each DSP48. By this way we can implement many integrators, adder and multiplier on a 

single FPGA chip. The obtained results are very encouraging, a speed-up or more than a 

million has been reached when compared to Matlab performance on a normal PC. 
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Chapter 7 

7. Implementation of CNN on FPGA  
 
In this chapter the focus lies on the following research question: “How  far  can  an  
efficient  implementation  of  CNN  on  FPGA  and  on  GPU  be  designed  and  realized?  “ 

 

7.1 Introduction 

The implementation of CNN on hardware is very similar to the emulation of analog 

computing on FPGA. There are some bottlenecks for accessing the memory and updating 

state variables for each cell. In the emulation of analog computing in FPGA, we did model 

basic elements of system which are necessary for modeling the behavior of the system. The 

same method can lead to implementing CNN on FPGA. In contrast to ANN and because of 

the local connectivity of CNN cells, one does have the possibility to implement this 

architecture on FPGA and also on GPU [50]. FPGA macro cells and logical components can 

work in a highly parallel manner. And because of a very flexible routing between them, we 

can implement any complex digital circuit or model. To get more advantages from using 

FPGA we can use high level behavioral modeling languages such as VHDL, Verilog or 

SystemC. FPGA has local and embedded memory, which is very important for storing the 

CNN states, otherwise a transceiver of memory between FPGA and an external memory 

could be very time consuming and constitute a significant bottleneck. Today, most FPGAs 

have an internal dedicated standard CPU that has access to the hardware and logical field 

of FPGA through the standard bus controller [117, 118]. There are many high level 

compilers based on ANSI-C standard for coding and debugging. This technology increases 

the system performance by integrating of hardware and software. Therefore, loading CNN 

initial states, templates, and setting time scales and other parameters can be done easily by 

CPU. The resources of an FPGA are not endless; thus we have to consider this issue while 

designing the CNN architecture.  
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Concerning GPU, using GPU is getting more popular every day. The highly parallel 

structure of GPU makes it more efficient for image processing and for processing large 

blocks of data. The high memory bandwidth between CPU and GPU, the integration of GPU 

and CPU through the standard protocols and the running multi-kernels scripts on GPU 

make it a very efficient technology for the implementation of CNN [119, 120]. Since 2003 

GPU technology is growing up dramatically and we can implement very complex models 

and systems by using flexible and robust tools and high-level software development 

instruments/tools. 

  

7.2 A framework for FPGA based real-time machine vision: direct 
convolution versus CNN 
 

In this Chapter we compare two different frameworks for real-time image processing, 

namely (a) a convolution based framework, and (b) a CNN (Cellular Neural Network) 

based framework. Hereby, a key focus is related to the main factor in image processing and 

machine  vision  that  is  the  “processing  time”.  For  real-time applications this time must be 

the shortest possible. Due to the CPU structures (von Neuman architecture), in the classical 

image processing only a sequential processing of the pixels is possible. In such a context, 

convolution operations on images, which are very time consuming, will constitute a 

bottleneck for the whole sequential system. At the end, the experimental results of 

implementation of a hardware-based processing architecture   for   both   the   “CNN   based  

image  processing”  and  the  “direct  convolution  method”  on  Field Programming Gate Array 

(FPGA) are presented and discussed. Thereby a systematic comparison of the performance 

achieved by each of the approaches is conducted.  

 

7.3 Introduction to video processing platform  

 FPGA and dedicated video processing systems have been widely used since many years in 

video and image processing systems and machine vision application such as areal image 

processing, surveillance, medical imaging, vehicle automation and quality control in 
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industrial systems [26, 49, 50]. In the classical video processing platforms we can use DSP 

or CPU core for manipulating/processing pixels. For process one frame of data, the system 

generally has to fetch both the data and the program to either CPU or DSP, perform 

required mathematical operations and then store the result(s) back into the memory. The 

system must handle the high priority interrupts at the same time. And all these extra cycles 

will add to the total number of cycles involved in the processing each pixel of image [121]. 

The main weakness of these traditional systems is clearly the low speed related to the high 

processing time. Due to the sequential architecture and the programs, the system cannot 

manipulate pixels in a real pipeline model. Therefore, we must design a suitable 

architecture with a pipelining potential. FPGA is one the best candidates for pipelining 

video processing. With newest FPGA technologies it is possible to design a multi-functional 

and high performance video processing system. New FPGA technologies have made them 

much faster and denser than before. XILINX Vertex technology provides a large two-

dimensional array of logic and programmable block sets, which contain lot of dedicated 

memories and flip-flops. Having such facilities and infrastructures, one can easily map the 

image on this grid for further image processing[49]. This implementation presents a real-

time video processing platform involving two concepts: a) direct convolution based image 

processing, and (b) CNN based image processing. Designing a proper image processing 

platform is extremely significant. Thus, we have to design a robust and flexible 

architecture. The main parts of a real-time platform are knowingly capturing video, 

buffering video streams, video stream processing and finally video output controller. All 

these parts are considered in the platform design of this implementation. 

 

7.4 System Architecture 

As already explained, standard architecture for a video processing system contained the 

essential modules such as capturing unit, processing unit, memory and video output 

controller. According to the Figure 7-1 we can connect these parts together. To capture 

video signals we have four possibilities that are using DVI, S-video input, composite input, 

and dedicated digital camera. The Digital Visual Interface (DVI) is a video interface 
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standard designed to provide very high visual quality on digital video processing and 

displaying systems. 

 

Figure   7-1: General architecture for stream processing 

 

Digital DVI signals are partially compatible with High Definition Multimedia Interface 

(HDMI) signals. In this case, we have used an FMC video grabber daughter board as a 

capturing unit. This board has a central pico-processor to control both the signals and the 

synchronization with the FPGA board. The video stored in the buffer does contain the pixel 

values. After video the capturing phase, we must extract and split rows for the video 

processing module. The video processing module has access to the video memory for 

storing and retrieving video signals. The main property/function in the video processing is 

a convolution based filter. Depending on the convolution size, we must split the video 

stream into many rows and keep it in the internal FPGA memory. 

 

7.5 Hardware Platform Specification 

In the implementation of this work, we do use a platform comprising the Xilinx XtreamDSP 

3400 and a Video FMC daughter board which has a Pico Microblaze for video signals 

capturing. It has a DVI input, a composite/S-video input and output, and a camera input. 

This board has two camera interfaces to allow the capturing of data from two cameras at 

the same time and simultaneously. The camera we use is a custom CMOS camera based on 

the Micron MT9V022 image sensor chip. This camera sends a high-speed LVDS (Low-

Voltage Differential Voltage) data stream format to the board. It operates with a 26.6 MHZ 

  VGA 

Frame Buffer IP 

PPC/CPU Memory 
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clock rate that is generated by a reference clock which is provided via a fixed-frequency 27 

MHZ oscillator on the board. Figure 7-2, shows the camera connection diagram to/in the 

FMC board. In the initial step we must define the voltage source level for the FMC board as 

well. 

 

Figure   7-2: Camera connection to the FMC board 

 

 

Figure   7-3: Xilinx XtremeDSP Kit 3400 

 

Figure 7-3 shows the Xilinx XtremeDSP kit which is very appropriate for image processing 

and machine vision applications. This platform provides an embedded design framework 

that can be customized with user defined video accelerators implemented in the FPGA 

fabric. It has one Spartan FPGA with 3.4 million system gates and 126 DSP48 internal block 

sets. This board has 256MB DDR2 and 256MB Compact Flash. The clock rate for the FPGA 

is up to 200 MHZ. 
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7.6 Electronic System Level and High Level Direct Convolution 

Modeling 

There are many possibilities to design a proper model for the video signal processing. As 

main part of an Image processing engine, we need a convolution operator. This basic and 

simple mathematic model is very useful for the implementation of many complex filters 

such as first derivative and second derivative ones, finding edge operations, median filters, 

noise cancelation, and etc. Due to the complexity of filters the best way to design a 

convolution module in FPGA is using HDL programming. There are a lot of techniques to 

implement and generate HDL code. One of the best techniques is using a high-end 

technology of Electronic System Level design (ESL) like Impulse CoDeveloper. Impulse 

CoDeveloper is a proper tool for developing custom IP modules such as convolution and 

image processing modules. This tool allows designers to quickly develop custom filter 

modules in standard c program. With this tool we can convert an untimed C program to 

synchronized HDL code. One of the best facilities of this tool is the debugging module for 

higher level C standard programs such as Microsoft visual studio and so on. CoDeveloper 

results are fully compatible with standard C and VHDL. Almost all the data interactions 

between modules and processes in CoDeveloper are based on stream passing and shared 

memory. For creating these convolution modules we have designed two parallel C-

language processes named columns and convolution. The column process has access to the 

incoming video stream and it can store the pixels values of 3 rows of an image in the 

internal memory buffer for the convolution module. Figure 7-4 shows these two main 

modules for splitting rows and convolution. The designer has access to the multi-channel 

memory controller; by this way the program can use the pipelining technique. Depending 

on the hardware platform we can use the pipelining technique in our design. Using the 

Pipelining #Pragma switch, which is a pre-compiled  command  in  C,  we  can  synthesize  “for-

loops”  commands  and  the  internal  contents  of  that  in  a  concurrent  mode.  If  a  system  has  

access to the dual-channel external memory, one can thereby synthesise some parts of the 

code in a pipelining mode which has an interaction with external memory and registers 

[122]. 

 



 
 

 

75 
 

 

 

Figure   7-4: Convolution and stream processing diagram 

 

These two processes will run concurrently. The first process read the data and split it in 3 

separated rows, and the second process applies a convolution on these data. In each clock 

cycle, the columns module reads a pixel value from the live video stream source and it 

writes these pixels values on the output stream channels. These pixels values will then be 

used by the convolution process. 

 

7.7 Modeling cellular neural network by DDA 

Cellular Neural Network (CNN) is a paradigm for parallel processing that is similar to the 

neural network but with the difference that the connectivity between the cells is rather 

local and not global like in neural network. The main parts of a CNN module are the 

convolution module and the integrator [50]. For designing an integrator module we need a 

memory for keeping both data and cell values. According to the Equation 7-1, describing 

the CNN cell dynamics, we need three templates for each cell: a feedback template TA, a 

control template TB, and a bias template I.  

(7-1)     

ijijAijBijij IyTuTxx �
�
� -�       

 

where,   ‘ AT ’   is   denoted   feedback   template   (3x3),   and   ‘ BT ’   is   denoted   control   template  

(3x3),  ‘u’,   ’x’,   ‘y’  and  ‘I’  are  the  input,  the  state,  the  output  and  the  bias  term,  respectively.  

The output signal is related to the Equation 7-2 below equation. 
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(7-2) 

))(()( txfty ijij                                   

 

In the Equation 7-2, the function )(xf is a nonlinear activation function defined in 
Equation 7-3. 

 

(7-3) 

� �11
2
1)( ��� xxxf                        

 

We can model the solution of the Equation 7-1 on FPGA by implementing a simple 

approximation technique like the well-known digital differential analyzer (DDA). A DDA, 

also   sometimes   called   “digital   integrating   computer”,   is   a   digital   implementation   of   the  

differential analyzer. The integrators in DDA are implemented as accumulators, whereby 

the numeric results are converted back to a pulse rate by the overflow of the accumulator. 

The main advantage of the digital integrator, when compared to an analog integrator, is the 

scalable precision.  Also,  in  a  digital  integrator  based  on  DDA,  we  don’t  have  drift  errors  and  

noise due to the imperfection of electronic components. By accumulating over time of the 

values in a register, we can calculate the integral of input signals. The basic digital 

integrator is expressed by Equation 7-4. 

(7-4) 

SKXX nn �� �1                                       

 

In Equation 7-4, 1�nX  denotes the next state of the accumulator used for calculating the 

integral. The coefficient of K  is a constant factor that is less than 1; it is used for time-

scaling. In this equation, S  denotes the input signal for integration. We can map this 

technique on FPGA very easily by writing a behavioral code. After each rising clock pulse, 
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the equation updates the integral value. In this integrator, rounding or truncation errors 

are only due to the limitation of registers. Therefore, by increasing the register sizes we 

have a way to control/reduce this error. This error is cumulative. Thus, for low precision 

registers a lack of accuracy will be observed after a long time. The only way for overcoming 

to this problem is setting proper register sizes. 

By this way, we can compute directly the solution of differential equations. This 

simulation of analog computing is a fully parallel method for solving differential systems 

such as nonlinear equations and also to realize the integrator module within CNN. For 

integrator modules we must have access to the memory for storing the values and the cells 

output.   The   only   critical   term   in   CNN   equation   is   the   “Integrator”,   which   we  

implement/realize through the DDA model. After approximating the basic CNN cell, we 

must cascade the cells together. All these steps are implemented in the CoDeveloper by 

using a Fixed-Point method. The result for each three rows will be stored in the memory. 

The CoDeveloper can handle the access to the external memory through the multi port 

memory controller (MPMC). This controller is a full feature memory controller that is 

compatible with standard DDR2 memory devices. This controller must be configured for at 

least one read and one write port. And for the many high-end video processing 

applications, there is no implicit limit on the number of read or writes ports in MPMC. 

 

7.8 CNN Emulation Architecture 

According to the original model of CNN, it consists of two parts, one is constant and the 

other part is variable over the time. A Convolution is realized between the control 

templates and the input. The bias value however is always constant during the CNN 

calculations IuT ijB �* .   Therefore,   the   system   doesn’t   need   to   recalculate   it   during   the  

CNN solving process. The only part that must be recalculated in the DDA iterations is the 

term ijA yT * .   The   value   of   the   “Template   Convolution”   added   to   the   bias   is   constant   for  

each  pixel  and  it  is   therefore  not  recalculated  again  during  the  CNN’s   iterations;  see  Refs  

[18, 123]. 
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Figure   7-5: Scheme of the DDA based model for CNN 

 

For storing the matrix template values and the convolution we have assigned a 14 bit 

signed register for each cell, 1bit sign, 3bit integer and 10bit precision. Similar to the 

standard analog CNN chip, we have limited the range of values to be between -5 and +5. 

We need an 18bit register to keep a convolution result. By 1bit sign, 7bit integer and 10bit 

precision it can store the values from -127 up to +127 with good accuracy. The maximum 

value for the convolution is in the range of (-125, +125]. If we define a Bias value in the 

range of (-3, +3], we can still save the value in same range register (18bit). 

 

 

Figure   7-6: Convolution diagram for the control template 

 

Figure 7-6, shows the Control Template and convolution diagram, which is the same also 

for the Feedback template convolution with the output signals. Signals are, after the 

saturation function, in the range of [-1, +1]; thus we must extend it from 12bit to 14bit 

range before getting convolution on feedback template.  
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Figure   7-7: Convolution diagram for feedback template 

 

According to the Equation 7-4, for implementing an integrator we need a register to 

accumulate the input value with the previous value. In Equation 7-4 we assign the value 

2ିଽ to  the  ‘K’  factor.   

(7-5) 

92)**()1()(
�

���� IuTyTnxnx BA           

 

To  apply  the  ‘K’  factor  we  can  operate  a  9  time  shift  to  right.  Depending  on  the  ‘K’  factor  we  

can increase the accuracy. There is a trade-off  between  accuracy  and  speed.  For  a  small  ‘K’  

factor, we need more iteration to get the result. On the other hand by this way we can 

change the time scale.  

 

7.9 Hardware and software integration 

Hardware modules are significantly faster than software functions. But in some cases we 

need more flexibility in our system to access to the data and resources. The only way to get 

a high performance is hardware and software integration. Using a high bandwidth 

communication path between hardware modules and processors can be very helpful. For 

example, for changing the template in the convolution and as well in CNN we need a 
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mechanism for loading data and storing it in the internal registers. For convolution based 

video pre-processing we can just load the matrix coefficient that can change the 

functionality of the system, and in the case of CNN we must change two different templates 

and bias values. We know that the Impulse C from CoDeveloper is based on the 

Communication Sequential Processor programming model. And it can generate the entire 

necessary internal signal for synchronization and communication between hardware 

modules. But for communication and exchanging values between hardware modules and 

processor, there are some methods such as Processor Local Bus (PLB) and Fast and 

Simplest Link (FSL). If we need only communication between two given modules, FSL is 

the best, but for communication between a master and many slave modules, PLB can be 

helpful. For Video and Image processing we do not need any high processing over the 

processor, and the only reason behind that is initializing, re-configuring and debugging the 

system; see Refs [124-126]. 

 

Figure   7-8: Impulse CoDeveloper Design Process Diagram 

 

Imuplse C can generate hardware and software interfaces; depending on the architecture, 

it can be PLB based or FSL based. We have access to driver and low level code for 

communication between processor (MicroBlaze/PowerPC), convolution module and CNN 

module.   We   don’t   need   to   store   the   pixels   values   of   the   whole   image,   and   just   after  
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convolution calculations for every 3 rows, we can send it to the video output. In CNN, we 

have to keep those pixels values in a buffer for the next n iterations. The number of n is 

depending on the accuracy and on the DDA approximation. For this work we have used a 

32bit MicroBlaze CPU for a combination of both hardware and software; hardware 

convolution modules must connect to the memory and data path according to the Figure 7-

1 architecture. All the parameters and data can be transmitted between modules and 

memory, which is based on FIFO stream buffers and Processor Local Bus (PLB) technique; 

see Refs [127, 128].  

 

7.10 Direct convolution vs. CNN – performance comparison 

We have found by experience that in our design image smoothing operators, whether 

linear or non-linear, such as uniform filter, median filter, Gaussian filter and so on, which is 

easy to model by a direct convolution, are faster than a CNN based processing for the same.  

The results of first order and second order derivatives for finding edging in direct 

convolution was also faster than CNN implementation. The direct convolution method 

needed only two clock pulses for each pixel, while CNN needed 10 clocks (it depends on the 

number of DDA iterations). 

 

Figure   7-9: Real-time output of the system on monitor 

 

In the case of morphological operations such as dilation, erosion, opening and closing 

operation, the CNN model has been found to be much faster, and it is not even possible to 
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implement these operations only by cascading convolution operators and some Boolean 

arithmetic  operations.  For  the  complex  algorithms  like  “skeleton”,  CNN  has  clearly  a  very  

good potential and it is easy to find a template to extract the image skeleton; see Refs  [18, 

129] [93, 96, 130].  

 

7.11 Conclusion 

In this chapter, a new method for CNN emulation on FPGA for real time machine vision 

applications has been proposed. The system is implemented on Xilinx XtremeDSP kit 3400, 

which is very flexible for video and image processing applications. The video is tested on 

DVI and Camera in connection with 1024×768 pixels and 60 fps monochrome for direct 

convolution and near 24 fps CNN emulation. The maximum frequency of the system is 

200MHZ. The Computation of pixel operations for convolution method does only take two 

clock pulses. And for the CNN implementation the number of clock pulses needed for a give 

processing did depend on the accuracy needed to repeat the DDA iterations. The whole 

design has been made by ISE 11.2, EDK 11.2 and Impulse CoDeveloper 6.3.  The main 

features   of   the   convolution   technique   is   that   we   don’t   need   to   access   to   the   external 

memory   and   the   frame   rate   is   high.   That’s   why   it   takes   only   two   clock   pulses.   For  

implementing complex filters such as nonlinear image processing, CNN-based processing is 

clearly much better than convolution operations. To achieve the same result by cascading 

some convolution operators would result is a significantly slower process than using only 

one CNN operation processing. 
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Chapter 8 

8. Implementation of CNN on GPU 

 
In this chapter the focus lies on the following research question: “Can   it   be  
demonstrated by a series of concrete image processing examples of relevance for ADAS, that 
CNN based processing does really meet the hard requirements related to speed and 
robustness?“ 

 

Every millisecond during driving is important. This could be a minimum interval for 

processing signals in vehicles. In some cases such as Lane Departure Warning (LDW), 

Adaptive Cruise Control (ACC), Emergency Brake Assist (EBA) and Blind Spot Detection 

(BSD) system should take a decision in a few milliseconds. Main bottleneck for video based 

ADAS is preprocessing image and preparation for extracting meaningful data from the 

image. DSP board could be a good alternative solution but due to complexity of image 

preprocessing, we do need a very robust and flexible platform which has potential of 

cascading function, sharing memory, soft reconfiguration and high speed processing. 

Hence, CNN architecture which implemented on FPGA or GPU could be more interesting 

for us. In ADAS the sequence of image preprocessing is clear for designer; therefore a 

flexible architecture which can reconfigure the system and change the functionality of the 

module by a small matrix template would be very interesting for them. High definition 

quality of image and performing complex filter in term of computation time, color space 

conversion, and extracting features in ADAS technology are hard requirements related to 

the speed and robustness. 
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8.1 CNN Based High Performance Computing for Real Time Image 
Processing on GPU 

 

Many of the basic image processing tasks suffer from processing overhead to operate over 

the whole image. In real time applications the processing time is considered as a big 

obstacle for its implementations. A High Performance Computing (HPC) platform is 

necessary in order to solve this problem. The usage of hardware accelerator make the 

processing time low. In recent developments, the Graphics Processing Unit (GPU) is being 

used in many applications. Along with the hardware accelerator a proper choice of the 

computing algorithm makes it an added advantage for fast processing of images. The 

Cellular Neural Network (CNN) is a large-scale nonlinear analog circuit able to process 

signals in real time [12]. In this research, we develop a new design in evaluation of image 

processing algorithms on the massively parallel GPUs with CNN implementation using 

Open Computing Language (OpenCL) programming model. This implementation uses the 

Discrete Time CNN (DT-CNN) model which is derived from originally proposed CNN model. 

The inherent massive parallelism of CNN along with GPUs makes it an advantage for high 

performance computing platform [131]. The advantage of OpenCL makes the design to be 

portable on all the available graphics processing devices and multi core processors. 

Performance evaluation is done in terms of execution time with both device (i.e. GPU) and 

host (i.e. CPU).  

 

8.2 Introduction 

Image processing is an ever expanding and dynamic area with applications reaching out 

into everyday life such as in medicine, space exploration, surveillance, authentication, 

automated industry inspection and in many more areas [132]. Real time image processing 

using modern processors is limited [52]. Problems in computer vision are computationally 

intensive [133]. The tremendous amount of data required for image processing and 

computer vision applications present a significant problem for conventional 

microprocessors [52]. Consider a sequence of images at medium resolution (512×512 

pixels) and standard frame rate (30 frames per second) in color (3 bytes per pixel). This 

represents a rate of almost 24 million bytes of data per second. A simple feature extraction 
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algorithm may require thousands of basic operations per pixels, and a typical vision system 

requires significantly more complex computations.  

As we can see, parallel computing is essential to solve such problems [133]. In fact, the 

need to speed up image processing computations brought parallel processing into 

computer vision domain. Most image processing algorithms are inherently parallel because 

they involve similar computations for all pixels in an image except in some special cases 

[133].  Conventional general-purpose machines cannot manage the distinctive I/O 

requirements of most image processing tasks; neither do they take advantage of the 

opportunity for parallel computation present in many vision related applications [121]. 

Many research efforts have shifted to Commercial-Off-The-Shelf (COTS) -based platforms in 

recent years, such as Symmetric Multiprocessors (SMP) or clusters of PCs. However, these 

approaches do not often deliver the highest level of performance due to many inherent 

disadvantages  of   the  underlying  sequential  platforms  and   “the  divergence  problem”.  The  

recent advent of multi-million gate on the Field Programmable Gate Array (FPGAs) having 

richer embedded feature sets, such as plenty on –chip memory, DSP blocks and embedded 

hardware microprocessor IP cores, facilitates high performance, low power consumption 

and high density [134].  

But, the development of dedicated processor is usually expensive and their limited 

availability restricts their widespread use and its complexity of design and implementation 

also makes the FPGA not preferable. However, in the last few years, the graphic cards with 

impressive performance are being introduced into the market for lower cost and flexibility 

of design makes it a better choice. Even though they have been initially released for the 

purpose of gaming, they also find the scientific applications where there is a great 

requirement of parallel processing. Along with the support of hardware platforms there 

are some software platforms available like Compute Unified Device Architecture (CUDA) 

and OpenCL for designing and developing parallel programs on GPU [135]. Out of these 

available software platforms OpenCL framework recently developed for writing programs 

can be executed across multicore heterogeneous platforms. For instance, it can be executed 

on   multicore   CPU’s   and   GPU’s   and   their   combination.   Usage   of this framework also 

provides an advantage of the portability that is; the developed kernel is compatible with 

other devices. Along with the available hardware and software platforms we used the CNN 

parallel computing paradigm for some image processing applications.   



 
 

 

86 
 

The idea of CNN was taken from the architecture of artificial neural networks and cellular 

automata. In contrast to ordinary neural networks, CNN has the property of local 

connectivity. The weights of the cells are established by the parameters called the 

template. The functionality of the CNN is dependent on the template. So with a single 

common computing model, by calculating the templates we can achieve the desired 

functionality. The CNN has been successfully used for various high-speed parallel signal 

processing applications such as image processing, visual computing and pattern 

recognition as well as computer vision [91]. So we thought of implementing it on the 

hardware for the need of HPC in real time image processing. Also, the parallel processing 

capability of the CNN makes us to implement the CNN architecture on the hardware 

platform for its efficient visualization.  

In this research, the effort is done to develop a DT-CNN model on the graphics processing 

units with the OpenCL framework. An effort is done to make the development of DTCNN 

entirely on the kernel which make it executable on every platform. But, it should be noticed 

that the GPU is a coprocessor which supports the processor in our system. Hence, the CPU 

still executes several tasks, like the transmission of the data to the local memory of the 

graphics card and retrieving back. Finally, GPU-based Universal Machine - CNN (UM-CNN) 

was implemented using the OpenCL framework on NVIDIA GPU. A benchmark is provided 

with the usage of GPU based CNN model for the image processing in comparison with CPU. 

The chapter is structured as follows: Section II gives a clear description about the theory 

involved in parallel computing. Section III introduces the concepts of CNN, the system 

diagram and its functionality and systems designed methodology which is done using 

OpenCL. Section IV concludes the section and says about the work going to be done in the 

future. 

 

8.3 Theory of Parallel Computing 

Traditionally, computer software has been written for the serial computation and time 

sharing computation. Therefore to solve a problem, an algorithm is constructed which 

produces a serial stream of instructions. These produced instructions are executed 

sequentially one after the other on the CPU of the computer.  
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Parallel computing on the other hand uses multiple processing elements simultaneously on 

a problem. The problem is broken into parts which are independent so that each 

processing element can execute its part of the algorithm simultaneously with others. The 

processing elements can be diverse and include resources such as a single computer with 

multiple processors, a number of networked computers, specialized hardware or any 

combination of any of the above. The software speedup was achieved by using a CPU with 

higher clock rates, which significantly increased each passing year. However, when clock 

speed reached 4GHz, the increase in power consumption and heat dissipation formed what 

is  known  as  the  “Power  Wall”  which effectively caused the CPU clock rate to level off [136]. 

Along with this, many applications today require more computing power than a traditional 

sequential computer can offer. All these things made the vendors search for an alternative 

to make increase of available cores with in a processor instead of increasing the clock 

rates. The increase of cores on the processor made the CPU clock rates to remain same or 

even reduced to economize the power usage. The old software design used for the 

sequential process will not get increased directly with the increase in the processor cores. 

To get the benefit form the current developed multi core processor, new software has to be 

designed to take the advantages of the new architecture. This makes the use of all available 

multi cores and performs process in parallel. Parallel computing is defined  as  “a   form  of  

computation in which many calculations are carried out simultaneously, operating on the 

principle that large problems can often be divided into smaller ones, which are then solved 

concurrently (in parallel)". 

Many different hardware architectures exist today to perform a single task using multiple 

processors. Some examples are:  Grid computing – a combination of computer resources 

from multiple administrative domains applied to a common task.  Massively Parallel 

Processor (MPP) systems – known as the supercomputer architecture Cluster server 

system – a network of general-purpose computers. Symmetric Multiprocessing (SMP) 

system – identical processors (in powers of 2) connected together to act as one unit. Multi-

core processor – a single chip with numerous computing cores [136]. Heterogeneous 

computing systems also provide an opportunity to dramatically increase the performance 

of parallel and HPC applications on clusters with CPU and GPU architecture [137]. This 

concept can be achieved by combining the GPU and multicore CPUs.  
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8.4 System Design and Architecture of CNN 

This section explains in detail about the CNN, its architecture and advantages. It is followed 

by the description of the system we have developed and about the OpenCL framework we 

have used and its advantages for programming on GPU. Analog circuits have played a very 

important role in the development of modern electronic technology. Even in our digital 

computer era, analog circuits still dominate such fields as communications, power, 

automatic control, audio and video electronics because of their real-time signal processing 

capabilities [104]. CNN technology is both a revolutionary concept and an experimentally 

proven new computing paradigm. Analogic cellular computers based on CNNs are set to 

change the way analog signals are processed and are paving the way to an entire new 

analog computing industry [138].  CNN was proposed by Chua and Yang in 1988 [104]. The 

CNN is defined as a n-dimensional array of cells that satisfies two properties: (i) most 

interactions are local within a finite radius r, and (ii) all state variables are continuous 

valued signals [94].The CNN has M by N processing unit circuit called cells C (i, j) located at 

site (i, j), i = 1, 2, . . ., M, j = 1, 2, . . ., N [98]. The array of CNN cell structure is as shown in 

Figure 8-1. 

 

 
 

Figure   8-1: A simple CNN array architecture 
 
 

 
Each cell of the CNN is made of a linear capacitor, a nonlinear voltage controlled current 

source and a few resistive linear circuit elements. The dynamic equation of a cell C (i, j) in 

an M×N CNN, given by CHUA and Yang [139] is shown below 
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(8-1) 

C ୢଡ଼౟ౠ
ୢ୲

=   − ଵ
ୖ
X୧୨ +   ∑ (A୧୨  ,୩୪  Y୩୪ +  B୧୨  ,୩୪  U୩୪)େ(୩,୪)∈  ୒౨(୧,୨) +   I    

 
Where the output equation Yij can be written as 
 

(8-2) 

𝑌௜௝ = 𝑓൫𝑋(𝑖, 𝑗)൯ =    ଵ
ଶ
  (|𝑋 + 1| −   |𝑋 − 1|)      

 

The mathematical equation mentioned in Equation 8-1 is representing the model of the 

Continuous Time CNN (CT-CNN). In the equation, C is a linear capacitor and R is a resistor. 

Ykl is the output state of each cell. Ukl is the input of each cell. Aij and Bij are the template 

elements. Xij represents the initial state and I represent the threshold or bias for each cell. 

The Equation 8-2 is the output equation of each iteration. This equation gives the 

functional model for the calculation of each pixel element to the output. This model in not 

very fast in the real time image processing. In order to overcome the drawbacks of CT-CNN, 

the concept of Discrete Time CNN (DT-CNN) is developed. The DT-CNN is defined by the 

difference equations instead of differential equations used in the CNN [140]. The model of 

DT-CNN is derived from the model of CT-CNN  using  the  Euler’s  method.  The  DT-CNN can 

be described with the following equation [140]. 

 

(8-3) 
𝑋௜,௝(𝑡 + 1) ≈ ∑ 𝐴  (𝑖, 𝑗; 𝑘, 𝑙)𝑓 ቀ𝑋௞,௟(𝑡)ቁ +  ∑ 𝐵  (𝑖, 𝑗; 𝑘, 𝑙)௖(௞,௟)∈ே  ௥(௜,௝)௖(௞,௟)∈ே  ௥(௜,௝)   𝑈௞,௟ + 𝐼             

 

From Equation 8-3, we can see that Xi,j is the state of the cell C(i, j) and f(Xk,l) is the output 

of cell C(k, l) within the neighborhood Nr(i, j) of C(i, j). Uk,l is the input of each cell C(k, l) 

within Nr(i, j), and I is the bias of cell. A and B are called the feed-back and feed-forward 

templates of the CNN respectively. 

CNNs are widely used for real time image processing applications. Though the CNN, as a 

concept is characterized by a strict locality operation, the large scale digital 

implementation has been far from trivial [90]. 
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8.5 System Diagram 

The system diagram gives the clear understanding of the work we have done along with 

the flow of data and processing steps. The system diagram of the designed model of our 

research was show in Figure 8-2. 

 
 

Figure   8-2: System Design Architecture 

  
From the system diagram shown above we can understand that there are several available 

platforms which can help in the processing of image processing tasks. They are FPGAs, 

DSPs, CPUs and GPUs. Out of which the OpenCL framework is capable of developing these 

image processing algorithms on the multi core CPUs and on GPU or on cluster of GPUs. So 

we have chosen this OpenCL framework as a programming language for our task. This 

OpenCL framework has an Application Programming Interface (API) which helps the 

processors either CPU or GPU to communicate with the shared memory and image 

processing unit. This helps in acting as an interface to both of them. The Image processing 

unit has access to the global memory as a temporary buffer for the processing of images. 

There   is   a   high   level   script   interpreter   for   task  management   and   accessing   to   I/O’s   and  



 
 

 

91 
 

digital channels such as files, Camera, etc.  The data which is to be processed is kept in the 

shared memory and is accessible by the OpenCL framework and the Image processing unit. 

After loading the instructions from the image processing unit, the API of the OpenCL will 

try to take the required kernel from the kernel bank, for the process of the instructions.  

After getting the required kernels from the kernel bank the OpenCL make these kernels to 

be executed on the necessary processor and then the results are again stored in the shared 

memory which is collected by the image processing unit. The OpenCL API also checks the 

processing commands and the synchronization commands from the image processing unit 

in order to perform a correct operation on the proper image. 

 

8.6 Methodology of system design using OpenCL 

OpenCL  is  “a  framework  suited  for  parallel  programming  of  heterogeneous  systems”.  The  

framework includes the OpenCL C language as well as the compiler and the runtime 

environment required to run the code written in OpenCL-C. OpenCL is standardized by the 

Khronos Group, who is known for their management of the OpenGL specification [136]. 

OpenCL is a framework which has been developed in order to program on any 

heterogeneous environment. Therefore we can say that the OpenCL code is capable of 

being executed on any computer. OpenCL provides standardized APIs that perform tasks 

such as vectorized Single Instruction Multiple Data (SIMD) operations, data parallel 

processing, task parallel processing and memory transfer. A simple functional execution 

block written in OpenCL is called as a kernel. The OpenCL kernel is written in its native 

language using its own API. The benefits of OpenCL are: it allows acceleration in parallel 

processing, it manages the computational resources, it views multi-core CPUs, GPUs etc. as 

computational units, allocates different levels of memory, it also supports cross-vendor 

software portability.  A simple kernel written in OpenCL in comparison with the traditional 

loop coding is seen the following Figure 8-3. 
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Figure   8-3: A comparison traditional loop with the OpenCL data parallel kernel 

 
 
The Figure 8-3 gives the advantages of writing the code in OpenCL as well as the parallel 

computing capability of the OpenCL kernel. From Figure 8-4 we can clearly understand the 

steps involved in the OpenCL programming model. The steps show the structural design 

and execution of a kernel. Whenever the kernel is designed, these steps are followed in 

order to execute the kernel on the appropriate device. 

Here in our work, we have used the OpenCL in order to develop the UM–CNN which is to be 

executed on the GPU. The required kernel which is necessary for the execution of the CNN 

is written using the OpenCL programming model. The interface of the data is done from the 

CPU which is to be loaded onto the device. For proper interface of the communication of 

data we have used the Open Computer Vision Library (OpenCV) for the reading of images, 

loading of the image data on to the memory elements and to display the retrieved image 

back from the GPU after its execution. 
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Figure   8-4: OpenCL Programming Flow 

 

 
In our work we have used the combination of OpenCV for the appropriate user interface 

and for data acquisition, and OpenCL for the development of the desired UM-CNN on the 

heterogeneous platform. 

For real time image processing applications the performance of CNN is evaluated for the 

contrast enhancement. The templates used for the contrast enhancement are given below 

(8-7) 

 

𝑇஺ =    ൥
0 0.25 0

0.25 0 0.25
0 0.25 0

൩ ;   𝑇஻ =    ൥
0 −1 0
−1 4 −1
0 −1 0

൩ ; 𝐼 = 0          
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Figure 8-5 shows the given input image and output image of the CNN operation on GPU 

and Fig 8-6 shows the output image of the CNN operation on CPU. 

 

 

Figure   8-5: (a) Input image for CNN (b) Output image of CNN on GPU 

 

 

Figure   8-6: Output of CNN on CPU after applying enhancement template 

 

 

8.7 Conclusion 

In this work we propose a new model for image processing that can be executed in parallel 

and faster. We implement this model with OpenCL framework along with OpenCV. The 

concept of DT-CNN on the GPU makes the execution of the image processing task faster. 

The concept of high performance computing is achieved with the designed model. Till now 

the discussion goes on with the surrounding knowledge of the designed model. In the 
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future work, a clear description of the entire model along with the benchmarks of 

comparing the performance of GPU with performance of CPU will be done.  
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Chapter 9 

9. Cellular Neural Networks for Controlling an Unstructured 
Robot 

 
In this chapter the focus lies on the following research question: “How  far  can  CNN  be  
used/involved  in  an  evolutionary  computing/control  context  example?” 

 

9.1 Introduction 
 

CNN has a great potential in signal processing, and it can generate very complex nonlinear 

wave and osculation pattern in the output of Cells. Controlling kinematic and inverse-

kinematic of complex robots with High Degree of Freedom (DOF) could be very complex 

scenario and classical solutions are not able to solve it easily. Therefore evolution of CNN 

template to generate the optimum wave for driving motor and robot actuators could be an 

interesting idea for research. In the nature organisms system are evolving by the theory of 

natural selection. The art is to define a fitness function for evaluating of the performance of 

robot locomotion. Hence, by evolving the CNN template based on Genetic algorithm and a 

fitness function we can generate the very complex wave for optimal controlling the robot 

hinges without involving the robot kinematic equation in controller directly. A two 

dimensional CNN could be sufficient for evolving spatial wave over the time for controlling 

the actuators and hinges. Figure 9-1 has shown this connectivity between CNN and robot 

actuators. 
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Figure   9-1: Shows the spatial wave and time domain on a CNN, which connected to the robot 
actuators 

 

A fitness function is a particular type of objective function that quantifies the optimality of 

a solution. Input data for the fitness function is based on measurements of robot parts 

orientation,  location  and  displacement.  In  fitness  function  we  don’t  define  any  behavioral  

locomotion exactly. On the other hand, we define a function that satisfies the target or 

destination.  With this method based on genetic algorithms, an optimum template ensures 

that the robot can move or act according to our desires. The most important point in this 

learning   method   is   that   we   don’t   predefine   any   robot   kinematics   for   movement   in   the  

fitness function.  

 

9.2 Cellular Neural Networks-Based Genetic Algorithm for 
Optimizing the Behavior of an Unstructured Robot  

 

 

A new learning algorithm for advanced robot locomotion is presented in this chapter. This 

method involves both Cellular Neural Networks (CNN) technology and an evolutionary 

process based on Genetic Algorithm (GA) for a learning process. Learning is formulated as 

an optimization problem. CNN Templates are derived by GA after an optimization process. 

Through these templates the CNN computation platform generates a specific wave leading 

to the best motion of a walker robot. It is demonstrated that due to the new method 
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presented in this chapter an irregular and even a disjointed walker robot can successfully 

move with the highest performance.  

 

9.3 Introduction 

Nowadays, some of the main goals of robotics science, mechatronics and artificial 

intelligence lie in designing mechanisms close to or mimicking as good as possible some 

natural structures or animal behavioral models. According to this theory, the nature selects 

the powerful and stable genes for breed, and weak genes fall/disappear in the nature 

[141]. The good genes that can adapt the animal structure to the environment have higher 

chances for breed and evolution. The animal locomotion is trained and adapted according 

to  the  animal’s  body  structure.  One  key  issue  in  the  training  process  is  based  on  the  energy  

saving. This justifies the striking interest devoted to the modeling and simulation of animal 

walking motion with the aim of optimizing the energy consumption [142-144]. It is well-

known that the walking motion of animals is of a stereotype. In a large variety of animals a 

central neural controller does organize/coordinate the motion. A central neural controller 

(e.g. the Central Pattern Generator (CPG)) is a main unit for controlling limbs for walking 

[145]. The CPG unit does contain all the mechanisms needed to generate the rhythmic 

pattern of movement. This unit is suitable for designing walker, swimmer, or flyer robots 

which exhibit motion close to natural locomotion mechanisms. Due to recent advances in 

electronics and the ability of cellular neural networks to solve partial differential equations 

in real time, it is possible to simulate a Reaction-Diffusion model by a specific CNN 

architecture, the so-called Reaction-Diffusion Cellular Neural Network (RD-CNN).  

A striking interest has been devoted to the robot control based on the RD-CNN technique 

[141, 145, 146]. In this technique, the mathematical model describing the robot behavior 

must be well-defined. This is a serious limitation as modeling the complex behavior of 

robots is challenging. In this chapter we introduce a robots control method which is not 

based on the mathematical modeling of the robots behavior. It is rather a general and 

effective method combining CNN with GA. This method can support and drive many types 

of structured and unstructured walker robots.  The method/approach is based on both the 

natural modeling and the use of computational units close to biological models. A 

combination of both CNN (i.e. for computation) and GA (i.e. for optimizing the nature) is a 
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good tool for modeling and controlling robots dynamics. The central parts of this scheme 

are made-up of a CNN processor and an evolutionary training unit. A Cellular Neural 

Network (CNN) is a parallel computing paradigm similar to the artificial neural networks 

computation platform, with the difference that in CNN the communication is allowed 

between neighboring units. This feature of the CNN processor makes it a good computation 

platform to analyze the dynamics of biological neurons. This research shows the possibility 

of directly driving a walker robot by an evolutionary training of a CNN processor. This 

method is further efficient to model widespread natural locomotion mechanisms of 

animals (e.g. worms, insects, quadrupeds, biped, etc) [104]. This locomotion is modeled in 

the 3D space describing the real environment and in very difficult situations (i.e. rough, 

bumpy, and/or scaly surfaces) as well. The challenging focus is finding the best signal for 

driving walker robot joints with minimum energy consumption and the best locomotion 

performance. This can be achieved by finding suitable CNN templates to generate an 

efficient wave for driving the walker robot joints. This chapter is organized as follows. 

Section 9.4 discusses the use of genetic algorithms for optimizing the CNN templates.  

Section 9.5 presents the training algorithm and some simulation results as well. Section 9.6 

formulates some concluding remarks. Further, the quintessence of the results obtained is 

summarized, and some open research questions are outlined.  

 

9.4 Using genetic algorithms for CNN template optimization 

The concept of Cellular Neural Networks (CNN) was introduced by Leon O. Chua and Yang 

[104]. CNN is a computation platform which is mathematically modeled by Equation 9-1 

 
(9-1) 

                     

 

 
where, ‘TA’ denotes the 3×3 feedback template and ‘TB’ stands for the 3×3 control 

template. ‘I’ is a bias value and ‘y’ is the nonlinear output sigmoid function of each cell. ‘u’ 

denotes the input value and ‘x’ is the state of  each cell. The input value is discretized into 
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pixels and is represented in a table of numbers called matrix. The size of this matrix 

depends upon the number of joints in the walker robot. In Equation9-1, the stars stand for 

convolution operations.  

The genetic algorithm is a heuristic search technique used in computing to find either 

exact or approximate solutions for optimizing a given problem. The GA is an evolutionary 

algorithm that uses techniques inspired from biology such as inheritance, mutation, 

selection, and crossover. In this paper, this algorithm is used for finding the best templates 

for optimum robots locomotion.  The complete structure of the system used for the 

training process is shown in Figure 9-2. This structure consists of six main parts: (1) Initial 

Population; (2) Crossover; (3) Mutation; (4) Fitness Function; (5) Decoding; (6) Cellular 

Neural Network Simulator. In Figure 9-3 the connections between the robot 

actuators/hinges and the CNN outputs are shown. These connections are exploited in the 

control of both robot hinges and actuators. Wave rhythms are generated from the CNN 

processor outputs which can drive the walker robot on a specific path and/or direction 

depending on the high level task each of which consists of many low level tasks. After the 

learning phase, the output waves can drive the robot with a minimum energy and a good 

efficiency. This driving depends upon specific choices of templates values. Each template 

set is a solution for driving the robot by means of (or by performing) some specific low 

level tasks.  

 
Figure   9-2: System Architecture Diagram 
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For optimizing these solutions, the templates must be coded as chromosomes as shown 

in Figure 9-4. In the initialization phase, Figure 9-4 generates many random chromosomes 

(in this case CNN templates), each being a solution for driving the robot. In fact, each 

chromosome is a CNN template that is reshaped in a one dimensional array. According to 

Figure 9-4, each chromosome does contain a feedback template, a control template and a 

bias value. Various methods exist (in genetic algorithms) for coding data as chromosomes. 

This paper implements two different methods for coding and generating chromosomes. 

The first method is based on the IEEE-754 scheme which is a floating point technique. In 

this technique, each value must be converted to binary format according to the IEEE-754 

floating point technique. The IEEE floating point format consists of three main parts: the 

sign, the exponent, and the mantissa [147]. The number of bits for each field is shown in 

the table below. 
 

Table 9-1: Single Precision - IEEE Floating Point Format Structure 

Sign Exponent Mantissa 

1 bit 8 bit 23 bit 

 

With the floating data types mentioned in Table 1, it is possible to store values between 

the ranges > @3845 104.3,105.1 uu � . The use of this method as a gene coder requires the 

definition of a mask for some bits. Otherwise, the random chromosome generator will 

generate values out of the range > @VV 5,5 �� . This condition is of high importance as a 

hardware implementation (using TTL devices) of this algorithm is under consideration. In 

the second method implemented,  a  “real”  data  type  value  is  used  as  a  chromosome  coding.  

For this step, a random function generates a value in the acceptable range. The 

implementation of this method is easier than of the first method. The results from the two 

methods are compared and a very good similarity is obtained between them. Nevertheless, 

the convergence time in binary coding was 10 percent faster. One particular important 

part of this algorithm is the design of the fitness function. This function or cost function 

defines/fixes indirectly the robot behavior [148]. This function is a particular type of 

objective function that quantifies the optimality of a solution in Genetic Algorithms. The 

input data for the fitness function are based on  measurements  of  robots’  parts  orientation,  
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location   and   displacement.   In   the   fitness   function   we   don’t   define   any   behavioral  

locomotion exactly, like a robot kinematics. On the other hand, we define a function that 

satisfies the target or destination without any details. 

 

 

 

Figure   9-3: Robot hinges connection to CNN array 

 

 

 

Figure   9-4: Template Encoding in an Array List 

 

We need the robot to escape from a position without any specific direction. For this 

purpose, we must define a simple function for measuring the length between the central 

point  (i.e.  the  gravity  center)  of  the  robot  and  the  initial  position.  In  this  example,  we  didn’t  
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define any detail for the locomotion behavior. After generating new chromosomes, we 

obtain the corresponding fitness value by applying the fitness function. The main point on 

applying the fitness function is that this function is not a real time procedure and that the 

result from the fitness calculation will be only ready after a certain period of time beyond 

the time the wave effect will act on robot hinges/actuators. In fact, one cycle of time (i.e. 

one period of the wave acting on the actuator) is not sufficient for measuring with good 

accuracy the position in space of the robot. Many cycles of the wave generated are 

necessary to be applied to robot actuators. By measuring some robot parameters like the 

position of the robot central point, the robot angle (related to the global coordinates of the 

system) and so on, the fitness function is quantified. In the initial state of the training phase 

the algorithm selects some randomly generated chromosomes. There is no rule for 

evaluating how many chromosomes should be generated in the initial population. This 

number varies depending upon the complexity of the problem [149]. Some authors have 

defined 100 generations of chromosomes/genes for the initial state [149, 150]. After each 

generation, a fitness function is used to evaluate the cost of chromosomes in the simulator 

leading to maximum efficiency. During our computations, each evaluation took approx. 3 

seconds and the program spent approx. 60 seconds to evaluate appropriated 

chromosomes. After this step, both chromosomes and fitness values will be sorted with the 

aim/goal of minimizing the fitness values in a link list. The next step concerns the 

crossover (i.e. both selection and breed) of chromosomes. Our experiments have shown 

that 50% of the best chromosomes are fitting for the crossover. It was found that this range 

has a good probability to generating the better chromosomes. In each step, we randomly 

select 2 chromosomes in this range for the crossover process. Many evaluations have 

shown  that  the  use  of   the  “two-point”  technique  for  the  crossover  is  the  best  solution. In 

this process we define two points (randomly) on the selected chromosomes; the contents 

of the chromosomes between these two points are exchanged (Figure 9-5). In Figure 9-5 

P1 and P2 are two randomly selected points. S1 and S2 are two selected 

parents/chromosomes.   The   crossover   leads   to   two   new   “children”   (see   Ch1   and   Ch2   in  

Figure 9-5) with new properties. During the trial and error process, we obtained that the 

good probability for mutation is around 10%. This rate is essential for avoiding the local 

minimum trap. In the long term, this rate of the mutation increases the quality of 

chromosomes in the list [151]. 
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Figure   9-5: Two-Point  Crossover  Method  for  Template  ‘A’ 

 

9.2 Training algorithm and simulation results 

One of the most important parts of this research is simulating both robot and 

environment. Some authors have implemented the robot and a virtual world by simulation 

of dynamic rigid bodies [152, 153]. The robot which depends on the physical parameters is 

implemented in a specific environment. Each part of the robot has a mass, a center of mass, 

an elasticity parameter, and both dynamic and static friction coefficients. Figure 9-6 shows 

the   implementation  of  a  “snake  robot”  made  up  of   joints  with  2  degrees  of   freedom.  The  

hinges do not have any limitation in rotation. Nevertheless, applying limitation in the 

rotation range is possible for each joint separately. According to Figure 9-3, each column of 

the CNN processor is connected to robot actuators. Hence, each actuator of the robot 

should  be  connected  to  one  of  the  columns  separately.  Since  the  robot  actuators’  response  

time is not equal for all of them we do assume/take the maximum delay for sending the 

wave on the robot actuators. This delay interval is essential for the robot 

locomotion/movement. The goal of the learning process is finding optimum templates for 

moving the robot according to our desires. Finding these templates for a specific 

movement mechanism/pattern is essential and suitable for the use in a multi layer tasks 

manager or controlling unit. We are able to use these templates for a low level robotics 

activity. When a high level controller sends commands to the robot for performing a 
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specific task another controller needs to manage some low level skills like running, 

turning, jumping and so on, which are necessary to ensure the realization of the high level 

task [142, 143, 154, 155]. Therefore, by understanding some robot properties the high 

level task management is very simple in the high level controller. In the above referenced 

evaluation, authors have tried to find lateral undulation locomotion for a snake robot. Each 

hinge has two degree of freedom (2-DOF) and can turn in 2 directions. With the method 

based on genetic algorithms, an optimum template is obtained to make the robot moving 

or acting according to our desires. The most important point in this learning method is that 

we  don’t  predefine  any  robot  kinematics  for  movement/locomotion  in  the  fitness  function.  

The fitness function is a simple and important function which defines the robot behavior in 

the environment. Complicated rules and equations in the fitness function cannot improve 

the robot behavioral performance; a simple definition can result to a best robot behavior. 

Equation 9-2, define the fitness function used for the snake robot lateral undulation 

locomotion shown in Figure 9-6. 
(9-2.a) 

 
 

 
 

(9-2.b) 
 

 
 

(9-2.c) 
 

 
 

 
 

(9-2.d) 
 

 
 

 

 
The term ‘AVG’ denotes the mean distances between parts and the ‘x’ axis. The term ‘Li’ 

denotes the distance between the i’th part of the snake robot and the ‘x’ axis. RMS denotes 

the  roots  mean  square  error  between  the  robot  part’s  position  and  the   ‘x’ axis. XL1 stands 

for the forward distance towards the ‘x’ axis.  
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In the lateral undulation locomotion, this term of the fitness-function must be close to zero. 

This fitness-function  defines  the  “snake  robot”  behavior  for  lateral  undulation  locomotion  

tasks. The first term (RMS) in the fitness function shows that the robot must keep itself in-

line by moving parallel to the ‘x’ axis. The second term (AVG) shows that the robot must 

escape from the ‘x’ axis and the 3rd term (DIST) in  the fitness function shows that the 

robot  usually  don’t  move  in  the  frontal  direction. 

 

(9-3) 

                         

 

 

 
Figure   9-7: Wave generated for lateral undulation 

locomotion 

 

Figure   9-6: Snake robot lateral undulation locomotion 
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After a first generation of 100 chromosomes, the robot learns to move in the lateral 

undulation with a corresponding set of CNN templates, which are obtained by the 

evolution method. These templates are shown in Equation 9-3. A task manager in the high 

level can select a best template for performing a specific task by the robot. On the other 

hand, each set of templates corresponds to a specific robot movement/locomotion. In 

another evaluation we define a fitness function according to Equation 9-4. This function is 

defined for robot rectilinear locomotion with a minimum sidle. According to this equation, 

each term must be close to zero. The first term (RMS) shows that the robot must have a 

minimum deviance to the ‘x’ axis. The second term (AVG) shows that the robot should not 

be away from this axis. The last term (DIST) shows that the robot must crawl on the ‘x’ axis. 

After each breed, a new chromosome is added to the chromosome population. After 

checking of new chromosomes by the fitness function, they will be sorted in a population 

list ordered by the best fitness. According to the evolution theory, after many generations, 

some  chromosomes  (“children”)  can  inherit  good  properties  from  others  (“parents”)  which  

are best and fit chromosomes.  

After nearly 790 chromosome generations the robot would have learned to move with 

the highest speed. With Equation 9-5, the CNN processor can generate a hinge wave 

according to Figure 9-8. This wave is optimum for the robot rectilinear locomotion using 

an evolution algorithm. Figure 9-9 shows the robot during the simulation in rectilinear 

locomotion. Figure 9-10 is the plot of the time evolution of the fitness function obtained 

after 790 generation of chromosomes; the robot has learned the best movement and 

locomotion. The extension of this architecture or learning method to another kind of robot 

is possible. By connecting the CNN outputs to unknown/arbitrary robot actuators, the 

robot can learn any locomotion. Due to the high capacity of CNN, we can connect the CNN 

output to the robot hinges actuators by any arrangement and structure. The results are 

same although both learning and optimization times might change. 
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Figure   9-9: Snake Robot rectilinear locomotion 

Figure   9-8: Wave generated for rectilinear locomotion 
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Figure   9-10: Series 1 is fitness-function value; Series2 is fitness-function 
minimum value, during cycle of time in learning process. (Series1 is 

error rate; Series2 is number of itteration/time) 

 

 

 

 

 

 

 

 

  

  

 

 

 

 
Figure   9-11: Learning 4-legs semi-spider 

robot 
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Figure 9-11 shows a spider robot with 4 legs and 16 degrees of freedom. Each hinge has 

2 degrees of freedom in rotation. A 16×16 CNN array can be used to drive this robot. Figure 

9-12 shows the sequences of the robot locomotion after the learning process. In this test, 

the  robot  must  turn  around  the  ‘z’  axis.  Another  test  in        Figure  9-11 shows the design of a 

6 legs insect robot for locomotion learning. The robot has 12 degrees of freedom in hinges. 

In this case, the aim is moving around the circle with a given radius. After nearly 2500 

iterations it was found that the result converged to zero. The CNN templates shown in 

Equation 9-6 are optimized for this purpose. The fitness function in Equation 9-7 is used to 

generate the CNN output wave shown in Figure 9-14. 

 

(9-6) 

 

                

 

 

Figure   9-12: 4-leg robot spider, turning skill 
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According to Equation 9-7, the fitness value has a direct relation with the distance 

between the initial position point (Init_Center_Pos) and the robot position (Robot_Pos) 

divided by (R). Further, this function has an inverse relation with the robot movement 

(Robot_ Movement). 
(9-7) 

Fitness = (1 - Dist (Init_Center_Pos, Robot_Pos) / R) *(1/Robot_Movement)          

 

By optimizing the robot movement/locomotion, the fitness value will converge to zero. For 

the case of an unstructured robot, we have designed a broken-leg spider. In this test, the 

aim is learning the robot for the turning left and right skill as a complete and perfect 

spider. In Figure 9-15 is shown the representation of this type of robot. 

 

 

 

 

 

 

 

 

 Figure   9-14: Wave generated for circular locomotion 

 

R 

Figure   9-13: Moving 6-Leg Robot, around the Circle 
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The definition of the fitness function is a little bit sensitive in this case. According to 

Equation 9-8, the fitness value has a direct relation with the distance between the initial 

position point (Init_Center_Pos) and the robot position (Robot_Pos). Further, this function 

has an inverse relation with the robot angle (Robot_Angle). During the optimization phase, 

the aim/goal is converging the fitness function to zero. 
(9-8) 

Fitness = Dist (Init_Center_Pos, Robot_Pos)*(1/Robot_Angle)                 

 

(9-9) 

            

 

 

After nearly 3300 chromosome generations and evolution, the robot is able to turn over 

its Yaw axis. Figure 9-16 shows the result of the wave pattern for unstructured spider 

turning. The usability of the templates in this paper can be summarized as follows. 

Templates are stored in a list/memory. By a high level task management templates are 

selected. This selection depends on the high level task management decision and the 

environment situation as well. Further, a factor of high importance is the behavioral 

architecture and behavioral programming. In fact, low level skills (e.g.  Moving forward, 

Figure   9-15: Broken Leg Spider as an unstructured robot 
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turning left and right, jumping and etc.) For insuring the control of the robot are very 

important. The choice of templates is highly influenced by these factors. 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

9.3 Conclusion 

This paper has presented a concept based on an evolutionary technique for the robot 

locomotion learning. The technique proposed was a combination of both CNN and genetic 

algorithms. The motivation of this combination can be justified by the high accuracy of the 

CNN processors and their good computational speed as well. Further, the topology of CNN 

is flexible for designing neuro-evolutive systems. The genetic algorithm was exploited for 

the training process in order to determine the best genes according to the pre-defined 

requirements (i.e. dada requirements) for the design process. Two types of robots were 

considered (i.e. both structured and unstructured robots). For each of these types, 

algorithms were developed to derive the appropriate chromosomes from which 

corresponding templates were derived. The results in this paper have shown that 

combining the cellular neural networks (CNN) technology with an evolution scheme like 

genetic algorithm (GA) is very effective and suitable for learning the movement 

/locomotion of different types of robots (e.g. high DOF robots, symmetrical, unsymmetrical 

and defective robots). Due to the intrinsic characteristics of the CNN, this type of neural 

network is very close to natural processors and therefore is efficient for building robot 

controllers. During the training process, we found that the complexity of the environment 

(e.g. rough, bumpy, and/or scaly surfaces) was a key factor influencing the results. 

Basically, the technique developed in this paper provided interesting results with high 

Figure   9-16: Wave generated for Broken-Leg Spider; Turning Skill 
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accuracy in complex environments. Nevertheless, we found that the accuracy of the results 

decreases with the increasing complexity of the environment (e.g. ecosystem and robot 

environment). An interesting issue under investigation in subsequent and future works is 

implementing/developing methods of high accuracy and efficiency for robot control in 

very difficult environments.  
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Chapter 10 

10. Conclusion and Outlook 
 

The Camera and the image processing unit belong the very important parts of machine 

vision-based ADAS concepts. Different weather and environmental conditions can 

significantly influence the image processing performance. The key challenging issue in 

ADAS is safety; hence all part of the system should work under any conditions without 

providing wrong information. To have a robust and real-time image processing module for 

ADAS, we do need a high performance processing system. Computing huge amount of 

visual information for extracting meaningful data, features, etc needs a special/appropriate 

hardware and processing architecture. In this research we did a survey about different 

hardware platforms for image processing and according to real-time related ADAS 

requirements we have proposed a robust and real-time architecture based on CNN, FPGA 

and GPU. The whole the system is a CNN based processing which is developed 

implemented on either GPU or FPGA. Before CNN implementation, we tried to understand 

the theory of analog computing and developed a direct emulation of that paradigm on the 

FPGA. Since there are many similarities between a CNN implementation and analog 

computing based on DDA, we could find a good way to implement CNN on FPGA. In this 

thesis, we have shown that CNN can solve a series of image processing tasks in real-time.   

This thesis has formulated 7 key research questions and each main chapter did provide an 

answer to a respective research question:   

x Research question 1:  What are the hard requirements of ADAS concerning 
real-time image processing and design flexibility? How far do traditional 
approaches fail to satisfy these requirements? 
 
For answering to this question we performed a survey of all major ADAS concepts 

to check their respective architecture and requirements in terms of robustness and 

real-time processing. We have shown that in many cases the traditional approaches 

fail to satisfy the real-time processing requirements for complex scenarios. We did 
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then propose a new concept that can satisfy all the cited requirements in ADAS 

systems including flexibility in design. 

 
x Research question 2:  What are the major limitations of traditional high 

performance   computing   approaches   if   used   to   ensure   “real-time”   image  
processing in ADAS ?  
 
For this research question we studied about high performance computing and real-

time image processing. Also, we could show the limitation of  traditional computing 

concepts/architectures based on the Von Neumann architecture. We have shown 

that manipulating and processing pixels in parallel does speed the image 

processing. For flexibility in design, hardware should be reconfigurabe by software 

in run-time mode and without any need for  reprogramming the system. 

 
x Research question 3: What is the huge potential of neurocomputing involving 

either traditional neural networks (NN) or cellular neural networks (CNN) 
for high-speed and flexible image processing for ADAS? Are there any 
limitations and how can these eventually be addressed? 
 

For this question we have shown that ANN has huge potential for image 

processing; examples of applications are pattern recognition, feature extraction, 

compression, etc. Also we have mentioned some drawbacks of ANN for hardware 

implementation and a comparison between CNN and ANN. Overall neurocomputing 

is a paradigm that promises to solve the tough requirements of ADAS concerning 

computing speed and flexibility. 

 
x Research question 4: What are the major template calculation schemes of 

relevance for CNN based image processing? How can these calculations be 
performed in a real-time high performance computing context? 
 
Cellular neural networks technology provides a very powerful analog computing 

architecture for a variety of array computations and image processing tasks. From 

a theoretical point of view the CNN concept offers the capability of modeling 

various   image   processing   filters   and   operators   on   a   CNN   processors’   based  

“Universal  Machine”.     For  this  research  question  we  have  analyzed  three  different 
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methods for template calculation. We have then shown an example direct mapping 

of   PDE’s   to   templates   for   a   selected   image   processing   task.      For   a   fast   template  

calculation we have shown that there is a way to implement GA on FPGA and 

optimize any templates much faster than on computer/CPU. 

 
x Research question 5: How far can the advantages of "analog computing" be 

used/gained through an emulation of analog computing on digital hardware 
platforms like FPGA (for the benefit of an ultrafast image processing)? 

The  main  advantage  of  analog  computing  is  that  we  can  “nearly”  simultaneously  get  

the result of complex mathematical differential equations. All signals are generated 

in parallel and in real-time and the electronic components do compute 

simultaneously. For this research question we have developed and implemented an 

emulation of analog computing on FPGA. The result is at least many thousand times 

faster than desktop computers. This result has been a good step for implementing 

complex models like CNN on FPGA. 

 
x Research question 6: How far can an efficient implementation of CNN on 

FPGA and GPU be designed and implemented?  
 

CNN is a complex design in terms of implementation and performance on 

traditional architectures of the von Neumann type (such as CPU and sequential 

processors). Therefore, we did a survey about CNN implementations on hardware 

and later on we have proposed our implementation on FPGA. Due to the limitation 

of resources in FPGA, we have implemented a fix-point DT-CNN with high accuracy 

in results. Due to the offered flexibility of design by GPUs, we have also 

implemented a CNN universal machine on GPU image processing. We have used 

OpenCL which is a very strong framework for developing parallel algorithms on 

GPUs. The results obtained have shown to be at least 100 times faster than on 

normal computer/CPU for processing images. 

x Research question 7: How far can CNN be used/involved in an evolutionary 
computing/control context example (for illustration)? 
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CNN has a great potential for signal processing tasks and it can generate very 

complex nonlinear waves and oscillation patterns at the output of CNN cells. 

Controlling both the kinematic and the inverse-kinematic of complex robots with 

high degree of freedom (DOF) is a very complex scenario whereby classical 

solutions fail to solve it easily. In the frame of this research question we have 

integrated a CNN processors system to the leg-robot for high level inverse 

kinematic controlling. For calculating templates we used GA and a very simple 

objective function without considering any inverse or direct kinematic. Different 

types of robots are able to move in an optimum way between two points or any 

kind of other scenarios and trajectories.   

As outlook and future work we do see the integration of all functionalities developed in 

this thesis in a working prototype and improve it progressively according to test results in 

the real environment. 
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