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Abstract

This dissertation focuses on the study of information dissemination in communication net-
works with a broadcast medium. The main problem we address is how to disseminate
efficiently a message from a source node to all other network nodes. In terms of efficiency we
target two goals: (1) to deliver a source message to all network nodes with high probability;
and (2) to use as few transmissions as possible for a given target reachability.

In this context, our main focus is devoted to probabilistic dissemination algorithms. Modeling
networks as random graphs, which are built from stochastic processes, and using methods
from graph theory and stochastic geometry we address both replication based and network
coded information dissemination approaches.
The first contribution is an analytical study of probabilistic flooding which answers the
question of which is the minimum common network-wide forwarding probability each node
should use such that a flooded message is obtained by all nodes with high probability.
Next, we address the question of which benefits can be expected from network coded based
probabilistic flooding. We compare these benefits with the ones from the well established
replication based MultiPoint Relay flooding. The study of their efficiency is performed both
by analytical techniques and numerical methods.
Finally, we apply the insights gained from the study of information dissemination algorithms
to the design of a sensor-actuator networked system for emergency response in indoor scena-
rios. The system guides people to the exits of a building via the shortest safe paths, computed
autonomously by each node whenever a new measurement collected by a sensor is flooded
throughout the network.
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Resumo

Esta dissertação foca o estudo de disseminação de informação em redes de comunicação
sobre um meio de difusão. O problema central estudado é como disseminar eficientemente
uma mensagem gerada por um nó fonte para os restantes nós da rede. Em termos de eficiência
procura-se satisfazer dois objectivos principais: (1) a entrega de mensagens geradas por nós
fontes a todos nós da rede, com probabilidade elevada; (2) um número de transmissões tão
baixo quanto possível, que permita, no entanto, a satisfação de um dado objectivo de entrega.

Neste contexto, este trabalho foca o estudo de algoritmos de disseminação probabilísticos.
Modelizando redes como grafos aleatórios resultantes de processos estocásticos e utilizando
ferramentas da teoria de grafos e da geometria estocástica, estudamos técnicas de dissemi-
nação baseadas em replicação de mensagens e técnicas que recorrem a codificação de rede.
A primeira contribuição deste trabalho traduz-se por uma análise de processos de inundação
probabilísticos, em que se procura determinar qual será a probabilidade de reencaminhamento
mínima que deverá ser utilizada por cada nó por forma a que uma mensagem gerada seja
recebida por todos os nós da rede com uma probabilidade elevada.
Seguidamente, analisamos que benefícios se podem obter pela incorporação de técnicas de
codificação de rede em algoritmos de disseminação probabilísticos. Com esse propósito
confrontamos o desempenho de técnicas de inundação baseados em codificação de rede com
técnicas baseadas em replicação de mensagens, tendo seleccionado para o segundo caso o
algoritmo de inundação MultiPoint Relaying.
Finalmente, aplicamos o conhecimento adquirido pelo estudo de processos de disseminação de
informação à especificação e implementação de um sistema baseado numa rede de sensores-
actuadores para suporte à evacuação de edifícios em situações de emergência. O sistema
guia as pessoas para fora do edifício, indicando-lhes o caminho mais curto e seguro a seguir.
Os caminhos são calculados autonomamente por cada nó, sempre que informação relevante
recolhida por um sensor é disseminada pela rede.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der Dissemination von Information in einem
Kommunikationsnetzwerk mit Broadcast-Kanal. Die zentrale Frage, welcher wir uns in dieser
Arbeit widmen, ist wie man eine Nachricht ausgehend von einem Quellknoten effizient an
alle anderen Knoten im Netzwerk verteilt. Hierbei verfolgen wir zwei Hauptziele: (1) Die
Nachricht soll mit hoher Wahrscheinlichkeit alle Knoten im Netzwerk erreichen; (2) Es sollen
so wenige Übertragungen wie möglich stattfinden.

In diesem Zusammenhang wenden wir uns hauptsächlich Algorithmen zur probabilistis-
chen Dissemination von Information zu. Wir modellieren Kommunikationsnetzwerke als
Zufallsgraphen, die auf stochastischen Prozessen beruhen. Wir verwenden Methoden der
Graphentheorie sowie der stochastischen Geometrie um Disseminationsalgorithmen basierend
sowohl auf Nachrichtenweiterleitung als auch auf Network Coding zu analysieren.
Unser erstes Resultat ist eine analytische Studie von probabilistischem Flooding. In dieser
Studie zeigen wir, wie die netzwerkweite Weiterleitungswahrscheinlichkeit gewählt werden
soll, sodass eine Nachricht mit hoher Wahrscheinlichkeit alle Knoten im Netzwerk erreicht.
Als nächstes widmen wir uns der Frage, welche Vorteile ein probabilistischer Flooding-
Algorithmus basierend auf Network Coding gegenüber klassischen Methoden hat. Dabei
wird die Network-Coding Methode mit dem weit verbreiteten MultiPoint Relay-Algorithmus
verglichen. Der Vergleich erfolgt mittels analytischer und numerischer Methoden.
Schlussendlich verwenden wir die Erkenntnisse der oben beschriebenen Studien dazu, um ein
vernetztes Sensor-Aktuator-System zu entwerfen, welches als Notfallschutzsystem innerhalb
von Gebäuden zum Einsatz kommen soll. Es soll Personen den kürzesten sicheren Pfad zu
den Notausgängen anzeigen. Das Auffinden dieser Pfade erfolgt dabei verteilt basierend auf
den Messungen der einzelnen Knoten, die über das gesamte Netzwerk disseminiert werden.
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“Across the Dark Continent sound the never-silent drums:

the base of all the music, the focus of every dance;

the talking drums, the wireless of the unmapped jungle.”

Irma Wassall
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“A problem well stated is a problem half solved.”

Charles Franklin Kettering





1
Introduction

I
nformation dissemination in communication networks is a key function whose effectiveness
depends both on the chosen dissemination algorithm and on the underlying network

topology. It is needed, for example, in route discovery, link state advertisements, autoconfig-
uration, and query propagation in ad-hoc networks and peer-to-peer systems.

The process of (re-)transmitting a message can occur as a point-to-point or point-to-
multipoint transmission. Point-to-point communication means that a node sends a message
to only one of its neighbors. The node may then retransmit the same message to distinct
neighbors using multiple transmissions. This model is applied, for example, in peer-to-peer
networks. Point-to-multipoint communication implies that all neighbors of a transmitting
node will receive the transmitted message (assuming no errors). This model is usually used
in studies of networks with a broadcast medium such as wireless networks.

The main focus of this work is to understand how to disseminate efficiently a message
from a source node to all other network nodes using point-to-multipont communications. We
target two goals: one is to deliver a source message to all network nodes with high probability;
the other one is to use as few transmissions as possible for a given target reachability. We
address mainly probabilistic dissemination algorithms.

3
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1.1 – Information Dissemination in Communication Networks

Until recently, information dissemination resorted to replication based forwarding where
nodes replicate and forward the information they receive. A naïve way of disseminating a
message to all nodes in a network with point-to-multipoint transmissions is pure flooding.
When a node receives a broadcast message for the first time it will always forward it. In a
network with n nodes, the number of transmissions of a source message using pure flooding
is n. This technique leads to a high number of redundant and unnecessary transmissions.

A natural optimization goal that arises is to minimize the number of transmissions while
achieving global outreach of the message sent. Finding an optimum scheme for disseminating
a message in a given network with minimum overhead— i.e., finding the minimum connected
dominating set— is however NP-complete [vJPHE02].

Two main classes of approximation algorithms were proposed to improve the efficiency of
pure flooding. The first class comprises deterministic algorithms approximating connected
dominating sets of networks [AWF02, LW02, AQL02]. Reference [AQL02] proposes a de-
terministic algorithm, which approximates the connected dominating set within a two-hop
neighborhood of each node, thus forming a backbone of forwarding nodes and limiting the
number of transmissions. The idea of using such a sub-set of nodes, also called Multipoint

relays (MPR), has been implemented successfully in the Optimized Link State Routing
(OLSR) protocol [CJA+03] for mobile ad-hoc networks.

The second class comprises probabilistic algorithms that introduce a stochastic element
to the message forwarding process; these class of algorithms are commonly denoted as
Probabilistic Flooding (PF) or gossiping [SCS03, HHL06, SB07, BBB+08, SRS07]. 1

The study of reachability in PF with point-to-point communications has received good
attention from the research community both by analysis and simulation (see [OKS10, GS11]
and references therein). PF with point-to-multipoint communications, however, has mainly
been addressed by means of simulations [HHL06, SCS03, KWB01, YOKM+06, YOKP05,
SRS07]. Some of these studies yield better insight into the behavior of PF—with inspiration
from percolation theory —but most conclusions do not generalize beyond the particular
setup [SCS03, HHL06, KWB01].

1Some authors use both terms to refer to the same concept. Others use them in a way that in PF a

node forwards a message to all its neighbors (point-to-multipoint communications), while in gossiping a node

forwards a message to only one neighbor (point-to-point communications).
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The seminal paper of Ahlswede, Li, Cai, and Yeung [ACLY00], where they proved that the
max-flow min-cut capacity of a general multicast network can only be achieved by allowing
intermediate nodes to mix different data flows, landmardked the appearance of the new
Network Coding paradigm. Network coding research suggests that further reductions in
the number of transmissions required for flooding could be achieved due to the ability of
intermediate nodes to mix multiple messages through algebraic operations. More specifically,
reference [FWLB06] quantifies these gains for ring and square lattice topologies, and presents
a heuristic algorithm which outperforms probabilistic flooding for a class of random geometric
graphs. Related work on the benefits of network coding includes a proof that the minimum
energy single-source multicast problem with network coding becomes solvable in polynomial-
time [LMHK04] and in a distributed manner [LRK+05]. The problem of multiple multicasts,
which is closer to flooding, remains however an open problem [LRM+06].

1.2 – Main Contributions

Modeling networks as random graphs built from stochastic processes and using methods
from graph theory and stochastic geometry we address both replication and network coded
information dissemination paradigms. We perform both analytical and numerical studies of
“state-of-the-art” probabilistic dissemination algorithms, comparing their performance with
deterministic algorithms — where performance is measured by the number of transmissions
needed to disseminate a message and by the reachability of a dissemination process.

Moreover, we apply the insights gained from the analysis of the information dissemination
algorithms in the design of a sensor-actuator networked system for emergency response in
indoor scenarios.

The main contributions of this thesis are as follows:

• We present a generic approach to estimate the probability of achieving global outreach
with PF with a network-wide common forwarding probability. We derive an exact
expression for the global outreach probability over Erdős Rényi Random graphs and an
asymptotic expression for the global outreach probability in Random Geometric graphs
that constitutes a good approximation at high node density. We address both reliable
and unreliable links.

• We characterize analytically the transmission cost of network coded flooding over
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Erdős Rényi Random graphs, Random Geometric graphs, and Small-World Networks.
Moreover, we present a numerical study for the number of transmissions, delivery ratio,
and delay of network coded and MPR flooding. We also analyze the interplay between
the network topology with replication and network coded based flooding algorithms.

• We propose graph theoretical abstractions of a sensor network for supporting building
evacuation in disaster scenarios and algorithms for the computation of shortest safe
path to exits. The wireless sensor network collects hazard information that is flooded
throughout the network. This information is used as input for the computation of the
shortest safe paths for leaving the building. We implement a prototype of the system
in which we evaluate the proposed solutions.

1.3 – Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we introduce the funda-
mental concepts and mathematical techniques used throughout the dissertation. In Chapter 3
we take a mathematical approach to the analysis of PF. We determine analytically how PF
with constant forwarding probability behaves over mathematically tractable abstractions of
a network, namely random graph models. In Chapter 4 we analyze network coded based
flooding techniques and compare them to replication based deterministic flooding. We seek
to understand which benefits in terms of number of transmission per message, reachability,
and delay may we obtain from performing algebraic mixing of messages in intermediate
forwarding nodes during an information dissemination process. In Chapter 5 we address
the problem of designing a sensor network system for the support of building evacuation in
disaster scenarios. We characterize the problem with the help of graph models and we propose
algorithms that use flooded hazard information to compute shortest paths to safely leave the
building. Finally, Chapter 6 concludes this dissertation, including possible directions of future
work.

Parts of the work presented in this thesis were previously published in [CBB08a, CBB08b,
CSBB09, CSBB12]. New unpublished results are also presented.



“Facts do not cease to exist because they are ignored.”

Aldous Huxley

“We don’t live in a world of reality,

we live in a world of perceptions.”

Gerald J. Simmons





2
Models and Tools

This chapter provides an overview of the analytical tools and modeling assumptions consid-
ered in the work presented in this thesis.

2.1 – Definitions from Graph Theory

Let G = (V,E) be a graph with a set of nodes V and a set of edges E ⊆ {{u, v} : u, v∈
V, u ̸= v}. The number of nodes of G, called the order of G, is denoted by n = |V |.

A node v is called neighbor of u if there exists an edge {u, v} ∈ E. The degree d(u) of a
node u is the number of edges adjacent to u, i.e., the number of neighbors of u. A path in
a graph is a sequence of nodes such that from each of its nodes there is an edge to the next
node in the sequence. The length of a path is the number of edges traversed by the path. A
shortest path between two nodes is a path such that its length is minimum. A graph G is
called connected if there is a path between any two distinct nodes u, v ∈ V .

The distance Lu,v between a pair of nodes {u, v} in a graph G (also known as the geodesic

distance) is the number of edges in a shortest path connecting them. The diameter of a

9
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graph G is the longest geodesic distance in the graph. The average distance L for a whole
graph G is the average of the distances between every distinct pair of nodes in G. A node
with distance l ∈ Z+ to a node u is called l-hop neighbor of u. The l-hop neighborhood N l(u)

of a node u is the set of l-hop neighbors of u. The 1-hop neighborhood N1(u) (or N(u)) of a
node u is also called the neighborhood of u.

The clustering coefficient Cu for a node u is the ratio between the number of edges
connecting the nodes within its neighborhood and the maximum number of edges that could
connect them. The clustering coefficient C for a whole graph G is the average of the clustering
coefficients of each node in G.

A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊆ V and E′ ⊆ E. An induced subgraph

G′ of G is a subgraph in which for any pair of nodes u, v ∈ V ′, {u, v} is an edge of E′

whenever {u, v} is an edge of E (i.e. ∀u, v ∈ V ′ : {u, v} ∈ E ⇒ {u, v} ∈ E′). A maximal
connected subgraph G′ = (V ′, E′) is an induced connected subgraph of G = (V,E) that no
longer satisfies the property of being connected when adding an additional node from V \V ′

and the corresponding edges. A maximal connected subgraph of G is called a connected

component of G. V ′ is a dominating set if all nodes u that are not within V ′ have an edge to
a node v′ ∈ V ′, i.e. ∀u ∈ V \V ′ ∃v′ ∈ V ′ : {u, v′} ∈ E. If additionally the induced subgraph
G′ = (V ′, E′) is connected, the node set V ′ is a connected dominating set.

2.2 – Stochastic Geometry and Point Processes

The spatial location of the nodes of a network can be modeled deterministically, or in
a probabilistic manner. Typical deterministic models include grid networks, line networks,
and triangular lattices, which are applicable when the devices share a structured distribution.
When this is not the case, the uncertainty on the location of nodes can be captured by spatial
stochastic models that may integrate several performance metrics.

Point processes

A Point Process (PP) can be thought of as a random set of points {x1, x2, . . . , xn} in a
plane. Mathematically, a point process, Π, is a measurable mapping from some probability
space [Ω,A,P] into [N,N ], where N is the family of all sequences Π = {xi} of points in
R2 that satisfy two conditions [SKM85, Chap. 4]: (1) the sequence Π is locally finite, i.e.,
each bounded set of R2 must contain only a finite number of points of Π; (2) the sequence
Π is simple, meaning that there is no accumulation of points, i.e., xi ̸= xj if i ̸= j. N
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is the smallest α-algebra on N that makes all mappings Π '→ Π(B) measurable, where B

is a bounded Borel set. A realization of a PP is a random choice of one of the sequences
in N. The total number of points of a PP falling in a given region of space is a random
variable, and, therefore, the number of points within a certain region of R2 can be analyzed
probabilistically.

Poisson Point Process

The Poisson Point Process (PPP) is the simplest and most important class of spatial
processes, and accounts for both regular distribution of points (homogeneous PPP) as well
as more irregular deployments (inhomogeneous PPP).

A stationary/homogeneous PPP models the deployment of a regular set of points, in which
no preference is given to specific regions of the plane. The homogeneous PPP is characterized
by a density parameter λ, and the expected number of points in a given region R follows a
Poisson distribution with parameter λ · A(R), where A(R) is the area of R. The expected
number of points within a given region then varies with the density λ and the area of that
region. The probability of n nodes being inside a region R is given by ([Kin93])

P(n nodes in R) =
(λ ·A(R))n

n!
e−λ·A(R). (2.1)

A realization of spatial locations according to a Poisson point process with density λ can
be obtained by first drawing a random number N of points from a Poisson distribution with
parameter λ · A(R), followed by scattering those N points uniformly at random inside R.
These points can represent locations of the nodes of a network and we will henceforth refer
to them as nodes.

2.3 – FKG Inequality

The FKG inequality [FKG71] expresses positive correlations between increasing events
(see Ch. 2.2, [Gri99]). Consider two realizations P1 and P2 of a Poisson point process. We
define a partial ordering P1 ≼ P2 if and only if every point of P1 is also present in P2. An
event A is an increasing event if for every P1 ≼ P2, the indicator function IA of the event A

respects the relation IA(P1) ≤ IA(P2). If A and B are increasing events in a Poisson point
process, then P(A ∩B) ≥ P(A)P(B).
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2.4 – Poisson Approximation by the Chen-Stein Method

The Poisson distribution arises as the limiting distribution of the sum of n low probability
independent Bernoulli random variables. The Chen-Stein method generalizes this result to
dependent random variables, as long as these dependencies become negligible as n converges
to infinity. References [Che75, AGG89, AGG90] present this method, showing how to
calculate a bound for the error of this approximation.

The total variation distance between distributions of two integer-valued random variables
X,Y is (Ch. 1.6, [Pen03])

dTV(X,Y ) ! sup
A⊆Z

|P (X ∈ A)− P (Y ∈ A)| . (2.2)

A sequence Xn of integer-valued random variables converges in distribution to X if

lim
n→∞

dTV(Xn,X) = 0. (2.3)

Suppose Xi with i ∈ I are Bernoulli random variables with E(Xi) = pi, where I is an
arbitrary index set. Assume W !

∑

i∈I Xi and E(W ) =
∑

i∈I pi is finite. A subset Ni ⊂ I is
a neighborhood of dependence of i ∈ I if for each Xj dependent of Xi, it follows that j ∈ Ni.
Let

b1 !
∑

i∈I

∑

j∈Ni

E(Xi) E(Xj), (2.4)

b2 !
∑

i∈I

∑

j∈Ni,j ̸=i

E(XiXj). (2.5)

Then we have dTV (W,Po (E(W ))) ≤ 2 (b1 + b2).

2.5 – Wireless Link Model

In a wireless electromagnetic channel, nodes communicate thorough signals conveyed via
electromagnetic waves. With free space propagation, using a constant transmitting power
and fixed signal wavelength, the received signal strength will only depend on the distance
between the sender and the receiver.
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Quite often, the energy radiated from the transmitter encounters multiple obstacles before
reaching an intended receiver. These obstacles cause reflection, diffraction, and scattering of
the electromagnetic waves. Moreover, during a transmission, the sender, the receiver, and/or
the obstacles may move. The receiver will, therefore, be subject to the combined interference
of multiple electromagnetic waves, which varies in time and space in a non deterministic way.

The difficulty in accurately characterize the propagation of wireless signals in environ-
ments with obstacles and mobility led to the proposal of different models for predicting
the received power [Gol05, Sch05]. These models may be classified as deterministic or
statistical. Deterministic models typically employ ray tracing techniques, or are derived from
empirical measurements. Statistical models are typically employed when the complexity of
the environment (e.g. obstacles, multipath propagation, mobility) makes it very difficult to
apply deterministic models. Examples are the log-normal shadow fading model for long-
term or large distance variations of the instantaneous signal strength around average power,
and Rayleigh/Rician fading model for short-term or short distance multipath fading which
captures power variations on a wavelength scale [Sch05].

Next we will present a brief overview of the Free-Space Path Loss Model, the Simpli-
fied Path Loss Model, the Combined Path Loss and Shadowing Model, and the Combined
Path Loss and Shadowing Model. The first three models lead to the definition of purely
deterministic geometric wireless links between any pair of nodes. I.e. the distance between
two nodes determine wether they establish a wireless link or not. The Combined Path
Loss and Shadowing Model leads to a wireless link characterized by a geometric component
(determined by the distance between nodes) plus an associated erasure probability which is
may be derived from the log-normal distributed random component of the path loss.

2.5.1 Free-Space Path Loss Model

With free space propagation, if a node u transmits with power pt(u), the power pr(v) of
the signal received by a node v located at distance d(u, v) from u is given by (see [Mad08]
pg. 133):

pr(v) = pt(u) g(u) g(v)

(

vc
4π f0 d(u, v)

)2

. (2.6)

In the above expression, g(u) and g(v) are the antenna gains of transmitter and the receiver,
respectively, vc is the speed of light, and f0 is the center frequency of the transmitted signal.

The transmitted signal is received properly if the power received signal pr(v) is larger than
or equal to some threshold power pthr(v), denoted as receiver sensitivity. Hence, whenever
pr(v) ≥ pthr(v) we say that there is a link between u and v.
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2.5.2 Simplified Path Loss Model

For general tradeoff analysis of various system designs it is sometimes best to use a simple
model that captures the essence of signal propagation. Thus, the following simplified model
for path loss as a function of distance is commonly used for system design (see [Gol05] pg. 46):

pr(v) = pt(u) gref

(

dref
d(u, v)

)γ

. (2.7)

In the above expression, gref is a unitless constant which depends on the antenna charac-
teristics and the average channel attenuation, dref is a reference distance for the antenna far-
field. Parameter γ is the path loss exponent which depends on the propagation environment.
Its value can be obtained via a minimum mean square error fit to empirical measurements.
Typically it ranges from 2 in free space to 6 in environments with obstacles such as within
office buildings with multiple floors (see [Gol05] pg. 47).

Due to scattering phenomena in the antenna near-field, Equation (2.7) is generally only
valid at transmission distances d(u, v) > dref , where dref is typically assumed to be 1 − 10

m indoors and 10− 100 m outdoors. The value of gref < 1 is sometimes set to the free space
path loss at distance dref :

gref =

(

vc
4π f0 dref

)2

. (2.8)

2.5.3 Combined Path Loss and Shadowing Model

In addition to path loss, a signal will typically experience random variation due to blockage
from objects in the signal path, giving rise to a random variation about the path loss at a
given distance. In addition, changes in reflecting surfaces and scattering objects can also cause
random variation about the path loss. This effect is called shadowing. Since the location,
size, and dielectric properties of the blocking objects as well as the changes in reflecting
surfaces and scattering objects that cause the random attenuation are generally unknown,
statistical models are widely used to characterize this attenuation. The most common model
for this additional attenuation is log-normal shadowing. Therefore, in the combined path loss
and shadowing model, the instantaneous reception power is a random variable with its mean
value given in Equation (2.7). The power pr(v) of the signal received by a node v located at
distance d(u, v) from the transmitter u is

pr(v) = pt(u) gref gs

(

dref
d(u, v)

)γ

. (2.9)

where gs is a log-normal distributed random variable. In other words, the random variable
g(dB)
s = 10 log(gs) measured in dB is Gaussian distributed with mean zero and variance σ2

s
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p=0.2

Figure 2.1: Erdős Rényi Random Graph with 14 nodes and edge probability p = 0.2

with a probability density function given by

f
g
(dB)
s

(x) =
1

√

2πσ2
s

e
− x2

2σ2
s , (2.10)

Typical values of σ2
s range from 6dB to 10dB [Sch05].

2.6 – Network Models

In our study of dissemination algorithms we model networks as graphs generated by
stochastic processes. We consider three graph models: (a) Erdős Rényi Random Graphs
(ERGs) that are random graphs in which the existence of an edge between any pair of
nodes is the outcome of a Bernoulli trial with parameter p; (b) Random Geometric Graphs
(RGGs) for which the existence of an edge between a given pair of nodes is function of the
geometric distance between them; (c) Small-World Networks (SWNs) that can be seen as an
interpolation between regular graphs and random graphs.

2.6.1 Erdős Rényi Random Graphs

An ERG is a graph G = (V, p) with node set V and edge set E built by independently
sampling with probability p every element of the set {{u, v} : u, v ∈ V, u ̸= v} [Bol98] (see
Fig. 2.1). The node degree is binomially distributed according to Bin(n − 1, p) with an
expected value E(d(v)) = (n− 1) p.

The reason we consider ERGs for network modeling is twofold: First, it is a simple model
for networks that enables us to derive exact results. Secondly, wireless networks where
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shadow fading is the dominant component of wireless propagation (e.g., many obstacles,
indoor environments) may be well modelled by ERGs. The existence of a wireless link (edge
in the graph model) between a given pair of nodes may be determined by the outcome
of a Bernoulli trial in which the parameter p. This parameter is function of the variance
of the log-normal distributed shadowing component gs and the receiver sensitivity pthr(v),
assuming that all nodes v ∈ V have the same receiver sensitivity and use equal transmission
power [GHH06, MAA08, FB08].

2.6.2 Random Geometric Graphs

RGGs constitute a class of graphs in which nodes are deployed over some region of an
n-dimensional space, and for which the existence of an edge between any pair of nodes is
fully determined by their geometric distance (see Fig. 2.2). RGGs are often used to model
wireless outdoor scenarios without shadowing.

We restrict to square regions of some area A in a 2-dimensional space. Moreover, we use
the following distance metrics:

• Euclidean distance metric dE(u, v) ! ∥u− v∥;

• Toroidal distance metric dT (u, v) ! minz∈Z2 ∥u− v +
√
Az∥ (see [Pen03]).

The use of a toroidal distance metric avoids edge effects (Ch. 8, [Cre91]), thus simpli-
fying the analysis for this network model. This approach is commonly used in the litera-
ture [MAA08, TMA09].

A set of distinct nodes {u, v} will form an edge if dE(u, v) (or dT (u, v)) is smaller than or
equal to r, with r > 0. The parameter r models the node-independent transmission range.

In this thesis we consider RGGs in which node positions are generated by stochastic point
processes.

Binomial Random Geometric Graphs

A Binomial Random Geometric Graph (B-RGG) [Pen03] is a random graph G(V, r) in which
a set of n nodes V is deployed, independently and uniformly at random, over a square SA ⊂ R2

of area A. If we use the Euclidean distance, the edge set E of G contains all sets of nodes
{u, v} of {{u, v} : u, v ∈ V, u ̸= v}, for which dT (u, v) ≤ r, where r > 0. Alternatively,
if we use the toroidal distance, the edge set E of G contains all sets of nodes {u, v} of
{{u, v} : u, v ∈ V, u ̸= v}, for which dT (u, v) ≤ r, where r > 0.

The number of nodes in a region R ⊂ SA is binomially distributed according to Bin(n, A(R)
A ).
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A

r

Figure 2.2: Random Geometric Graph in a square of area A, with 25 nodes and transmission
range r.

Poisson Random Geometric Graphs

A Poisson Random Geometric Graph (P-RGG) G(A, λ, r) is defined in the following way.
Consider a Poisson point process Π of intensity λ > 0 on a

√
A×

√
A square SA ⊂ R2, with

a node located at each point generated by Π. We construct G by defining its set of nodes V

as the nodes generated by Π. If we use the Euclidean distance, the edge set E of G contains
all sets of nodes {u, v} of {{u, v} : u, v ∈ V, u ̸= v}, for which dT (u, v) ≤ r, where r > 0.
Alternatively, if we use the toroidal distance, the edge set E of G contains all sets of nodes
{u, v} of {{u, v} : u, v ∈ V, u ̸= v}, for which dT (u, v) ≤ r, where r > 0.

The number of nodes N of G is a Poisson random variable with mean Aλ. Moreover, the
number of nodes in a region R ⊆ SA is Poisson distributed according to Po(λ).

2.6.3 Small-world Networks

SWNs [WS98] correspond to a class of random graphs which exhibit high clustering
coefficients (i.e. neighboring nodes are likely to be connected) and small average path length
— the diameter of a graph with n nodes is in fact bounded by a polynomial in log n. The
term “Small-world networks” itself was coined by Watts and Strogatz [WS98], who defined
a class of models which interpolate between regular lattices and ERGs by introducing long-
range shortcuts with a certain probability p. The most salient feature of these models is that
for increasing values of p the average shortest-path length diminishes sharply, whereas the
clustering coefficient remains practically constant during this transition.

SWN topologies are becoming potentially attractive in the context of communication net-
works, potentiating the spread of information. Resource discovery in wireless networks [Hel03],
design of heterogeneous networks ([RKV04, DYT05]), and application to overlay networks
for peer-to-peer communications ([MNW04, HLY04]) are just a few examples on which SWN
topological properties are deemed to be particularly useful. Reference [New03] surveys com-
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p=0 p=0.1 p=0.9

Figure 2.3: Small-World model with rewiring with 12 nodes and k = 4 for different values of
the rewiring probability p.

munication processes in complex networks (including SWNs), such as search and navigation,
network transmission, epidemics, and information dissemination processes.

In the original model of Watts and Strogatz (SWN with Rewiring [WS98]), shortcuts are
introduced by rewiring the edges of the original ring lattice with a certain probability p. A
typical variant was introduced by Newman and Watts (SWN with added Shortcuts [NW99])
where instead of reconnecting existing edges, new edges are added with probability p.

Kleinberg [Kle00] introduced an SWN model that has the property of navigability, where
short paths not only exist, but can also be easily found using merely local information. The
model consists of a grid to which shortcuts are added not uniformly but according to a
harmonic distribution, such that the number of outgoing links per node is fixed and the link
probability depends on the distance between the nodes. For this class of SWNs a greedy
routing algorithm, in which a message is sent through the outgoing link that minimizes the
distance to the destination, was shown to be effective.

Small-World Network with Rewiring A Small-World Network with Rewiring G =

(V, k, p) with set of nodes V , initial node degree k, and rewiring probability p is constructed as
follows (see Fig. 2.3): the initial graph is a one-dimensional lattice of n nodes, with periodic
boundary conditions (i.e. a ring), each node being connected to its k-hop neighborhood.
The nodes are then visited one after the other; each edge connecting a node to one of its
k/2 nearest neighbors in the clockwise sense is left in place with probability 1− p, and with
probability p is reconnected to a randomly chosen other node.
From now on we will use the acronym SWN to specifically refer to Small-World Networks

with Rewiring.
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2.7 – Random Linear Network Coding

The multicast capacity of a network is only achieved through the use of Network Coding
(NC), that is, algebraic mixing of packets in networks. This result was first proved in the
seminal paper of Ahlswede, Li, Cai, and Yeung [ACLY00]. Following this, an algebraic
framework was introduced by Koetter and Médard in [KM03]. This framework led to the
introduction of Random Linear Network Coding (RLNC), a randomized and distributed
scheme to perform network coding, with applications to a wide variety of settings. We now
give a brief overview of RLNC including its properties and practical applications.

RLNC [HMK+06] is a distributed methodology for performing network coding, in which
each node in the network independently and randomly selects a set of coefficients from a
finite field and uses them to form linear combinations of the data packets it receives.

These linear combinations are then sent over the outgoing links of each node in the network.
Each packet is sent along with the global encoding vector [KM03], which is the set of linear
transformations that the original packet goes through on its path from the source to the
destination. The global encoding vector enables the receivers to decode the original data
using Gaussian elimination. The operations of RLNC for packetized networks are summarized
in Algorithm 1 (from [LMKE05b]).

Now, if the coefficients are chosen at random from a large enough field, the resulting
matrix is invertible with high probability, which explains why this approach is capable of
achieving the multicast capacity of a network.

In [LMKE05a], RLNC is studied from the point of view of asynchronous packet networks.
The results show that RLNC is capacity-achieving even on asynchronous lossy packet net-
works, provided that the packets received on a link arrive according to a process that admits
an average rate. This statement holds both for lossy point-to-point (modeling wireline packet
networks) and broadcast link models (suitable for wireless packet networks).

Practical Implementation and Applications

A framework for packetized network coding is presented in [CWJ03], which leverages the
RLNC resilience against disruptions such as packet loss, congestion, and changes of topology,
in order to guarantee robust communication over highly dynamic networks with minimal (or
no) control information. The framework defines a packet format and a buffering model.
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Algorithm 1 Random Linear Network Coding
Initialization (source node s): s forms the message packets w1, w2, ..., wr according to the same rules

that the intermediate nodes use (shown below).

Operation at intermediate node v:

if packet received then

Gaussian elimination is performed with packets in buffer. Packet is stored in the buffer.

end if

for all outgoing edges do

Node v chooses all the packets p1, p2, ..., pL that are in his buffer.

Form packet x :=
∑L

l=1 αlpl, where αl is chosen according to a uniform distribution over the elements

of the finite field Fq. The packet’s global encoding vector γ, which satisfies x :=
∑r

k=1 γkwk, is placed

in its header.

Send packet x.

end for

Decoding (sink nodes):

if packet received then

Gaussian elimination is performed with the packets already in the buffer.

if inverse of the matrix M
−1 exists then

The sink node applies the inverse to the packets to obtain w1, w2, ..., wr; otherwise, a decoding error

occurs.

end if

end if

The packet format consists of the global encoding vector (kept in the header) and the
payload, which is divided into vectors according to the field size (28 or 216, i.e. each symbol
has 8 or 16 bits, respectively). Each of these symbols is then used as a building block for the
linear operations performed by the nodes.

The buffering model divides the stream of packets into generations of size h, such that
packets in the same generation are tagged with a common generation number. Each node
sorts the incoming packets in a single buffer according to their generation number. When
there is a transmission opportunity at an outgoing edge, the sending node generates a new
packet, which contains a random linear combination of all packets in the buffer that belong
to the current generation. If a packet is non-innovative, i.e. if it does not increase the rank
of the decoding matrix available at the receiving node, then it is immediately discarded. As
soon as the matrix of received packets has full rank, Gaussian elimination is performed at
the receivers to recover the original packets.

RLNC seems particularly beneficial in dynamic and unstable networks — that is, net-
works where the structure or topology of the network varies within a short time, such as
mobile ad-hoc networks and peer-to-peer content distribution networks. RLNC has been
shown to extend naturally to packet networks with losses [LMKE05b], and, simultaneously,
to provide increased resilience against failures in the network [HMK+06]. The inherent
robustness properties of RLNC make it particularly suitable as a framework for dynamic
and unstable networks, such as delay tolerant networks [WLB05] and content distribution
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networks [GR05, DGWR07].

The benefits of RLNC in wireless environments with rare and limited connectivity, either
due to mobility or battery scarcity, are highlighted in [WLB05, FWLB06], which propose
an algorithm aimed at reducing the overhead of probabilistic flooding algorithms with appli-
cations in delay tolerant networks. Other RLNC based information dissemination schemes
that increase reliability and robustness while reducing the incurred overhead can be found
in [EFSC+06, DEH+05]. Since each node forwards a random linear combination indepen-
dently of the information present at other nodes, its operation is completely decentralized.
Moreover, when collecting a random combination of packets from a randomly chosen node,
there is high probability of obtaining a linearly independent packet in each time. Thus, the
problem of redundant transmissions, which is typical of traditional flooding approaches, is
considerably reduced.





“Do not speak — unless it improves on silence.”

Buddhist Sayings

“God does not play dice.”

Albert Einstein





3
Probabilistic Flooding in Stochastic

Networks

I
n Probabilistic Flooding (PF) with error-free point-to-multipoint communications, the
transmission of a node is received by all its neighbors. The source node transmits a so

called source message. Each of its neighbors then forwards the received message with some
probability that may be common to all nodes, different for each node, or even adaptive.

In contrast to deterministic algorithms, PF algorithms do not guarantee that all nodes of
a connected network will receive a flooded message even under ideal conditions (collision-free
MAC and error-free propagation medium). The set of forwarding nodes of the communication
subgraph generated by the PF process of a message needs to be a connected dominating set
of the network in order to achieve global outreach. This in turn is only assured if the
forwarding probability of all nodes equals one (pure flooding). Besides this special case,
global information outreach can only be achieved with a probability smaller than one.

The study of reachability in PF with point-to-multipoint communications, however, has
mainly been addressed by means of simulations. In this chapter, we take a mathematical
approach to the analysis of PF. Our aim is to determine analytically how simple PF with
constant forwarding probability behaves over mathematically tractable abstractions of a
network, namely random graph models. We consider Erdős Rényi Random Graphs (ERGs)
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and Poisson Random Geometric Graphs (P-RGGs) (or simply Random Geometric Graphs
(RGGs) within this chapter; see Section 2.6). The results may be used as a reference for the
study and development of more sophisticated algorithms.1 In the following we refer to PF
with point-to-multipoint communication only by PF, as our work addresses exclusively the
reachability using this model.

Consider a flooding algorithm in which each node forwards a received message with a
network-wide forwarding probability ω. We ask: How small can ω be while still achieving
global outreach with high probability? We answer this question using methods from graph
theory and stochastic geometry, and make the following main contributions:

• Presentation of a generic approach to estimate the probability of achieving global
outreach;

• Derivation of an expression for the global outreach probability in ERGs;

• Derivation of an asymptotic expression for the global outreach probability in RGGs
that constitutes a good approximation for dense RGGs;

• Detailed analysis of the ω required to achieve global outreach with high probability in
ERGs and RGGs;

• Analysis of the global outreach probability of PF with unreliable transmission medium
for ERGs and RGGs;

• Study of the border effects in RGGs and proposal of a PF heuristic that minimizes
these effects.

The chapter is organized as follows. Section 3.1 describes the PF algorithm and gives the
problem statement. Section 3.2 presents an analytical approach to compute the probability of
global outreach. Section 3.3 employs this approach in ERGs, leading to an expression for the
global outreach probability in such networks. In addition, we show (n, p,ω)-tuples leading to
global outreach with high probability. Section 3.4 addresses RGGs, leading to an asymptotic
expression for the global outreach probability. We also perform a numerical study, comparing
analytical and simulation results evaluating the accuracy of the derived expressions. Again,
we show (λ, A, r,ω)-tuples leading to global outreach with high probability. Section 3.5
studies border effects of RGGs on the global outreach probability and proposes a modification
to the PF algorithm to address these effects. Section 3.6 presents analysis of global outreach
probability in the presence of unreliable transmission medium. Section 3.7 discusses the
achieved results in comparison to related work. Finally, Section 3.8 summarizes the main
results of the chapter.

1E.g. PF with the forwarding probability given by some probability distribution; as function of local

topology parameters; or as function of the dynamics of the dissemination process.
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Main results of this chapter were published in [CSBB09, CSBB12] in collaboration with
Christian Bettstetter, João Barros, and Udo Schilcher. Sections 3.1-3.8, excepting minor
changes, are taken from [CSBB12], which were written with the corresponding co-authors.

3.1 – Probabilistic Flooding and Problem Statement

3.1.1 Probabilistic Flooding

A naïve way of disseminating a message to all nodes in a network is pure flooding. When
receiving a broadcast message for the first time a node will always forward it. In a network
with n nodes, the number of transmissions of a source message using pure flooding is n. This
technique leads to a high number of redundant transmissions, which is commonly known as
the broadcast storm problem [NTCS99].

Probabilistic flooding is a family of techniques that aim to reduce the number of redundant
transmissions, in which the message forwarding is a probabilistic event [SCS03, HHL06,
KWB01]. In general, each node v may have a distinct forwarding probability ω(v). We focus
on the simple case where all nodes have the same forwarding probability. Only the source
node u transmits the message always with probability 1. I.e. ω(v) = ω ∀v ∈ V \ u. The case
ω = 1 is equivalent to pure flooding. Algorithm 2 describes the flooding process.

We assume an error-free broadcast medium, i.e., a transmission from a node will be
successfully received by all its neighbors. In this case, for an appropriate choice of ω leading
to global information outreach, the expected number of transmissions is reduced from n to
(n− 1) ω + 1.

3.1.2 Problem Statement

Let G= (V,E) represent a network. A source node u ∈ V intends to deliver a message
mu to all other nodes v ∈ V . The message mu is disseminated through G using the flooding
algorithm APF (G,u,ω).

Algorithm 2 Probabilistic flooding APF(G,u,ω)

Let G = (V,E) be a graph, u ∈ V be a source node with a source message mu to be disseminated,

and ω ∈ [0, 1] be a forwarding probability common to all nodes v ∈ V \ {u}.

1. A source node u broadcasts its source message mu.

2. Each node v that receives mu for the first time re-broadcasts it with probability ω.
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We are interested in the forwarding probability ω needed such that all nodes receive mu

with a given probability α. In a more formal way, let V ′ ⊆ V denote the set of nodes that
have received the message mu after the completion of APF (G,u,ω). Our goal is to determine
min{ω : P(V ′ = V )≥ α}. The term P(V =V ′) is the probability that all nodes of the network
obtain the message. In the following, it is called global outreach probability Ψ ! P(V ′ = V ).

3.2 – Graph Sampling Approach

We present a generic approach to calculate the global outreach probability. First, using
probabilistic flooding, we can construct a communication subgraph G′ = (V ′, E′) of the
network graph G in the following way: We start with a node set V ′ = {u} containing
only the source node and an empty edge set E′ = {}. For each node v that forwards the
message, we add all receiving nodes to V ′. Additionally, we add edges {v,w} between the
forwarding node and the receiving nodes w ∈ N(v) to E′.

Second, we construct an induced subgraph of G, called G∗ = (V ∗, E∗), using Graph

sampling (GS) explained in Algorithm 3. G∗ helps us to analyze the probability of global
outreach for given ω. We show how properties of a random graph G∗ are related to those of
a random graph G′. We study two properties:

• the event that G∗ is connected, denoted as C(G∗);

• the event that the nodes V ∗ are a dominating set of G, denoted as D(V ∗, G).

The event C(G∗) ∩D(V ∗, G) means that V ∗ is a connected dominating set of G.

Theorem 1 (Global outreach). The probability of global outreach using probabilistic flooding

APF (G,u,ω) on a network G= (V,E) is equal to the probability that the node set V ∗ ⊆ V

resulting from graph sampling AGS(G,u,ω) is a connected dominating set of G:

Ψ(G,ω) = P
(

C(G∗) ∩D(V ∗, G)
)

. (3.1)

Algorithm 3 Graph sampling AGS(G,u,ω)

Let G = (V,E) be a graph that represents the network and u ∈ V a source node.

1. The node set V ∗ is obtained by uniformly sampling the node set V \{u} with probability ω and

adding u.

2. The edge set E∗ contains all edges of G that connect nodes within V ∗, i.e. E∗ = {{u, v} ∈ E :

u, v ∈ V ∗}.
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Proof. A node can decide beforehand whether or not it will participate in the forwarding
process if it receives a message. This is equivalent to the sampling process of algorithm AGS .
Hence, the set V ∗ can be associated with the set of nodes forwarding a message according to
algorithm APF if and only if G∗ is connected. If the set V ∗ is also a dominating set of G, all
nodes in V \V ∗ are neighbors of at least one node in V ∗ and thus receive a message.

3.3 – Probabilistic Flooding in Erdős Rényi Graphs

This section analyzes the probability of global outreach on an ERG G with n nodes and
edge probability p. We derive the expression for the probability of global outreach and present
(n, p,ω)-triples leading to a global outreach probability of 0.50, 0.80 and 0.95, respectively.

3.3.1 Derivation of the Outreach Probability

If G belongs to the class of ERGs, the probability of global outreach is given by the
following theorem.

Theorem 2 (Global outreach in ERGs). The probability of global outreach using probabilistic

flooding APF with forwarding probability ω in an ERG with n nodes and edge probability p is

Ψ(n, p,ω) =
n
∑

k=1

PC(k, p) ·
(

1− (1−p)k
)n−k

·
(

n− 1

k − 1

)

ω k−1(1− ω)n−k with (3.2)

PC(m, p) = 1−
m−1
∑

j=1

(

m− 1

j − 1

)

PC(j, p) (1− p)j (m−j) (3.3)

for m ≥ 1 with starting value PC(1, p) = 1.

Fig. 3.1 plots Ψ over ω along with results from simulations of PF and GS. There is a
critical interval of ω-values where Ψ increases from nearly zero to nearly one.

Proof. To prove Theorem 2, we show that connectivity of G∗ and domination of G by V ∗

are mutually independent. Then, we characterize the connectivity and order of G∗, and
the probability of domination of G by V ∗. Based on this, we derive the global outreach
probability.
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Figure 3.1: Global outreach probability Ψ for PF in ERGs. Parameters: n = 1000 nodes,
edge probability p = 0.15 and message forwarding probability ω. Comparison of simulated
PF and GS algorithms with analytical expression for Ψ. Simulation results are obtained
from 1 000 experiments. Each experiment is run over a new ERG. Each data point (with
its 95% confidence interval limits) represents the relative frequency of the events “achieving
global outreach (PF)” or “achieving a connected dominating set (GS)”.

Connectivity and domination are independent The probability that V ∗ of G∗ is a
connected dominating set of G is

P
(

C(G∗) ∩D(V ∗, G)
)

= P
(

C(G∗)
)

· P
(

D(V ∗, G)
)

. (3.4)

The event C(G∗) is equivalent to the existence of a path connecting any pair of nodes of
G∗. Since a path in G∗ is a sequence of consecutive edges of G∗, the sample space of C(G∗)

is the set of edges {{u, v} : u, v ∈ V ∗, u ̸= v}. The event D(V ∗, G) denotes the existence of
edges connecting any node in V \ V ∗ to the node set V ∗. Thus, its sample space is the edge
set {{u, v} : u ∈ V ∗, v ∈ V \ V ∗}. In conclusion, since the existence of an edge in an ERG
is independent of the existence of any other edge and since the sample spaces of C(G∗) and
D(V ∗, G) are disjoint edge sets, the events C(G∗) and D(V ∗, G) are independent.

Connectivity of G∗ Gilbert [Gil59] derived the recurrence relation (3.3) for the probability
that an ERG G(V, p) with m = |V | nodes and edge probability p is connected. Therefore,
the probability of G∗ being connected is

P(C(G∗) |N∗) = PC(N
∗, p). (3.5)
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Order of G∗ Since V ∗\{u} is a uniformly sampled subset of V \{u}, the number of nodes
N∗ is a random variable. N∗ − 1 is binomially distributed according to Bin(n − 1,ω). The
“−1” stems from the source node sending with probability 1. Thus, the probability mass
function of N∗ is

P(N∗= k) =

{

0 if k = 0,
(

n−1
k−1

)

ω k−1(1− ω)n−k otherwise.
(3.6)

Domination of G The probability that V ∗ is a dominating set of G is

P(D(V ∗, G) |N∗) =
(

1− (1− p)N
∗

)n−N∗

. (3.7)

For a given node u ∈ V \V ∗ the probability of having no edge to any of the nodes in V ∗ is
(1 − p)N

∗

. Hence, the probability of an edge to at least one of them is 1− (1− p)N
∗

. Since
this probability is independent for each node u ∈ V \V ∗, (3.7) gives the result.

Proof of Th. 2 Summing the conditional probabilities for connectivity and domination
over all possible k of N∗, each of them multiplied with the probability P(N∗=k), gives

Ψ=
n
∑

k=1

P(C(G∗) |N∗) · P(D(V ∗, G) |N∗) · P(N∗ = k). (3.8)

Substituting (3.5), (3.6), (3.7) into (3.8) yields (3.2).

3.3.2 Parameters for Global Outreach

Let us illustrate how these results can be used for network design. The goal is to
meet a target value for Ψ by creating or deploying networks and simultaneously tuning
ω of the flooding algorithm. In practical applications, one is interested in high outreach
probabilities —here we give design options for Ψ=0.50, 0.80 and 0.95.

If n is given, the parameters p and ω can be chosen. Fig. 3.2 plots the (p, ω)-pairs required
for achieving a high outreach probability Ψ with n = 100 and 1000, respectively. The curves
show a trade-off in the choice of the (p, ω)-pairs. A sparse ERG (low p) requires higher
ω-values. For well-connected ERGs (high p), small values of ω are sufficient to guarantee the
desired Ψ. The plots also stress the non-linear dependence between these parameters.

If the ω is given, the parameters p and n can be determined. For ω = 0.08 and 0.5,
Fig. 3.3 shows (p, n)-pairs ensuring Ψ = 0.50, 0.80 and 0.95. The dependency between n and
p for the same Ψ is non-linear, as expected from Theorem 2. For increasing p, with p close
to 0, the required number of nodes experiences an expressive reduction. This trend is then
smoothed, and this reduction becomes almost negligible as p approaches 1.
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Figure 3.2: Probabilistic flooding in Erdős Rényi graphs. Plots show (p,ω)-pairs for global
outreach probability Ψ=0.50, 0.80, 0.95.
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Figure 3.3: Probabilistic flooding in Erdős Rényi graphs. Plots show (p, n)-pairs for global
outreach probability Ψ = 0.50, 0.80, 0.95.
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3.4 – Probabilistic Flooding in Poisson Random Geometric Graphs
without Border Effects

Let us now study the outreach probability in P-RGGs. We derive an asymptotic expression
and complement it with simulations showing that this expression is a good approximation for
finite node densities. Finally, we give system parameters leading to high outreach probability.

3.4.1 Derivation of the Outreach Probability

Theorem 1 gave us an expression for Ψ using APF in a general graph G. If G belongs to
the class of RGGs, the outreach probability is given by the following theorem.

Theorem 3 (Global outreach probability in RGGs). Let λ∗ ! λω+1
A , α ! λ∗πr2−ln (Aλ+1),

γ ! 1−e−λ
∗πr2 . The probability of global outreach of algorithm APF with forwarding proba-

bility ω in an RGG G(A,λ, r) is

Ψ(A, λ, r, ω) = γ e−e−α
+ εψ, (3.9)

where limλ→∞ εψ = 0.

If λ → ∞, α may be kept constant by setting r to be a function of λ, under the conditions
of Theorem 3.

To prove this theorem we (1) specialize the Graph sampling (GS) approach to the specifics
of the underlying spatial Poisson point process of the definition of RGGs; (2) derive an
asymptotic expression for the probability of absence of isolated nodes in G∗ that is also a
lower bound; (3) derive an asymptotic expression for the probability of connectivity of the
subgraph G∗; (4) derive an asymptotic expression for the probability of V ∗ being a dominating
set of G that is also a lower bound; (5) analyze the dependence between node isolation in G∗

and domination of G by V ∗, and derive an asymptotic expression for the probability of
occurrence of both events that is also a lower bound; (6) analyze the dependence between
the connectivity of G∗ and the domination of G by V ∗, and derive an asymptotic expression
for the probability of occurrence of both events.

3.4.1.1 Graph Sampling and Poisson Processes

The GS approach can be applied to RGGs by performing the node sampling directly on
the Poisson point process Π that generates G. Given the properties of Poisson processes, Π
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can be decomposed into two independent thinned Poisson point processes Π∗ and Π⋄. The
process Π∗ with intensity λω is the set of all forwarding nodes, and the process Π⋄ with
intensity λ (1− ω) is the set of non-forwarding nodes.

Let Π∗
s denote a process Π∗ on a square SA of area A plus the addition of a source node

placed uniformly at random in SA. This leads to a subgraph of forwarding nodes G∗(V ∗, E∗)

with node density λ∗ = λ ω + 1
A . The process Π⋄ on SA leads to a subgraph of non-forwarding

nodes G⋄(V ⋄, E⋄) with node density λ⋄ = λ (1− ω).

The subgraph G∗ has N∗ + 1 nodes, where N∗ is a Poisson random variable distributed
according to Po(A λ∗). G⋄ has N⋄ nodes, where N⋄ follows Po(A λ⋄).

3.4.1.2 Node Isolation in G∗

To achieve global outreach, the graph of forwarding nodes G∗ needs to be connected (The-
orem 1). A necessary but not sufficient condition for connectivity is the absence of isolated
nodes in G∗. We state the asymptotic expression for the probability of G∗ having no isolated
nodes and we show how this probability relates to the probability of G∗ being connected.
To do so, we use the total variation distance between the distributions of two integer-valued
random variables X,Y , defined as ([Pen03], see 2.4):

dTV(X,Y ) ! sup
A⊆Z

|P (X ∈ A)− P (Y ∈ A)| . (3.10)

Lemma 1. Let α∗ ! λ∗π r2− ln (A λ∗). The total variation distance between the distribution

of the number W ∗ of isolated nodes in G∗ and the Poisson distribution with parameter e−α
∗

converges to 0 when λ → ∞. That is

lim
λ→∞

dTV

(

W ∗,Po
(

e−α
∗

))

= 0. (3.11)

A proof can be found in A.1.

Proposition 1 (Isolated nodes in G∗). Let I (G∗) denote the event that G∗ has isolated

nodes, and furthermore, let α∗ ! λ∗π r2 − ln (Aλ∗) and γ ! 1 − e−λ
∗ π r2. The probability

of G∗ having no isolated nodes is

P (¬I (G∗)) = γ e−e−α∗

+ εI , (3.12)

where εI ≥ 0 and limλ→∞ εI = 0.

Proof. The nodes of G∗ are distributed in SA according to Π∗
s. The node density of G∗ is

therefore λ∗ = λ ω + 1
A , and the probability that a node v∗ ∈ V ∗ is isolated is

P (iso (v∗)) = e−λ
∗ π r2 . (3.13)



36 3.4. Probabilistic Flooding in Poisson Random Geometric Graphs without Border Effects

The probability that there is no isolated node in G∗ is

P (¬I (G∗) |N∗) = P

(

N∗+1
⋂

i=1

¬ iso (v∗i )

)

. (3.14)

The isolation events are not independent from node to node if the corresponding nodes are
close enough to each other. Further, the events ¬iso (v∗i ) are increasing events with respect
to ω and λ. Application of the FKG inequality ([FKG71], see 2.3) to (3.14) leads to

P (¬I (G∗) |N∗)≥
N∗+1
∏

i=1

P (¬ iso (vi))=
[

1− e−λ
∗ π r2

]N∗+1
(3.15)

which can be re-written as

P (¬I (G∗) |N∗) =
(

1− e−λ
∗ π r2

)N∗+1
+ ξI , (3.16)

with ξI ≥ 0. Applying the law of total probability yields

P (¬I (G∗)) = E (P (¬I (G∗) |N∗))

= E

(

(

1− e−λ
∗ π r2

)N∗+1
)

+ E(ξI)

= (1− e−λ
∗ π r2) ·

·
∞
∑

k=0

(

1− e−λ
∗ π r2

)k (Aλ∗)k e−Aλ∗

k!
+ εI

= (1− e−λ
∗ π r2) e−e

−(λ∗ π r2−ln(Aλ∗))
+ εI

= γ e−e−α∗

+ εI , (3.17)

with εI = E(ξI) ≥ 0 and γ = 1− e−λ
∗ π r2 , proving (3.12).

From Lemma 1, the probability of having no isolated nodes in G∗ is upper bounded in the
following way:

P (¬I (G∗)) = P(W ∗ = 0)

≤ e−e−α∗

+ dTV

(

W ∗,Po
(

e−α
∗

))

. (3.18)

Combining (3.17) with (3.18), yields

γ e−e−α∗

+ εI ≤ e−e−α∗

+ dTV

(

W ∗,Po
(

e−α
∗

))

. (3.19)

Moreover, by combining the last equation with (3.11) of Lemma 1, and since limλ→∞ γ = 1,
we get limλ→∞ εI = 0.

The probability P (¬I (G∗)) converges to γ e−e−α∗

. This expression is a lower bound for
the same probability.
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3.4.1.3 Connectivity of G∗

We now determine an asymptotic expression for the probability that G∗ is connected.

Proposition 2 (Connectivity of G∗). With α∗ ! λ∗ π r2 − ln (Aλ∗) and γ ! 1 − e−λ
∗ π r2,

the probability that G∗ is connected is

P (C (G∗)) = γ e−e−α∗

+ εI − εC , (3.20)

where εI ≥ 0, εC ≥ 0, limλ→∞ εI = 0 and limλ→∞ εC = 0.

Proof. The absence of isolated nodes in G∗ is a necessary condition for its connectivity.
Therefore, P (C (G∗)) ≤ P (¬I (G∗)), which can be rewritten as

P (C (G∗)) = P (¬I (G∗))− εC (3.21)

where εC ≥ 0. Applying (3.12) in (3.21) yields

P (C (G∗)) = γ e−e−α∗

+ εI − εC , (3.22)

where limλ→∞ εI = 0, thus proving (3.20).

Penrose [Pen97] bridges the problem of the absence of isolated nodes in an RGG G, to
the problems of (a) the longest of the nearest neighbor distances between the nodes of G and
(b) the longest edge of the minimum spanning tree connecting the nodes of G. The probability
of having no isolated node in an RGG G is asymptotically the same as the probability of G
being connected. Hence,

lim
λ→∞

P (C (G∗)) = lim
λ→∞

P (¬I (G∗)) . (3.23)

By combining (3.23) with (3.21) we get limλ→∞ εC = 0.

Fig. 3.4 compares the asymptotic expression of P(C(G∗)) with the relative frequencies
of simulated graphs for which G∗ has no isolated node or is connected, respectively. Algo-
rithm AGS is used for simulations.

3.4.1.4 Domination of G

We now determine the asymptotic expression for the probability that V ∗ is a dominating set
of G, which is also a lower bound for the same probability.

Lemma 2. Let α⋄ ! λ∗π r2− ln (A λ⋄). The total variation distance between the distribution

of the number W ⋄ of non-dominated nodes of G and the Poisson distribution with parameter

e−α
⋄

converges to 0 when λ → ∞. That is

lim
λ→∞

dTV

(

W ⋄,Po
(

e−α
⋄

))

= 0. (3.24)
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Figure 3.4: Probability of connectivity/no isolated node (εC = εI = 0); relative frequency
of the experiments of AGS yielding connected graphs; and relative frequency of experiments
of AGS yielding graphs with no isolated node. Simulation results are obtained from 10 000

experiments. Each experiment is run over a new RGG.

A proof can be found in A.2.

Proposition 3 (Domination of G). Let α⋄ ! λ∗π r2− lnAλ⋄. The probability that V ∗ is a

dominating set of G is

P(D(V ∗, G)) = e−e−α⋄

+ εD, (3.25)

where εD ≥ 0 and limλ→∞ εD = 0.

Proof. The nodes of G∗ are distributed in SA according to Π∗
s with density λ∗ = λω + 1

A .
The set V ∗ dominates G if for every node v⋄ ∈ V ⋄ there is at least one edge {v⋄, w∗} such
that w∗∈V ∗. In this case, we say that v⋄ is dominated by V ∗. Hence, the probability that a
node v⋄ ∈ V ⋄ is dominated by V ∗ is equal to the probability that there is at least one node
from Π∗

s within the circle of radius r centered at the position of node v⋄. That is

P (dom (v⋄)) = 1− e−λ
∗ π r2 . (3.26)

Let the random variable N⋄ be the number of nodes of V ⋄. Then, the probability that G is
dominated by V ∗ is

P (D (V ∗, G) |N⋄) = P

(

N⋄

⋂

i=1

dom (v⋄i )

)

. (3.27)

The domination events for nodes of V ⋄ close to each other, i.e. within distance d(v⋄i , v
⋄
j ) ≤

2 r from each other, are dependent. They are increasing events with respect to ω and λ.
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Application of the FKG inequality to (3.27) leads to

P (D (V ∗, G) |N⋄) ≥
N⋄

∏

i=1

P (dom (v⋄i )) =
[

1− e−λ
∗ π r2

]N⋄

,

P (D (V ∗, G) |N⋄) =
(

1− e−λ
∗ π r2

)N⋄

+ ξD, (3.28)

with ξD ≥ 0. Applying the law of total probability yields

P (D (V ∗, G)) = E (P (D (V ∗, G) |N⋄))

= E

(

(

1− e−λ
∗ π r2

)N⋄
)

+ E(ξD)

= e−e
−(λ∗ π r2−ln(Aλ⋄))

+ εD = e−e−α⋄

+ εD, (3.29)

with εD = E(ξD) ≥ 0, proving (3.25).

From Lemma 2, the probability that there is no non-dominated node in G is upper bounded
as follows:

P (D (V ∗, G)) = P(W ⋄ = 0)

≤ e−e−α⋄

+ dTV

(

W ⋄,Po
(

e−α
⋄

))

. (3.30)

Combining (3.29) with (3.30) yields

εD ≤ dTV

(

W ⋄,Po
(

e−α
⋄

))

. (3.31)

Finally, combining (3.31) with (3.24), we get limλ→∞ εD = 0.

This shows that the domination probability converges asymptotically to e−e−α⋄

, which is
also a lower bound. Fig. 3.5 compares the analytical expression/lower bound with simulation
results. As ω increases, the relative frequency of graphs where V ∗ is a dominating set
approaches 1, and the difference between the analytical expression and simulation results
becomes negligible.

3.4.1.5 Dependence between Node Isolation & Domination

The events ¬I (G∗) and D(V ∗, G) depend on each other. Let us analyze this dependency and
derive an asymptotic expression for P(¬I(G∗) ∩ D(V ∗, G)) which is also a lower bound for
this probability. The event ¬I (G∗)∩D(V ∗, G) is equivalent to the event that the sum of all
non-dominated nodes and isolated forwarding nodes in G is 0. The following lemma helps us
to derive the joint probability. A proof can be found in A.3.
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Figure 3.5: Probability of domination (assuming εD = 0) in comparison to the relative
frequency of the experiments of the algorithm AGS yielding graphs with no non-dominated
nodes.

Lemma 3. Let α ! λ∗π r2 − ln (Aλ+ 1) and W ⋄∗ be the sum of all non-dominated nodes

and isolated forwarding nodes in G. The total variation distance between the distribution of

W ⋄∗ and a Poisson distribution Po(e−α) converges to 0 when λ → ∞, i.e.

lim
λ→∞

dTV
(

W ⋄∗,Po
(

e−α
))

= 0. (3.32)

Proposition 4. The probability that G∗ has no isolated node and its nodes V ∗ dominate G

is

P (¬I(G∗)∩D(V ∗, G)) = P (¬I(G∗))·P (D(V ∗, G))+εID, (3.33)

where εID ≥ 0, and

lim
λ→∞

εID = 0. (3.34)

Proof. The events ¬I (G∗) and D(V ∗, G) are increasing events with respect to ω and λ. The
FKG inequality yields

P(¬I (G∗) ∩D(V ∗, G)) = P(¬I (G∗)) · P(D(V ∗, G)) + εID

where εID ≥ 0, thus proving (3.33). Propositions 1, 3 yield

P(¬I (G∗) ∩D(V ∗, G))

=
(

γ e−e−α∗

+ εI
)(

e−e−α⋄

+ εD
)

+ εID

=γ e−e−α
+ εD γ e−e−α∗

+ εI
(

e−e−α⋄

+ εD
)

+ εID, (3.35)
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with α ! λ∗π r2 − ln (Aλ+ 1). From Lemma 3, we have

P(¬I (G∗) ∩D(V ∗, G)) = P(W ⋄∗ = 0)

≤ e−e−α
+ dTV

(

W ⋄∗,Po
(

e−α
))

. (3.36)

Combining this expression with (3.35) yields

γ e−e−α
+ εD γ e−e−α∗

+ εI
(

e−e−α⋄

+ εD
)

+ εID

≤ e−e−α
+ dTV

(

W ⋄∗,Po
(

e−α
⋄∗

))

. (3.37)

Since limλ→∞ εI = limλ→∞ εD = limλ→∞ εID = 0, and limλ→∞ γ = 1, combining (3.32) with
(3.37) yields limλ→∞ εID = 0.

3.4.1.6 Dependence between Connectivity and Domination

Let us study the event C(G∗)∩D(V ∗, G), inferring the asymptotic behavior of dependence
between connectivity of G∗ and domination of G by V ∗.

Proposition 5. The probability of G∗ being connected and V ∗ dominating G is

P(C(G∗) ∩D(V ∗, G))=P(C(G∗))P(D(V ∗, G)) + εCD, (3.38)

where εCD ≥ 0 and limλ→∞ εCD = 0.

Proof. The events C(G∗) and D(V ∗, G) are increasing events with respect to ω and λ. The
FKG inequality yields

P(C(G∗) ∩D(V ∗, G)) = P(C(G∗))P(D(V ∗, G)) + εCD, (3.39)

where εCD ≥ 0, thus proving (3.38). From (3.23), the probability of no isolated node in an
RGG G is asymptotically the same as the probability of G being connected. Thus,

lim
λ→∞

P(C(G∗)∩D(V ∗, G))= lim
λ→∞

P(¬I(G∗)∩D(V ∗, G)). (3.40)

Conjugating (3.39) and (3.33) with (3.40), we get

lim
λ→∞

P(C (G∗)) · P(D (V ∗, G)) + lim
λ→∞

εCD =

lim
λ→∞

P (¬I (G∗)) · P(D (V ∗, G)) + lim
λ→∞

εID. (3.41)

Combining this equation with (3.40), we get

lim
λ→∞

P(¬I (G∗)) · P(D (V ∗, G)) + lim
λ→∞

εCD =

lim
λ→∞

P (¬I (G∗)) · P(D (V ∗, G)) + lim
λ→∞

εID. (3.42)

Combining (3.34) with (3.42), we get limλ→∞ εCD = 0, thus proving the proposition.
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Figure 3.6: Dependence between graph domination and connectivity/node isolation (al-
gorithm AGS) in comparison to the analytical results (assuming εI = 0, εD = 0, and
εID = 0). The relative frequency F¬iso∩dom of simulated graphs with no isolated nodes
in G∗ and simultaneously having V ∗ dominating G is higher than the corresponding
analytical expression, and is also slightly higher than F¬isoFdom. Moreover, the relative
frequency Fconn∩dom of graphs where G∗ is connected and simultaneously G is dominated by
V ∗ is slightly higher than FconnFdom.

In summary, the dependency between connectivity and domination becomes negligible as
the node density increases. The term γ e−e−α

is the asymptotic expression and lower bound
for the joint probability of both events. This joint probability converges from above to the
product of the individual probabilities. Fig. 3.6 shows analytical and simulation results that
evidence these facts.

3.4.1.7 Proof of Theorem 3 (Global Outreach in RGGs)

Combining Propositions 2, 3 and 5, we get

Ψ(A,λ, r,ω) =
[

γ e−e−α∗

+εI−εC
] [

e−e−α⋄

+εD
]

+ εCD

= γ e−e−α
+ εψ, (3.43)

where
εψ ! εD γ e−e−α∗

+ (εI − εC)
(

e−e−α⋄

+ εD
)

+ εCD. (3.44)

As limλ→∞ εI = limλ→∞ εC = limλ→∞ εD = limλ→∞ εCD = 0, we get limλ→∞ εψ = 0, thus
proving the theorem.
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Figure 3.7: Probability of global outreach (assuming εΨ = 0) in comparison to the relative
frequency of the experiments of the algorithm AGS yielding connected dominating sets.

In summary, γ e−e−α is the asymptotic expression of the global outreach probability
Ψ(A,λ, r,ω) for PF with forwarding probability ω on an RGG G(A, λ, r). Fig. 3.7 compares
analytical and simulation results. As ω increases, ΨGS converges to the analytical expression
of Ψ. The difference becomes negligible for high values of Ψ.

3.4.2 Simulation of Outreach Probability in RGGs

Figs. 3.8(a) and 3.8(b) show the probability/relative frequency of floodings yielding global
outreach in RGGs on G(1, λ, r) over ω. The analytical curve Ψ represents the asymptotic
expression (εψ = 0) of Ψ(A,λ, r,ω) derived in Theorem 3. The curve ΨGS is obtained from
the application of the algorithm AGS to RGGs on a torus. Comparing results for different ω-
values, there is a critical interval where Ψ changes from zero to one. The simulated value ΨGS

may lie below or above the asymptotic curve of Ψ, depending on the graph parameters.
Moreover, the difference between simulated and asymptotic values is relatively small and
becomes negligible as ω increases. This behavior is due to the interplay of the components
from which our expression for Ψ was derived.
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(a) Parameters: A = 1; λ = 3 000; r = 0.04, ω = 0.2...1.0.

(b) Parameters: A = 1; λ = 10 000; r = 0.03; ω = 0.1...0.6.

Figure 3.8: Global outreach probability (εΨ = 0) and relative frequency of experiments
yielding connected dominating sets when applying AGS to RGGs on a torus. Each simulated
data point (with its respective 95% confidence interval limits) is obtained from 10 000

experiments. Each experiment is run over a new RGG.
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3.4.3 Parameters for Global Outreach

The goal is to meet a target value Ψ by tuning ω. If A and λ are given, the parameters
ω and r can be chosen. Fig. 3.9(a) plots the (ω, r)-pairs that approximately achieve a
required Ψ for RGGs with A = 1 and λ = 1000. The curves show a clear trade-off in the
choice of the (ω, r)-pairs. Sparse RGGs (low values of r) require higher values of ω. For
well-connected RGGs (high values of r), small values of ω are sufficient to approximately
achieve the desired Ψ. Again, the plots stress the non-linear dependence between these two
parameters.

If A and r are given, the parameters ω and λ may be chosen. Fig. 3.9(b) plots the (ω, λ)-
pairs that approximately achieve a required outreach probability Ψ for RGGs with A = 1 and
r = 0.1. The curves show the existence of a clear trade-off in the choice of the (ω, λ)-pairs.
Sparse RGGs (low values of λ) require higher values of ω. For well-connected RGGs (high
values of λ), small values of ω are sufficient to approximately achieve the desired Ψ.

3.5 – Probabilistic Flooding in Poisson Random Geometric Graphs
with Border Effects

The global outreach probability of PF with a network-wide forwarding probability degrades
if we drop the assumption of a torus distance metric. This degradation in RGGs with
Euclidean distance metric is due to border effects.

The probability of a node receiving a message is directly affected by the following param-
eters: the forwarding probability ω, the number of its neighbors, and by the probability of
its neighbors having the message. The border nodes — located at distance smaller than the
transmission radius from the border of the square — are expected to have a smaller number
of neighbors when compared to central nodes. Therefore, the smaller neighborhood of the
border nodes implies that these nodes are less likely to receive a source message when using a
PF algorithm with constant ω. This fact has a significant impact in Ψ, since it is the product
of the probabilities of each node receiving a message.
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(a) Design options for λ = 10 000.

(b) Design options for r = 0.1.

Figure 3.9: Probabilistic flooding in Random geometric graphs on a torus. PF and RGG
parameter tuples for a global outreach probability Ψ = {0.50, 0.80, 0.95, 0.99}. Plots (a)
shows (ω, r)-tuples and plots (b) shows (ω,λ)-tuples that approximately achieve the
aforementioned global outreach probability.
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We now show how a modification to the PF algorithm, that we denote as Border-Aware
Probabilistic flooding (BAPF), minimizes the penalization incurred in Ψ due to these border
effects. The main idea is that border nodes should receive a message with the same probability
as non-border nodes receive it. To do so, border nodes use an increased forwarding probability
ω′ depending on their location:

ω′(u) !

{

1− φ(u)

√

(1− ω)π r2 if u is a border node,

ω otherwise;

where φ(u) ! minv∈N(u) a(v) and a(v) is the coverage area of the node v lying within the
square of area A.

Figs. 3.10(a) and 3.10(b) show the probability/relative frequency of floodings yielding
global outreach in RGGs on G(1, λ, r) over ω. We can observe that the frequencies of global
outreach of the BAPF algorithm over RGGs with Euclidean distance closely match the ones
of the PF algorithm with constant forwarding probability over RGGs with toroidal distance.

In conclusion, the impact of border effects on global outreach can be minimized by using
PF with increased forwarding probability for border nodes.

3.6 – Probabilistic Flooding with Unreliable Links

In this section we drop the assumption of an error-free broadcast medium, but consider
networks with erasure channels (Ch. 7, [CT06]). A message may fail to be received by each
neighbor of the transmitting node independently with probability ζ. To model this unreliable
transmission medium, it suffices to sample uniformly at random the edge set E of the graph
model G(V,E) of the network with probability (1− ζ). This yields a new graph Gζ(V,Eζ).

The PF algorithm is now analysed over this graph to take into account the effects of
unreliable transmissions. Theorem 1 still holds for PF over networks with erasure channels
after replacing G by Gζ . Therefore, (3.1) becomes:

Ψ(G, ζ,ω) = P
(

C(G∗
ζ) ∩D(V ∗, Gζ)

)

. (3.46)

We now specialize this expression for ERGs and RGGs.
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(a) Parameters: n = 1000; p = 0.15; ω = 0.1...0.6 .

(b) Parameters: A = 1; λ = 10 000; r = 0.03; ω = 0.2...0.8.

Figure 3.10: Global outreach probability (εΨ = 0). Relative frequency of experiments when
applying: (1) APF to RGGs on a torus; (2) APF to RGGs with Euclidean distance metric
(border effects); (3) BAPF to RGGs with euclidean distance metric, which minimizes the
border effects. Each simulated data point (with its respective 95% confidence interval limits)
is obtained from 5 000 experiments. Each experiment is run over a new network.
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Erdős Rényi Graphs with Unreliable Links The outreach probability in ERGs with
erasure channels is given by Theorem 2 if we replace p by p(1− ζ) in all expressions.

Proof. The proof is similar to the one of Theorem 2 after replacing G by Gζ .

The graph Gζ is also an ERG G(n, p (1 − ζ)). Hence, since Gζ has an edge probability
p (1 − ζ), it is sufficient to replace p by p (1 − ζ) in each expression within the proof of
Theorem 2.

Fig. 3.11(a) plots Ψ over ω for distinct values of ζ, along with results from simulations of
PF. The simulation results match perfectly the analytical expression of Ψ.

Random Geometric Graphs with Unreliable Links The outreach probability in RGGs
with erasure channels is given by Theorem 3 if we redefine λ∗ as (λω+ 1

A) (1 − ζ).

Proof. The proof is similar to the one of Theorem 3 after replacing G by Gζ . Therefore, we
give a brief sketch of the proof, highlighting the main differences.

The edge set Eζ of the RGG Gζ is built by sampling E with probability (1 − ζ). Hence,
the probability that a node v∗ ∈ V ∗ is isolated (Eq. (3.13)) changes to:

P (iso (v∗)) = e−λ
∗ (1−ζ) π r2 , (3.47)

and the probability that a node v⋄ ∈ V ⋄ is dominated by V ∗ (Eq. (3.26)) becomes:

P (dom (v⋄)) = 1− e−λ
∗ (1−ζ) π r2 . (3.48)

With these new node isolation and node domination probabilities we get the probabilities
for the connectivity and domination events. Moreover, since Gζ is an RGG, the dependency
between these events is asymptotically negligible (Propositions 4 and 5). Therefore, it suffices
to follow the steps of the proof of Theorem 3 to prove the above result.

Fig. 3.11(b) plots Ψ over ω for distinct values of ζ, along with results from simulations of
PF. The difference between simulated and asymptotic values is relatively small and becomes
negligible as ω increases.
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(a) Parameters: n = 1000; p = 0.15; ζ ∈ {0.0, 0.05, 0.1, 0.2}; ω = 0.2...1.0.

(b) Parameters: A = 1; λ = 1000; r = 0.1; ζ ∈ {0.0, 0.05, 0.1, 0.2}; ω =

0.1...0.5.

Figure 3.11: Global outreach probability (εΨ = 0) and relative frequency of experiments when
applying APF to ERGs and RGGs on a torus with an unreliable transmission medium. Each
simulated data point (with its respective 95% confidence interval limits) is obtained from
5 000 experiments. Each experiment is run over a new network.
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3.7 – Discussion and Related Work

The problem of PF outreach has mainly been addressed by simulations [HHL06, SCS03,
KWB01, YOKM+06, YOKP05]. Some of these papers suggest a connection between PF
and percolation theory, which is, however, not deeply explored, as most conclusions do not
generalize beyond the particular setup [SCS03, HHL06, KWB01].

This chapter addresses the following sub-problems: (a) characterization of the sets of
forwarding and non-forwarding nodes; (b) connectivity of forwarding nodes; (c) domination
of non-forwarding nodes by forwarding nodes; and (d) independence between connectivity
and domination. We applied this approach to two random graph models.

For ERGs, we derive an exact expression for the global outreach probability. The analysis
of RGGs brings challenges due to the local correlation among edges. Our approach to the
connectivity sub-problem of the set of forwarding nodes is inspired by [FM08, Pen97, Bet04].
To cope with the dependencies among (a) node isolation/connectivity events, (b) node
domination events, and (c) the dependency between isolation/connectivity and domination
events, we derive inequalities involving the probabilities of the mentioned events by resorting
to the FKG inequality [FKG71]. In the asymptotic case, these inequalities become equalities.

Hence, we derive three lemmas regarding the asymptotic distribution of the total number
of isolated nodes, non-dominated nodes, and isolated plus non-dominated nodes. In the proof
of these lemmas, we follow a strategy based on the application of the Poisson approximation
by the Chen-Stein method [Che75, AGG89, AGG90]. Reference [YWLF06] addresses the
problem of the number of isolated nodes in wireless ad-hoc networks with Bernoulli nodes.
Its method represents an alternative approach to derive a proof of the lemma concerning the
asymptotic distribution of the total number of isolated plus non-dominated nodes (Lemma 3).
Although that paper considers boundary effects, the derived distribution is still the same
asymptotically as the one for the toroidal model. Nevertheless, for the proof of this lemma
we opted to use the same approach as for Lemmas 1 and 2. Contrary to ERGs, where
the global outreach probability is known exactly, in RGGs we only derive an approximate
expression whose error becomes negligible asymptotically.
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3.8 – Concluding Remarks

We analyzed how to set a system-wide forwarding probability ω of probabilistic flooding,
such that all network nodes ultimately receive a message with high probability. For this
purpose, we proposed a graph sampling method, which can be applied in arbitrary networks.
This method yields an induced subgraph, whose node set is obtained by sampling the total
node set uniformly at random with probability ω. We proved that the events “all nodes
receive a flooded message” and “the induced subgraph is connected and its nodes dominate
the network graph” have the same probability, and thus, the analysis of global outreach in
probabilistic flooding can be performed by analyzing the properties of the induced subgraph.

In networks modeled as Erdős Rényi graphs, we derived the exact expression for the prob-
ability of global outreach. In random geometric graphs —as often used in modeling wireless
ad-hoc networks —the local correlation among edges results in stochastic dependencies, but,
in our model, these dependencies become asymptotically negligible with increasing node
density. We derived an asymptotic expression for the global outreach probability, which is
also a good approximation for high node density.



“Eggs cannot be unscrambled.”

American Proverb





4
Network Coded Information

Dissemination

I
n the previous chapter we analyzed the reachability of Probabilistic Flooding with a
network-wide common forwarding probability. We derived analytical expressions for the

global outreach probability in networks with a broadcast medium, both with reliable and
unreliable links.

In this chapter we devote our attention to the study of the trade-offs between distinct
networking paradigms — replication based forwarding and network coded forwarding — in
the dissemination of information.

When nodes communicate over the wireless medium, the broadcast property of the channel
enables us to optimize the flooding process with respect to the number of transmissions,
with obvious repercussions on the overall energy expenditure and bandwidth consumption.
Typically, flooding resorts to replication based forwarding where nodes replicate and forward
the information they receive.

Since the basic problem of finding the minimum energy transmission scheme for broadcast-
ing a set of messages in a given network is known to be NP-complete, flooding optimization
often relies on approximation algorithms. In the class of probabilistic flooding algorithms,
messages are forwarded according to a set of predefined probabilistic rules, whereas in the
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class of deterministic algorithms, the forwarding decision is always the same for each set of
input parameters.

Multipoint relay (MPR) flooding is a deterministic algorithm, which approximates the
connected dominating set within a two-hop neighborhood of each node, thus forming a
backbone of forwarding nodes and limiting the number of transmissions. This algorithm
plays a key role in the Optimized Link State Routing (OLSR) protocol for mobile ad-hoc
networks.

The spectra of dissemination algorithms was recently enlarged by the advent of the
Network Coding (NC) paradigm ([ACLY00, FLBW06]), in which intermediate nodes are
allowed to mix information flows through algebraic operations. Research suggests that NC
based flooding algorithms yields further reductions in the number of transmissions required for
flooding a message in a network. More specifically, Reference [FWLB06] quantifies these gains
for ring and square lattice topologies, and presents a heuristic algorithm which outperforms
probabilistic flooding 1 for a class of random geometric graphs. Related work on the benefits
of network coding includes a proof that the minimum energy single-source multicast problem
with network coding becomes solvable in polynomial-time [LMHK04] and in a distributed
manner [LRK+05]. The problem of multiple multicasts, which is closer to flooding, remains
however an open problem [LRM+06]. Early results on improvements in terms of throughput,
security and energy efficiency are surveyed in [FLBW06].

Seeking to understand how information dissemination techniques compete over network
topologies with broadcast medium, we compare replication and network coded based flooding
techniques with respect to the number of transmissions, delivery ratio, and the end-to-end
delay. More specifically, we base our analysis on Erdős Rényi Random Graphs (ERGs), Bino-
mial Random Geometric Graphs (B-RGGs) (or simply Random Geometric Graphs (RGGs)
within this chapter), and Small-World Networks (SWNs) (see Section 2.6); and shed some
light on the impact of the network topology on the behavior of two main representatives: the
NC flooding algorithm of [FWLB06] and the MPR flooding algorithm of [CJA+03, AQL02].

We present the following main contributions:

• An analytical characterization of the transmission cost of network coded flooding;

• A set of simulation results for the number of transmissions, delivery ratio, and delay
trade-offs between network coding and MPR flooding;

• A critical discussion of the interplay between network topology and replication and
network coded based flooding algorithms.

1Reference [FWLB06] denotes probabilistic flooding as probabilistic routing.
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This chapter is organized as follows. Section 4.1 presents the algorithms under study.
Section 4.2 gives an asymptotic analysis of the number of transmissions required by NC
flooding algorithm. Section 4.3 presents a simulation study that compares delay, delivery
ratio, and number of transmissions of both NC and MPR flooding algorithms. Moreover,
the impact of the topology in the performance of both algorithms is also inferred. Finally,
Section 4.4 summarizes the main results presenting some concluding remarks.

Main results of this chapter were published in [CBB08a, CBB08b] in collaboration with
Christian Bettstetter and João Barros. Sections 4.1-4.4 were adapted from [CBB08a] and
[CBB08b], which were written with the corresponding co-authors.

4.1 – Flooding Algorithms

4.1.1 Multipoint Relaying

In its simplest form, pure flooding means that all nodes retransmit the received messages.
In a network with n nodes, the number of retransmissions of a source message using pure
flooding is n− 1.

Multipoint relaying ([AQL02, JLMV01]) is deemed to reduce the number of duplicate
retransmissions while forwarding a broadcast message. This technique reduces the set of
nodes retransmitting the message in such a away that a message forwarded by a node is
guaranteed to reach (assuming lossless transmissions) all the two-hop neighbors of that node.
For this purpose, each node selects a subset of its neighbors (“multipoint relays”) that ensure
connectivity to every two-hop neighbor. Although finding the optimal MPR set is an NP-
complete problem, efficient heuristics are available for its calculation [Vie98].

In this study we resort to the heuristic described in Algorithm MPRSelection for the MPR
set computation, and Algorithm MPRFlood for MPR-based flooding. Asymptotic analysis of
these two MPR algorithms can be found in [JLMV01].

4.1.2 Random Linear Network Coding based Flooding

Random linear network coding can be viewed as a distributed method for combining
different data flows ([HMK+06], [CWJ03]). The basic principle is that each node in the
network selects independently and randomly a set of coefficients and uses them to form
linear combinations of the messages it receives. These linear combinations are then sent over
the outgoing links. The global encoding vector, i.e. the matrix of coefficients corresponding
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Algorithm 4 MPRSelection [AQL02]
Let N(u) denote the set of one-hop neighbors of u, and N2(u) denote the set of two-hop neighbors

of u.

1. Start with an empty multipoint relay set MPR(u).

2. Select those one-hop neighbor nodes in N(u) as multipoint relays which are the only neighbor

of some node in N2(u), and add these one-hop neighbor nodes to the multipoint relay set

MPR(u).

3. While there still exist some nodes in N2(u) which are not covered by the multipoint relay set

MPR(u):

(a) For each node in N(u) not in MPR(u) compute the number of nodes that it covers among

the uncovered nodes in the set N2(u).

(b) Add that node of N(u) in MPR(u) for which this number is maximum.

Algorithm 5 MPRFlood [JLMV01]
1. A source node u broadcasts its source message mu.

2. Each node v that receives mu re-broadcasts it only if:

(a) v is a multipoint relay of the previous hop of the message, and

(b) the message was not previously forwarded by v.

to the operations performed on the messages, is sent along in the packet header to ensure that
the end receivers are capable of decoding the original data. Specifically, it was shown that if
the coefficients are chosen at random from a large enough finite field, Gaussian elimination
succeeds with high probability [HMK+06].

The NC algorithm used in our study ([FWLB06]). combines random linear network coding
with a probabilistic forwarding algorithm. The proposed algorithm (Algorithm NCFWB),
resorts to a heuristic that assigns to each node v a probabilistic forwarding factor f(v). This
forwarding factor is set to be inversely proportional to the degree d(v), i.e., f(v) = γ

d(v) ,
where γ ≥ 0 is a scaling factor whose value depends on the topology [FWLB06].

A node that receives a linearly independent combination of messages will form and broad-
cast new random linear combinations of the current and previously received messages de-
pending on this forwarding factor.
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Algorithm 6 NCFWB [FWLB06]

1. Associate with each node v a forwarding factor f(v).

2. Node v transmits its source message max{1, ⌊f(v)⌋} times, and an additional time with

probability p = f(v)−max{1, ⌊f(v)⌋} if p > 0.

3. When a node v receives linearly independent messages, it broadcasts a linear combination over

the span of the received coding vectors ⌊f(v)⌋ times, and an additional time with probability

p = f(v)− ⌊f(v)⌋.

4.2 – Asymptotic Analysis of Network Coded Flooding

4.2.1 Problem Statement

Let G = (V,E) be a connected graph and furthermore let M = {mu : u ∈ V } be a set of
messages. Assume that every node u ∈ V acts as a source node intending to deliver a source
message mu to every other node. In the NC flooding process, one transmission of a node
refers to broadcasting a message or a linear combination of messages to all neighbors of the
node.

We are interested in the number TNC of required transmissions per source message, such
that all nodes can decode all messages mu ∈ M . Our goal is to characterize the expected
value E(TNC) in ERGs, RGGs, and SWNs.

4.2.2 General Bounds

Let D be a random variable representing the degree of an arbitrary node in G. Fur-
thermore, let ED(g(D)) denote the expected value of some function g(D) of the random
variable D, and let ξD = ED(D−1) be the first negative moment of D.

Theorem 4. For a transmission scheme defined by Algorithm NCFWB, with γ chosen to

ensure that all nodes can decode all messages, the expected value ED(TNC) is bounded as

follows:

(n− 1) γ ξD + 1 ≤ ED(TNC) ≤ (n− 1) γ ξD +max(1, γ). (4.1)

For γ ≤ 1 the bounds are tight.

Proof. Let St be the total number of transmissions performed by all source nodes for the
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transmission of their source messages, and It be the total number of transmissions performed
by intermediate nodes due to reception of linearly independent combination of messages. As
there are n source messages, the expected number of transmissions per source message is

ED(TNC) =
ED(St) + ED(It)

n
. (4.2)

To characterize St we define S as the random variable representing the number of trans-
missions performed by a source node to broadcast its source message. Since G has n sources,

ED(S) =
1

n
ED(St). (4.3)

According to step 2 of Algorithm NCFWB:

S =

{

1, for D ≥ γ (4.4a)
⌊ γ

D

⌋

+ S′, for D < γ (4.4b)

where S′ is a Bernoulli random variable representing the outcome of a potential additional
transmission, with P(S′ = 1) = B = γ

D −
⌊

γ
D

⌋

. The conditioned expected value of S′ is

ED(S
′|D < γ) = ED(B|D < γ)

= ED

( γ

D
−
⌊ γ

D

⌋
∣

∣

∣
D < γ

)

. (4.5)

The conditioned expected value of S given D < γ is

ED(S|D< γ) =

=ED

(⌊ γ

D

⌋ ∣

∣

∣
D < γ

)

+ ED

(

S′|D < γ
)

=ED

(⌊ γ

D

⌋ ∣

∣

∣
D < γ

)

+ED

( γ

D

∣

∣

∣
D < γ

)

− ED

(⌊ γ

D

⌋ ∣

∣

∣
D < γ

)

=ED

( γ

D

∣

∣

∣
D < γ

)

≤ γ, (4.6)

because D ≥ 1.
Conjugating (4.6) with the fact that S ≥ 1, we get:

1 ≤ ED(S) ≤ max(1, γ). (4.7)

With (4.3), we obtain
n ≤ ED(St) ≤ n max(1, γ). (4.8)

To characterize It we define I as the random variable representing the number of trans-
missions performed by an intermediate node due to the reception of a linearly independent
combination of messages. According to step 3 of Algorithm NCFWB:

I =
⌊ γ

D

⌋

+ I ′, (4.9)
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where I ′ is a Bernoulli random variable representing the outcome of a potential additional
transmission, with P(I ′ = 1) = B = γ

D −
⌊

γ
D

⌋

. The expected value of I ′ is:

ED(I
′) = ED(B) = ED

( γ

D

)

− ED

(⌊ γ

D

⌋)

. (4.10)

The expected value of I is:

ED(I) = ED

(⌊ γ

D

⌋)

+ ED(I
′)

= ED

( γ

D

)

= γ ED

(

1

D

)

= γ ξD. (4.11)

Since after the completion of the transmission process of all n messages, the rank increase of
the decoding matrix of each node is n− 1 and since G has n nodes, we have

ED(It) = n (n− 1) ED(I)

= n (n− 1) γ ξD. (4.12)

Finally, from (4.2), (4.8) and (4.12), we get (4.1).

4.2.3 Bounds for Erdős Rényi Random Graphs

Corollary 1. Let G = (V, p) be a connected ERG, ϵ1 = O
(

1
(n−1) p

)

, and ϵ2 = (1− p)n−1. For

a transmission scheme defined by Algorithm NCFWB, with γ chosen to ensure that all nodes

can decode all messages, we have

γ

p
+ 1 ≤ ED(TNC) ≤

γ

p

1 + ϵ1
1− ϵ2

+max(1, γ). (4.13)

Proof. ERGs have a Binomial degree distribution B(n − 1, p). As we consider connected
graphs, however, we must use a conditioned degree distribution. We know that each node
has at least one neighbor, i.e., d(u) > 0 ∀u ∈ V . For this reason, we assume a positive
Binomial distribution, which can be obtained by normalizing the Binomial distribution with
the factor 1− P(D = 0). This yields

P(D = d) =
1

1− qn−1

(

n− 1

d

)

pd qn−1−d, (4.14)

with q = 1− p and d ∈ Z+.
The first negative moment of the degree is thus:

ξD =ED

(

1

D

)

=
n−1
∑

d=1

1

d
P(D = d)

=
1

1− qn−1

n−1
∑

d=1

1

d

(

n− 1

d

)

pd qn−1−d. (4.15)
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This function can be developed into the following series [Rem04]:

ξD =
1

1− qn−1

r−1
∑

i=0

i! qi

pi+1 (n− 1)[i+1]
+ o

(

1

(n − 1)[r]

)

,

for any r ∈ Z+, with s[j] = s!
(s−j)! . Moreover, it can be rewritten as:

ξD =
1

1− qn−1

(

1

(n− 1) p
+O

(

1

((n− 1) p)2

))

. (4.16)

Hence, we can compute

(n− 1) ξD =

=
n− 1

1− qn−1

(

1

(n− 1) p
+O

(

1

((n− 1) p)2

))

=
1

p (1− qn−1)

(

1 +O

(

1

(n− 1) p

))

=
1

p

1 + ϵ1
1− ϵ2

(4.17)

≥ 1

p
(4.18)

with ϵ1 = O
(

1
(n−1) p

)

and ϵ2 = qn−1 = (1− p)n−1.
Replacing (4.17) and (4.18) in (4.1), we get (4.13).

Fig. 4.1 plots the analytical and simulation results in ERGs, showing that the simulated
average value of TNC lies within the analytical bounds of ED(TNC) assuming ϵ1 = ϵ2 = 0.
Section 4.3.1 explains the used simulation method.

4.2.4 Bounds for Binomial Random Geometric Graphs

Corollary 2. Let G = (V, r) be a connected RGG in a square with toroidal distance metric

and area A ≫ π r2, and let β = π r2

A , and ϵ1 = O
(

1
(n−1) β

)

, and ϵ2 = (1 − β)n−1 For a

transmission scheme defined by Algorithm NCFWB, with γ chosen to ensure that all nodes

can decode all messages,

γ

β
+ 1 ≤ ED(TNC) ≤

γ

β

1 + ϵ1
1− ϵ2

+max(1, γ). (4.19)

Proof. RGGs have a Binomial degree distribution B(n− 1, πr2

A ). Similar to Section 4.2.3, we
derive:

(n− 1) ξD =
1

β

1 + ϵ1
1− ϵ2

(4.20)

≥ 1

β
(4.21)
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Figure 4.1: Number of Transmissions per Message using Network Coded Flooding in Erdős
Rényi Random Graphs with 50 nodes

with β = π r2

A , and ϵ1 = O
(

1
(n−1) β

)

, and ϵ2 = (1− β)n−1.

Replacing (4.20) and (4.21) in (4.1), the above result follows.

Fig. 4.2 plots the analytical and simulation results in RGGs, showing that the simulated
average value of TNC lies within the analytical bounds of ED(TNC) assuming ϵ1 = ϵ2 = 0.

Corollaries 1 and 2 show that in ERGs and RGGs, the expected number of transmissions
required to flood a message is asymptotically independent of the number of nodes n. It
depends on other topological parameters and on the scaling factor γ of Algorithm NCFWB

which, according to the authors of [FWLB06], is independent of n.

4.2.5 Bounds for Small-World Networks

Corollary 3. Let G = (V, k, p) be a connected SWN, and let D be a random variable

representing the degree of an arbitrary node in G. For a transmission scheme defined by

the NC algorithm (Algorithm NCFWB) with γ chosen to ensure that all nodes can decode all

messages, we have

(n− 1)
γ

k
+ 1 ≤ ED(TNC) ≤ 2 (n− 1)

γ

k
+max(1, γ). (4.22)
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Figure 4.2: Number of Transmissions per Message using Network Coded Flooding in Random
Geometric Graphs (toroidal space) with 50 nodes

Proof. The specialization of ED(TNC) for SWNs is achieved by calculating

ξD =
n−1
∑

d=1

1

d
P(D = d). (4.23)

The probability mass function of the degree in SWN for large n is ([BW00]):

P(D = d) ≈
min (d− k

2 ,
k
2 )

∑

i=0

(k
2

i

)

(1− p)i p
k
2−i

·
(k2 p)d−

k
2−i

(d− k
2 − i)!

e−p k
2 , d ≥ k

2
. (4.24)

The degree distribution P(D) presents two useful properties to derive an upper and lower
bound for ξD. One is the expected degree ED(D) = k. The other is the minimum degree
min(D) ≥ k/2, which arises from the lower cutoff of P(D) = d, at degree d = k/2.
Conjugating these results with the following inequality that holds for any discrete random
variable D > 0 (see [Man69] and references therein):

min(D) ≤ 1

ED(D−1)
≤ ED(D), (4.25)

we get:
1

k
≤ ED(D

−1) ≤ 2

k
. (4.26)

Replacing (4.26) in (4.1) we prove the above result.
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Corollary 3 suggests that using the NC algorithm over SWNs, ED(TNC) is independent
of the rewiring probability p. Moreover, it shows that ED(TNC) lies between two linear
functions of n that differ by a factor of 2. Fig. 4.3(a) and Fig. 4.3(b) plot the analytical and
simulation results of TNC (γ = 2.5) in SWN graphs. They show that the average value of
TNC lies within the analytical bounds of ED(TNC), and in particular that it is very close to
the lower bound.
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4.3 – Simulation based Analysis

In this section we present a simulation study comparing NC and MPR flooding on ERGs,
RGGs, and in SWN topologies.

4.3.1 Description of the Simulator and Simulation Setup

To conduct numeric analysis we developed a simulator written in C++. We implemented
the RLNC based flooding, the MPR, and probabilistic flooding algorithms. The simulator
enables the performance evaluation of these algorithms in networks modelled by ERGs, RGGs
and SWNs. Moreover, it supports the analysis of topological properties of these graph models.

The MAC layer works in an idealized manner with perfect collision avoidance. The
simulation time is divided in discrete rounds (time units), and each transmission/reception
lasts one simulation round. In each round, the order of the node transmissions is randomly
chosen, and each idle node is scheduled to transmit if and only if all its neighbors are idle
(not in a receiving or transmitting state).

In our simulation setup each node has a message to be sent to all other network nodes.
Therefore, each node acts simultaneously as a source, a relay, and as a sink.

For the implementation of random linear NC, we followed the framework described in
[CWJ03] with coding operations over the F28 finite field (see Section 2.7). This field size
is sufficient for practical networking scenarios ([CWJ03, FWLB06]) and has the advantage
of allowing each field symbol to be stored in one byte. Packets are composed by a packet
header and a data payload. The packet header contains a vector with the coding coefficients,
while the data payload is meant for the coded message. A packet to transmit is generated
by randomly combining the previously received packets through algebraic operations over
F28 . Decoding uses Gaussian-Jordan elimination allowing progressive decoding while coded
packets are being received.

The complexity of decoding via Gaussian-Jordan elimination (O(h3), where h is the
number of messages) is a limiting factor to the number of messages that can be combined
(i.e. the generation size).
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In the simulation of NC flooding all messages are allowed to be combined together if the
opportunity arises. Thus the generation size is equal to the number of nodes n. Therefore
the aforementioned decoding complexity constrains the number of nodes that can be used in
the simulations.

4.3.2 Topology and Performance Metrics

Aiming at a reasonable comparison of NC and MPR, we consider the following metrics:

• Number of transmissions per source message TNC required by the NC algorithm such
that all nodes can decode all sent messages;

• Number of transmissions per source message TMPR required by the MPR algorithm
such that all nodes receive all sent messages;

• Delay: rounds elapsed between the transmission of a message by a source node and the
reception (with MPR), or successful decoding (with NC) at a node;

• Delivery ratio (DR): ratio between number of messages successively received or decoded
at a node and the number of sent messages.

For SWNs we further evaluate:

• Clustering coefficient C: defined in Section 2.1;

• Average distance L: defined in Section 2.1;

• Normalized Rank (NR): ratio between the rank of the decoding matrix of a node and
the total number of source messages, averaged over all nodes;

• MPR set size: the cardinality of the MPR set of each node averaged over all nodes.

Each data point (mean, 10% and 90% quantile) in the simulation results is obtained from
100 repetitions of a simulation using different seeds for the random number generator.

4.3.3 Analysis of Erdős Rényi Random Graphs

In this set of simulations we compare MPR and NC flooding in ERGs with the edge
probability p ∈ [0.2, 1] and n = 50 nodes. For a fair comparison, Algorithm NCFWB is
simulated with scaling factors γ ∈ {0.5, 1.0, 2.0, 4.0}, chosen via simulation on an iterative
trial-and-error approach to guarantee the existence of (γ, p) tuples that achieve 100% DR.
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Fig. 4.4(a) shows that MPR flooding always guarantees 100% DR. NC requires sufficiently
large γ for the same DR. Note that γ decreases with increasing p, and for p = 1 (fully
connected graph) γ should be 0, since one transmission from a source reaches all other nodes
(see Algorithm NCFWB).

The “delay gain” obtained by NC is substantial for small p and sufficiently large γ (Fig.
4.4(b)). As p → 1, the NC delay converges to the delay value of MPR (with γ = 0, not
shown in the graph).

In Fig. 4.4(c), we observe that NC flooding (with sufficiently large γ and small p) outper-
forms MPR flooding in terms of number of transmissions. The fraction TNC/TMPR ranges
from 0.6 (γ = 4) to 1 (γ = 0, not shown in the graph) when p increases from 0.2 to 1. This
is an expected result, since with p converging to 1 the diameter of the graph reduces to 1

and consequently both NC and MPR schemes are able to broadcast a message with only one
transmission.

4.3.4 Analysis of Binomial Random Geometric Graphs

In this set of simulations, we compare both flooding algorithms in RGGs in a square area
of size A, n = 50 nodes and the radio range r. We set r√

A
∈ [0.4, 1], to ensure with high

probability that all graph realizations are connected [Bet02]. The parametrization of the
simulation results as a function of r√

A
enables the generalization of the results to different

parameters.

Fig. 4.5(a) presents the DR with different values of the scaling factor γ. Fig. 4.5(b)
illustrates that NC, with sufficiently large γ (which can be inferred from Fig. 4.5(a)), presents
a substantial “delay gain” (half the delay of MPR for r√

A
= 0.4). This advantage vanishes

as the network diameter converges to 1 (r/
√
A → 1). From Fig. 4.5(c) we conclude that

NC (Algorithm NCFWB, with sufficiently large γ for 100% DR) presents no gain in terms
of number of transmissions when compared to MPR. Since RGGs are often used to model
wireless ad-hoc networks, this is a discouraging result for Algorithm NCFWB [FWLB06],
which cannot however be generalized to other NC algorithms.
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Figure 4.4: Analysis in Erdős Rényi Random Graphs
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Figure 4.5: Analysis in Random Geometric Graphs (no torus)
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We repeat the same simulations for an RGG with the nodes placed on a torus to avoid edge
effects [Bet02]. To ensure connected graph realizations and a broad diameter range we set
r√
A
∈ [0.25, 1], recalling that it differs from the above non-toroidal case. Fig. 4.6(a) presents

the DR for this case. Fig. 4.6(b) shows that NC with sufficiently large γ and small r√
A

still
presents a substantial “delay gain” (1/3 the delay of MPR for r√

A
= 0.25). From Fig. 4.6(c)

we observe that in an RGG with torus geometry, with r ≪
√
A, NC again outperforms

MPR in terms of the number of transmissions. The fraction TNC/TMPR ranges from 0.7

(γ = 3) to 1 (for γ = 0, not shown in the figure), as the diameter converges to 1. This
behavior suggests that, as the diameter of the network falls, there is little or no benefit in
using network coding. The distinct behaviors of TNC with and without border effects suggest
that Algorithm NCFWB is affected negatively by the existence of border nodes in RGGs with
average node degree smaller than the average degree of nodes near the center of the square.

4.3.5 Analysis of Small-World Networks

We compare MPR and NC flooding in SWNs with n = 50 nodes, mean degree k = 8, and
edge rewiring probability p ∈ [0, 1].

The NC algorithm (Algorithm NCFWB) is simulated with scaling factors γ ∈ {0.5, 1.5, 2.5},
chosen via simulation on an iterative trial-and-error approach to guarantee the existence of
(γ, p) tuples that achieve 100% DR.

Fig. 4.7(a) presents the normalized values of clustering coefficient C(p)/C(0) and the
average path length L(p)/L(0), with C(0) ≃ 0.64 and L(0) ≃ 3.57. These curves follow the
typical behavior of the topological properties of SWNs ([Wat99, New03]).

Fig. 4.7(b) presents the average MPR set size. This metric increases sharply for small p,
stabilizing thereafter. Moreover, comparing Fig. 4.7(b) with Fig. 4.7(a) we find a correlation
between the mean MPR set size and the reciprocal of C. This correlation can be interpreted
as follows: since Cv is roughly equivalent to the probability of two neighbors of v being
also neighbors of each other, a higher Cv implies a more ’cliquish’ neighborhood. Therefore,
the number of 1-hop neighbors necessary to reach all the 2-hop neighbors of v (MPR set) is
expected to increase when Cv decreases. This is the observed case in our simulations when p

converges from 0 to 1.
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Figure 4.6: Analysis in Random Geometric Graphs (torus)
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For successful decoding with random linear NC, the number of linearly independent
combinations of coded messages received by a node needs to be equal to the number of
source messages. Otherwise, a node may still decode a fraction of the source messages. This
is illustrated in Fig. 4.7(c) and Fig. 4.8(a) which plot the NR and the DR respectively. For
γ = 0.5 the NR is around 0.35 while the DR only reaches 0.2 (20%). For γ = 1.5 the NR is
almost 1 and the DR is slightly smaller. With γ = 2.5 the NR is 1, yielding a DR of 100%.
We also notice that for the same γ (e.g. γ = 0.5) both the NR and the DR keep fairly
constant with p. This suggests that in SWNs the rewiring probability does not significantly
affect the performance of the NC algorithm. This behavior can be interpreted as follows.
Given that our NC algorithm is probabilistic, we might expect that the reduction of the
diameter would contribute to an increase in the NR. On the other hand, since a larger C

implies a higher number of redundant paths between nodes, we would expect the decrease of
C to cause a decrease in NR. We argue that the combined reduction of L and C cancel one
another yielding an almost constant NR (and DR) regardless of p.

Fig. 4.8(b) presents the number of transmissions per message for NC, MPR, and pure
flooding. We observe that TMPR degrades significantly with p, converging to the number
of transmissions per message attained with pure flooding. As expected, TMPR increases
with the MPR set size (Fig. 4.7(b)). In contrast, TNC is almost constant with the rewiring
probability p, presenting a fairly low transmission cost when compared to pure flooding or
MPR flooding. The fraction TNC/TMPR ranges from 0.77 (p = 0, with γ = 1.5) to 0.4 (p = 1,
with γ = 2.5).

The delay behavior (Fig. 4.8(c)) presents the same trend as the number of transmissions.
For sufficiently large γ, the delay ratio between NC and MPR ranges from around 0.5 (p = 0,
with γ = 1.5) to 0.3 (p = 1, with γ = 2.5).
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4.4 – Concluding Remarks

Aiming at understanding how distinct forwarding paradigms influence the dissemination
of information over communication networks, we selected one representative of each paradigm
for our study: the network coding algorithm of [FWLB06] and replication based flooding MPR
algorithm of [AQL02]. We evaluated (a) the number of transmissions per source message and
(b) the incurred delay, and (c) the delivery ratio, under three relevant classes of random
graph models.

Somewhat unintuitively, the analytical part of our work shows that over ERGs and RGGs,
the number of transmissions required to flood a message with the NC flooding algorithm
under consideration is asymptotically independent of the number of nodes. This observation
becomes less surprising in retrospect, if we consider that in these classes of graphs the average
node degree increases linearly with the number of nodes. Therefore, a higher number of nodes
corresponds to a higher number of neighbors that can be reached by a single broadcast
transmission. Since random linear network coding mixes multiple messages in a single
transmission, it is very effective at exploiting the benefits of increased node density. With
multipoint relays, however, the number of transmissions per message is not independent of
the number of nodes.

In contrast, for SWNs, the analysis shows that the number of transmissions per message
of the network coding algorithm scales linearly with the number of nodes. The reason for
these distinct results can be understood by the fact that in SWNs with rewiring the average
node degree remains fixed irrespective of the number of nodes.

Naturally, the number of transmissions depends on other features of the network topology,
as evidenced both by Corollaries 1, 2, and 3, and by our simulation results. Consequently,
the question as to which scheme should be preferred requires a nuanced answer.

In ERGs, NC flooding outperforms MPR flooding in terms of number of transmissions per
source message; the extent of this gain is however deeply influenced by the diameter of the
network. Reducing the diameter decreases both the number of transmissions and the delay
gains. A unit diameter implies no gain at all.

In contrast, in general RGGs (non-toroidal distance metric) the considered NC flooding
algorithm does not bring any benefits in terms of number of transmissions per message,
when compared to MPR flooding. This appears to be in contradiction with the observation
in [FWLB06]. However, it is worth noting that [FWLB06] focuses on RGGs on a torus and
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compares NC with probabilistic flooding. Our results thus indicate that the existence of
border effects in general RGG topologies has a negative effect on the performance of the
considered NC flooding technique.

In SWNs, the analytical expression for the number of transmissions per message of network
coding shows no dependency on the rewiring probability of the SWN model. This result
is corroborated by the simulation results. In fact, the simulations highlight the stability
of the NC performance metrics (delivery ratio, number of transmissions per message and
delay) within all the rewiring range of the SWN model (i.e. with distinct clustering coef-
ficients and average geodesic distance values). NC flooding demonstrates to be relatively
immune to changes in local connectivity parameters (i.e. presence or absence of strong
local connectivity), suggesting that the strengths of the studied network coding algorithm
in SWN topologies stems from its network-wide coding/decoding operation paradigm. In
turn, the MPR flooding algorithm does not produce significant overhead reduction in terms
of number of transmissions per source message, in poorly clustered SWN topologies. Its
Achilles’ heel resides on the scoped and limiting view of the topological properties centered
in the neighborhood of each node.





“The unavoidable price of reliability is simplicity.”

C.A.R. Hoare





5
Applications in Dynamic Sensor

Networks

I
n the previous chapters we analyzed main representatives of replication and network coded
based dissemination algorithms. We studied their reachability and transmission cost

by means of mathematical analysis and numerical experiments. Moreover we studied the
interplay between the network topology and the performance of dissemination algorithms.
To do so, we modelled networks as random graphs and we used tools from graph theory and
stochastic geometry.

In this chapter we apply graph theoretical tools to model a sensor-actuator networked
system to support building evacuation in disaster scenarios such as fires or earthquakes.
Hazard information, continuously gathered by sensor nodes, is disseminated throughout the
network. This information is used to infer, in a distributed way, secure exit paths to be
followed by evacuees.

Long-established static building evacuation planning comprehends an a-priori identifi-
cation of default exit paths. Static signaling panels, deployed at key points all over the
building, indicate the default exit direction to follow. This approach presents, however,
a major drawback. Due to the dynamics of the hazard affecting the building (e.g. the
propagation of fire or smoke, damages in the structure of the building blocking pathways),

81
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the predefined exit paths may be or may become unsafe.

Henceforth, we design a sensor-actuator networked system for emergency response in
indoor scenarios that tackles the dynamics of hazard propagation over the building. The
purpose of the system is to guide people to the exits of the building throughout secure paths.
These paths are computed autonomously by each node, having as input sensor measurements
flooded by all network nodes.

The main contributions of this work are:

• Modeling of a sensor-actuator network for the support of building evacuation in emer-
gency scenarios by using graph abstractions of the building topology, associated sensor
network, and radio connectivity among sensor nodes;

• Definition of path safety metrics;

• Algorithms for the computation of the shortest safest paths to exits;

• Implementation of a prototype of the system;

• Evaluation of sensor data dissemination using the prototype.

The chapter is organized as follows. Section 5.1 presents modeling options and assump-
tions. Section 5.2 explore alternative security metrics and presents algorithms to be used
in a Wireless Sensor Network Network (WSN) to support building evacuation. Section 5.3
presents an overview of the functional architecture of the software of the wireless sensor
nodes. Moreover it presents an evaluation of sensor data dissemination using the developed
wireless sensor network prototype. Finally, Section 5.4 summarizes the main results of the
chapter.

Parts of the results of this chapter were achieved in collaboration with Luís Pinto, Pedro
Santos, Traian Abrudan, Fausto Vieira, and João Barros.

5.1 – Modeling Assumptions

5.1.1 Building Topology

A building layout or topology may be represented by an undirected graph GB(VB , EB),
which we denote as building graph or B-graph:
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Figure 5.1: Building layout and corresponding B-graph

• The set of nodes (or B-nodes) VB, represents rooms, halls, and other building regions
where people usually stand.1 Moreover, B-nodes also represent crossings (e.g. conver-
gence between a room exit and a pathway along a corridor) and other regions where
more than two pathways converge. B-nodes that have immediate access to the outside
of the building are called exit nodes, or exit B-nodes. They form the set Vx ∈ VB of exit
nodes.

• The set of edges (or B-edges) EB , connects B-nodes. They represent corridors, stairs
and other pathways of the building layout thorough which people can walk.
A B-edge {u, v} has an associated length d(u, v) > 0 which is the walkable distance
between its end nodes.

Therefore, B-nodes represent key region points where people may choose to follow one of
the incident B-edges to move to an adjacent region (i.e. an adjacent B-node). Fig. 5.1 shows
an example of a building layout represented by a B-graph.

5.1.2 Emergency Navigation Graph

A building evacuation plan can be represented by a directed acyclic graph GN (VN , EN ),
derived from the B-graph, that we denote as emergency navigation graph or N-graph:

• Its set of nodes VN may be equal to the set of nodes VB of the B-graph;

1We define a building region as a continuos space within a building in which people can stand or walk

through (e.g. a room, a hall, a line-of-sight corridor, a line-of-sight staircase).
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Figure 5.2: Static navigation graph

• Its set of edges EN may be built from the set of edges EB by transforming each
undirected edge {u, v} ∈ EB in a directed edge (u, v) or (v, u) in EN .

This transformation must ensure that GN is acyclic, and that from each node u ∈ VN there
is a directed path to at least one exit node (usually the shortest path).

The major disadvantage of a static building evacuation plan is that the corresponding
emergency navigation graph does not adapt to the existence or to the propagation of hazards.
Some of the default exit paths may misguide evacuees throughout hazard regions endangering
their lives. To overcome this limitation, the emergency navigation graph GN needs to be
dynamic (i.e a time-variant navigation graph). Having as input the information about the
hazard propagation, it must adapt to ensure whenever possible, the existence of safe exit
paths from any point in the building. This can be accomplished by deploying a network of
sensor and decision nodes that continuously monitor the hazard state, updating accordingly
the emergency navigation graph. Moreover, static signalization panels must be replaced by
more versatile panels that display real-time information about the safe exit direction to follow,
according to the evolution of the dynamic emergency navigation graph.

Fig. 5.2 presents a possible navigation graph for the building layout of Fig. 5.1, exempli-
fying the limitations of static navigation graphs.

5.1.3 Wireless Sensor Network

The hazard detection and propagation monitoring and the consequent computation of
the emergency navigation graph is to be performed by a network of wireless sensor nodes
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deployed all over a building. The physical deployement of the sensor nodes has to guarantee
a convenient coverage of the building to ensure effective hazard detection. Moreover, it has to
guarantee multi-hop radio connectivity between all sensor nodes to allow global dissemination
of hazard information.

The WSN performs the following functions:

• Hazard sensing - nodes must be equipped with sensing units to collect relevant hazard
information. The deployement of sensor nodes over the building must ensure that all
its regions are conveniently monitored.

• Evacuation path computation - nodes have to compute the direction to be followed by
evacuees to leave the building safely (i.e. to compute the emergency navigation graph).
This function is performed having as input the sensed data mapped over the building
graph.

• Actuation - nodes have to actuate on signaling devices (such as signalization panels)
to inform evacuees about the safe exit path to follow. The actuation function has as
input the emergency navigation graph.

• Communication - the data sensed by each node needs to be conveyed to possibly all
other nodes to allow them to compute the emergency navigation graph.

We advocate a sensor network functional design in which each node is responsible for
computing autonomously the exit paths. Such design is in principle more robust, and
therefore, more appropriate to disaster scenarios than a design encompassing centralized
decision services. In case of sensor node destruction due to hazard propagation, the wireless
communication network may become disconnected. Even so, each functional node is still able
to compute a subset of the exit paths resorting to its partial knowledge of the building hazard
state. Hence, we opt for a WSN where all nodes have similar capabilities and functional roles.
Each node is responsible for computing autonomously the emergency navigation graph from
the sensed hazard information collected and disseminated by all nodes.

5.1.4 Spatial and Radio Graphs

The WSN has two associated graphs: A spatial graph also denoted as S-graph, and a radio

connectivity graph denoted as R-graph.

The S-graph GS(VS , ES) is a specialization of the B-graph that maps the deployed sensor
nodes into the building topology. The node set VS is a superset of VB (i.e. VB ⊆ VS)
containing all deployed sensor nodes. Each B-node is mapped to one corresponding S-node
in the S-graph. The remaining nodes (i.e. nodes of VS \ VB) are mapped into “intermediate
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points” over B-edges. The “interpolated edges” of the B-graph are therefore mapped into
1-dimensional chains of S-edges (i.e. simple paths) in the S-graph. The computation of the
emergency navigation graph GN will be performed having as input the sensor measurements
in the edges of the S-graph.

The R-Graph GR(VR, ER) represents the wireless connectivity between the sensor nodes.
It constitutes the communication graph over which the S-graph mapped hazard information
shall be disseminated. The node set VR is equal to the node set VS of the S-graph. The edge
set ER contains all node pairs which are in radio communication range of each other.

From a modeling perspective, we consider that each S-node has a sensing unit and an
actuation unit per incident S-edge. Each sensing unit is in charge of collecting the data from
the sensing probes of the corresponding S-edge. The emergency navigation graph GN shall
be computed by each sensor node having as input the S-graph and the sensor measurements
associated to each of its S-edges. Each actuation unit is responsible for sending command
instructions for the signaling devices associated to the corresponding S-edge, according to
the computed emergency navigation graph GN .

5.2 – Emergency Navigation Graph Computation

In this section we address the problem of finding shortest safest exit paths from a building
suffering a disaster event. We present a generic solution in which we abstract a building
topology by its B-graph, having hazard information associated to its edges. This generic
method is, in practice, easily transposed to the WSN solution by using the S-graph (instead
of the B-graph) as the representation of the building topology.

We first present a formal description of the problem of determining the emergency navi-
gation graph GN . Then we propose unambiguous quantifiable definitions for path safety and
we propose a discrete and a continuous hazard metric to quantify path security. Finally, we
propose algorithms to compute the shortest safest exit paths from nodes and from edges (i.e.
the emergency navigation graph GN ).

5.2.1 Problem Statement

Let GB(VB , EB) be a graph that represents the topology of a building, with a set of exit
nodes Vx ⊆ VB . Each edge e = {u, v} ∈ EB has a length d(e) > 0. Moreover, let H be a
totally ordered set of states whose elements represent the severity of a hazard, and let h be a
mapping EB → H that assigns to each edge e ∈ EB a hazard state h(e), which is time-variant.
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The mapping h is a function that takes as input a vector of sensor measurements of an edge
e, and gives as output a hazard state h(e).

The goal is to find the shortest safest directed exit path from each point in the building
(represented by GB) to one of the exit nodes Vx, each time there is a change in the state h(e) of
an edge e of EB . Obtaining a solution to this problem encompasses solving two sub-problems:

1. Finding the shortest safest directed exit paths from the points of the building repre-
sented by nodes in VB to one of the exit nodes in Vx. The solution to this problem
yields a directed forest GF = (VF , EF ) where VF = VB . The roots of the trees of GF

are the exit nodes vx ∈ Vx. Note that GF is a navigation graph in which some of the
edges of ET may be absent.

2. Finding a shortest safest exit direction from any point in the building abstracted by an
edge of EB . This is particularly important for points mapped to edges of EB which are
absent from EF .

5.2.2 Security Metrics

To be able to solve this optimization problem we must (a) agree on possible unambiguous
definitions for path safety that are quantifiable, and, based on that, we need (b) to find a
cost metric c(e) for an edge e that encompasses both its length d(e) and its hazard state
h(e), that is in agreement with the path safety definition.

The cost c(P ) of a path P is a function of the costs c(e) of its edges, according to the
following expression:

c(P ) !
∑

e∈P
c(e). (5.1)

If a path P1 is safer than a path P2, denoted as P1 ≺ P2, then c(P1) < c(P2).

In the following we present two alternative definitions of path safety encompassing a
discrete and a continuous hazard state set H.

5.2.2.1 Discrete Hazard Metric (DHM)

Let H ∈ Z be a totally ordered finite countable set of states that represent the severity of a
hazard. With no loss of generality, assume H = {0, 1, 2, 3}. The set is ordered by increasing
level of danger. Table 5.1 assigns a meaning to each element of H.

A path P1 is safer than a path P2 (i.e. P1 ≺ P2) if one of the following conditions holds:

(a) P2 has at least one edge whose hazard state is higher than the maximum of the hazard
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Table 5.1: Semantics of the elements of H

State Alias Semantic
0 GREEN Safe
1 YELLOW Low danger
2 ORANGE Medium danger
3 RED High danger

states of the edges of P1;

(b) The maximum of the hazard states (hmax) of the edges of P1 is equal to the maximum
of P2, and P1 has a smaller sum of the edge lengths with a hazard state equal to the
maximum;

(c) In case the above stated maximum hazard states and edge length sums are equal, P1 is
safer than P2 if, only considering the edges with hazard state smaller than hmax, one of
the conditions (a) or (b) hold.

We now present an edge and a path safety cost function that is in agreement to the above
path safety definition. The strategy we follow in the definition of the edge cost function is to
weight the edge length by a factor that grows exponentially with its hazard state.
A safety cost c(e) of an edge e with length d(e) and hazard state h(e) is given by:

c(e) ! d(e) · αh(e), (5.2)

and the safety cost of a path P is:

c(P ) !
∑

e∈P
c(e) =

∑

e∈P
d(e) · αh(e). (5.3)

A choice of the parameter α ensuring that the path safety cost function is in agreement
with the above path safety definition, is:

α =

∑

e∈EB
d(e)

mine∈EB
{d(e)}

. (5.4)

Proof. According to the path safety definition, a path P2 with a total edge length ϵ in hazard
state n + 1 is more dangerous than any other path P1 with maximum edge hazard state n.
With no loss of generality, consider a particular case in which P2 is composed by just one
edge with the smallest edge length ϵ of the graph GB , and that it has a hazard state of n+1.
Moreover, assume that a hypothetical path P1 composed by the remaining edges, has a total
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Figure 5.3: Comparison of exit path safety costs from node v1 to exit nodes in Vx = {v4, v5},
using the DHM model. The hazard state of the edges is represented by its colors (see
Table 5.1). Three alternative paths are considered: P1 = (v1, v2, v4), P2 = (v1, v3, v4), and
P3 = (v1, v3, v5).

edge length (
∑

e∈EB
d(e))− ϵ with hazard state n. Hence,

c(P2) > c(P1)

ϵ · αn+1 >

⎛

⎝

⎛

⎝

∑

e∈EB

d(e)

⎞

⎠− ϵ

⎞

⎠ · αn

α >

(

∑

e∈EB
d(e)

)

− ϵ

ϵ

α >

∑

e∈EB
d(e)

ϵ
− 1 (5.5)

Conjugating the above inequality with the fact that ϵ = mine∈EB
{d(e)}, an appropriate

choice for α is the one given by (5.4).

Fig. 5.3 shows alternative escape paths together with its costs from node v1 to exit nodes v4
and v5. The hazard state of each edge is represented by its color, according to Table 5.1. The
value of α (calculated by equation (5.4)) used to determine the path costs is 228. Fig. 5.3(a)
shows that, although paths P2 and P3 are shorter than P1, they have edges with higher hazard
state (YELLOW and ORANGE, respectively). Therefore, P1 is, according to the above safety
definition, the safest of the three paths. This is corroborated by its path safety cost which
is the smallest. In Fig 5.3(b), the hazard state of edge {v2, v4} changed from GREEN to
YELLOW. P2 is now the safest path, since it has the smallest total edge length with hazard
state YELLOW, and P3 has an edge with higher hazard state (ORANGE ). Again, this is in
agreement with the chosen cost function, which now yields for P2 the smallest safety cost.
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Figure 5.4: Normalized edge safety cost c(e)
d(e) in the CHM model as function of the edge hazard

state h(e) for α ∈ {0, 1, 2}.

5.2.2.2 Continuous Hazard Metric (CHM)

Let H ⊂ R be a totally ordered continuous set of states that represent the severity of a
hazard. With no loss of generality, assume H = [0, 1). The set is ordered by increasing
level of danger. The value h(e) = 0 corresponds to a safe state while h(e) → 1 corresponds
to a very dangerous state, meaning that edge e should not be used for building evacuation
purposes.

We define the safety cost c(e) of an edge e to be a function of its hazard state h(e) and
its length d(e) according the following expression:

c(e) !
d(e)

(1− h(e))α
, (5.6)

where α ≥ 0 is a parameter that controls the grow rate of c(e).

The strategy used in the definition of the above edge safety cost function is to cause the
edge length to grow hyperbolically (for α > 0) with its hazard state. A secure edge (h(e) = 0)
has safety cost equal to its length d(e). Furthermore, as the hazard state of an edge converges
to one, the corresponding safety cost converges asymptotically to infinity, reducing sharply
the likelihood of its use in a escape path.

Fig. 5.4 plots the edge safety cost c(e) normalized over d(e) for distinct values of the
exponent α. The value α = 0, is a special case where the safety cost is not influenced by the
hazard state h(e), assuming a value c(e) = d(e).
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The safety cost of a path P is given by:

c(P ) !
∑

e∈P

d(e)

(1− h(e))α
. (5.7)

5.2.3 Safest Exit Paths from Nodes

The problem of finding the minimum cost exit paths from each of the nodes in VB to one
of the exit nodes vx ∈ Vx can be classified as a Multiple-Destination Shortest Paths (MDSP)
problem. A generic strategy to solve this problem is the following:

A) Transform the MDSP problem into a Single-Destination Shortest Paths (SDSP) pro-
blem by:

(a) Adding a virtual destination node vd to VB ;

(b) Adding a virtual edge {vd, vx} with cost c({vd, vx}) = 0 to EB for each node
vx ∈ Vx.

B) Solve the SDSP problem for GB with vd as destination node using a “standard” SDSP
algorithm (e.g. Bellman-Ford or Dijkstra’s algorithm [CSRL01, Chapter 24]). The
outcome should be a minimum cost tree GT rooted at vd.

C) Derive the solution to the MDSP problem from GT . It should be the induced forest GF

that arises by removing vd from GT .

Data Structures in Dijkstra’s Algorithm

The SDSP Dijkstra’s algorithm resorts to two key data structures (see [CSRL01, Chap. 24]):

• A predecessor array π[v] indexed by the nodes v of VB , having as values, either a node
of VB or the symbol NIL. The symbol NIL means “no object at all”, indicating that a
node v has no predecessor whenever π[v] = NIL.

• A cost estimate array ĉ[v] indexed by the nodes of VB . Each ĉ[v] value is an upper
bound for the cost of a minimum cost path from the destination vd to a node v ∈ VB .

These arrays are updated in such a way that at the end of the execution of the Dijkstra’s
algorithm, each value ĉ[v] represents the cost of a minimum cost directed path between the
destination node vd and the node v. Moreover, each π[v] value represents the predecessor
node of v in that path.
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MDSP Method

The solution, denoted as MDSP method, that we propose to the MDSP problem is an
adaptation of the SDSP Dijkstra’s algorithm. It has the advantage over the generic approach
described above of not needing a virtual destination node.

Let us first define the minimum cost δ(u, V ) of the paths between a node u and the nodes
of a node set V as:

δ(u, V ) !

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
(

c(P ) : u
P
" v, v ∈ V

)

if there is a path from u to

at least one node v ∈ V .

∞ otherwise.

The meaning of the cost estimate array ĉ[v] in the MDSP method has a central difference
from the one assumed in the SDSP Dijkstra’s algorithm. For each node v ∈ VB \ Vx, the
cost ĉ[v] is an upper bound for δ(v, Vx). I.e., it is an upper bound for the minimum of the
costs of all the paths between v and the destination nodes vx ∈ Vx (and not with a specific
destination node).

The MDSP method is composed by Algorithm 7 and 8. Algorithm 7 initializes the
predecessor and cost estimate arrays π[v] and ĉ[v]. In particular, ĉ[vx] is initialized with
a cost equal to zero for all destination nodes vx ∈ Vx (being the main difference to the
Algorithm INITIALIZE-SINGLE-SOURCE in [CSRL01, Chap. 24]).

Algorithm 8 differs from Algorithm DIJKSTRA in [CSRL01, Chap. 24] by replacing
the call to INITIALIZE-SINGLE-SOURCE by a call to MDSP_INITIALIZE_ARRAYS

(Algorithm 7). S is a set of nodes for which the minimums of the costs of the paths to
nodes vx ∈ Vx has already been determined (i.e. ĉ[v] = δ(u, Vx),∀v ∈ S). Q is a min-priority
queue of nodes v ∈ VB keyed by the cost estimate values ĉ[v]. The algorithm repeatedly
selects the node u ∈ VB \ S with the minimum cost estimate, adds u to S, and updates the
minimum cost estimate ĉ[v] and the predecessor node π[v] for all neighbors v of u.

Algorithm 7 MDSP_INITIALIZE_ARRAYS
MDSP_INITIALIZE_ARRAYS (GB , Vx)

1: for each node v ∈ VB do

2: ĉ[v]←∞

3: π[v]← NIL

4: end for

5: for each node vx ∈ Vx do

6: ĉ[vx]← 0

7: end for

After the completion of Algorithm 8, the predecessor subgraph GF = (VF , EF ) induced
by the predecessor array π[v] constitutes a minimum cost directed forest having as roots the
nodes in the destination node set Vx:
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Algorithm 8 MDSP_MAIN
MDSP_MAIN (GB , Vx, c())

1: MDSP_INITIALIZE_ARRAYS (GB , Vx)

2: S ← ∅

3: Q← VB

4: while Q ̸= ∅ do

5: u← EXTRACT_MIN(Q)

6: S ← S ∪ {u}

7: for each node v ∈ N(u) do

8: if ĉ[v] > ĉ[u] + c({u, v}) then

9: ĉ[v]← ĉ[u] + c({u, v})

10: π[v]← u

11: end if

12: end for

13: end while

• VF corresponds to the set of vertices of GB with non-NIL predecessors plus the desti-
nation node set Vx (i.e. VF = {v ∈ VB : π[v] ̸= NIL} ∪ Vx);

• EF is a directed edge set induced by π[v] for nodes in VF (i.e. EF = {(v,π[v]) ∈ EB :

v ∈ VF \ Vx}).

Fig. 5.5 presents the minimum cost exit forest determined by applying MDSP method to
the graph of Fig. 5.3. Edge costs are determined using the DHM model. In Fig. 5.5(a) the
exit forest is composed by two trees. One is a directed path (v3, v1, v2, v4). The other is
composed by the single node v5 (only a root node with no edges). In Fig. 5.5(b) the hazard
state of edge {v2, v4} has changed to YELLOW. The exit forest is now composed by a tree
that is the directed path (v1, v2, v3, v4), and another tree with the single root node v5.

5.2.4 Safest Exit Paths from Edges

After applying the MDSP method to GB the exit paths/directions are defined only for spa-
tial points mapped into nodes of VB or into edges of EF . Therefore, the exit paths/directions
remain undefined for points mapped into edges of EB \EF . We now show how to determine
the exit paths/directions from a given point at any edge of EB .

Consider an edge {u, v} ∈ EB with length d({u, v}) and cost c({u, v}). Moreover, consider
a point p mapped over an edge {u, v} at “mapped distance” β · d({u, v}) from u, where β ∈
(0, 1). Departing from p, the exit path in GF to be followed is the one with the starting node

s =

⎧

⎪

⎨

⎪

⎩

u if (u, v) ∈ EF

∨ (v, u) /∈ EF ∧ δ(u, Vx) + β · c({u, v}) < δ(v, Vx) + (1− β) · c({u, v}),

v otherwise.
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Figure 5.5: Minimum cost exit forest determined by the MDSP method. Exit node set (forest
roots) is Vx = {v4, v5}. Edge costs follow the DHM model. The hazard state of the edges is
represented by its colors (see Table 5.1).

Note that the values δ(u, Vx) and δ(v, Vx) are equal to the values of ĉ[u] and ĉ[v] respec-
tively, at the completion of Algorithm 8.

5.3 – System Design

In this section we present an overview of the functional architecture of the wireless sensor
nodes software. We focus on the presentation of general design guidelines, avoiding entering
into platform specific details.

The software architecture is divided in two main functional planes, as shown in Fig. 5.6.
The radio communication plane, associated to the R-graph, encompasses all the functions
to support the communication between nodes (e.g. neighborhood inference, information
dissemination). The spatial topology plane, associated to the S-graph, encompasses all the
functions concerning the calculation of the emergency navigation graph, from hazard sensing
to actuation decisions on signaling devices.

5.3.1 Sensing and Navigation Plane

This logical plane encompasses all the S-graph related functions of a node necessary
to compute the emergency navigation graph. These functions are: (1) the classification



Chapter 5. Applications in Dynamic Sensor Networks 95

R-Graph
Neighborhood

Information
Module

Incoming
Messages

Radio
Port

Message
Demux

Outgoing
Messages

Radio
Port

Radio Communication
Plane

HELLO msgsHELLO msgs

Message Dissemination
Module

Signaling
Devices

Navigation
Graph

Computation

S-Graph
Hazard State

Module

Sensors

S-Graph
Contruction and
Mainteneance

Module

Sensing Units

Actuation
Units

S-Graph deployement
msgs

Sensing and Navigation
Plane

HS msgs

Sensor 
measurements

Incident
S-edges 

S-Graph
updates 

HS msgs

Hazard states

HS and
S-Graph deployement

msgs

Figure 5.6: Functional architecture of a wireless sensor node for emergency evacuation
support
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of the sensed data collected by the attached sensors; (2) the reception, processing and
generation of S-graph deployement messages and S-graph Hazard State (SGHS) messages;
(3) the computation of the emergency navigation graph, and (4) the actuation on signaling
devices, according to the emergency navigation graph, whenever a severe hazard situation
arises.

Next we present a brief functional description of the modules of this logical plane.

S-graph Construction and Maintenance Module: This module is responsible for
acquiring and maintaining the information about the spatial topology (represented by an
S-graph GS). The S-graph information is to be sent during the system deployment phase.
This information is conveyed by S-graph deployement messages that carry information about
the S-edges of the WSN. These messages are generated by a configuration node, being
delivered to all sensor nodes using a dissemination algorithm.

Sensing Units: Each node has a sensing unit associated to each of its adjacent S-edges.
Each of these units is responsible for collecting the sensor data associated to the corresponding
S-edge. The sensor data is classified according to one of the security metrics chosen for the
system (see Section 5.2.2) before being conveyed to the S-graph Hazard State Module.

S-graph Hazard State Module: The role of this module in each node is to collect and
store information about the hazard state of each region of the building (mapped into the
edges of the S-graph). This module receives hazard state information from (1) the S-edges
incident to the node (via the Sensing Units), and (2) from the S-edges adjacent to the other
S-nodes, via SGHS messages disseminated throughout the network. It is also responsible for
generating the SGHS messages with the hazard state information of the S-edges of the node,
which shall be disseminated throughout the network. These messages are generated either
periodically or upon the occurrence of a substantial change in the hazard state of an S-edge.

Navigation Graph Computation: This module is responsible for computing the emer-
gency navigation graph GN from the S-graph hazard state information provided by the
S-graph Hazard State Module. This computation is performed using the algorithms defined
in Sections 5.2.3 and 5.2.4.

Actuation Units: Each node may have an actuation unit per incident S-edge. These units
gather the exit direction for the associated S-edges, which are obtained from the emergency
navigation graph GN . The exit direction information is used to actuate accordingly on the
attached signaling device.
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5.3.2 Radio Communication Plane

This logical plane encompasses all the R-graph related functions of a node necessary to
disseminate throughout the network the hazard state of each edge of the S-graph. The dissem-
ination algorithm to be used in this emergency evacuation system should give guarantees that
each disseminated hazard state message reaches all network nodes. This a major requirement
in order to ensure that all network nodes compute an equivalent emergency navigation graph.

Next we present a brief functional description of the modules of this logical plane.

Message Demux: This module demultiplexes the messages received at the Incoming Mes-

sages Radio Port according to its type. For instance, S-graph deployement messages and
SGHS messages are sent to the appropriate module in the Sensing and Navigation Plane.
Moreover, they are also forwarded to the Message Dissemination Module for further dissem-
ination of these messages through the network.

R-graph Neighborhood Information Module: This module is responsible for keeping
track of the radio (R-graph) neighborhood of each node. It may feed this information to
the Message Dissemination Module, depending on the needs of the chosen dissemination
algorithm.

Message Dissemination Module: This module is responsible for applying the forwarding
rules of a chosen message dissemination algorithm to the incoming messages. Messages to be
forwarded are sent to the Outgoing Messages Radio Port.

5.3.3 System Hardware

In the actual implementation of the WSN system, we used Crossbow TelosB TPR2420CA
motes as sensor nodes [Croa]. These motes have wireless communication capabilities, being
equipped with a IEEE 802.15.4 compliant radio module, operating in the 2.4 to 2.4835 GHz
ISM band, and supporting a data rate of 250 kbps [Crob]. Moreover, they are equipped with
a sensor suite of humidity, light (visible and infrared), and temperature sensors. The motes
run the TinyOS operating system [LMP+05, Tin12], and the software was written in nesC
programming language [GLvB+03].

Moreover, we designed and implemented visual signaling devices intended to inform evac-
uees about the exit direction to follow, according to the order conveyed by the associated
mote. Fig. 5.7 shows a TelosB mote connected to a visual signaling device.
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Figure 5.7: TelosB mote connected to a visual signaling device

5.3.4 Evaluation of the Sensor Data Dissemination

In this section we present a preliminary evaluation of sensor data dissemination using the
WSN prototype for building evacuation support. The algorithms used in the dissemination of
SGHS messages were Probabilistic Flooding (PF), with all nodes having the same forwarding
probability ω, and Pure Flooding (which is a special case of PF in which ω = 1).

The WSN is composed of 8 motes deployed over a part of a building2. The radio
connectivity graph (determined by a set of measurements) has a mean node degree of 4.375
and a diameter of 2. Each mote was configured to periodically generate and transmit an
SGHS message, such that the k-th SGHS message of a given node is transmitted at a time
instant t = k · τ ±∆t with ∆t ∈ (−1/2τ, 1/2τ). The introduction of a jitter ∆t in the period
has as goal the mitigation of the correlation between transmission times of different source
nodes. We conducted experiments for τ = 1 s and τ = 5 s.

We analyzed the following performance metrics :

• Delivery ratio (DR): ratio between number of messages successively received at a node
and the number of sent messages;

• Relative frequency of global message outreaches (RFGO): relative frequency of global
message outreaches — messages that were successively received by all nodes;

• Number of transmissions per generated SGHS message (Tx/msg);

• Number of redundant message receptions per source message per node (Rx/msg/node).

2The small number of nodes used in this experiment is due to restrictions on the available hardware.
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In Fig. 5.8(b) and Fig 5.8(a) we see that the use of Pure Flooding (ω = 1) does not lead
to achieving a DR or a RFGO of 1. This is most likely due to the hidden terminal problem
which is not addressed by the MAC layer reliability functions for broadcast transmissions.
The carrier sensing mechanism of a transmitter is only able to infer an empty medium at
the transmitter node. Two neighbors of a given node u, which are not in radio range of each
other may initiate concurrent transmissions causing a collision at node u, since they are not
able to ear the transmissions of each other. This effect is more severe under high network
traffic loads (τ = 1 s).

In Fig. 5.9(a) and Fig. 5.9(b) we can see that a reduction of the SGHS message period
from τ = 5 s to τ = 1 s results in a non-negligible reduction of the number of replicas of a
message that each node receives. At a first glance, this seems to be a desirable phenomenon
(i.e. each node needs to receive only a copy of each source message). However, it may be
a symptom of reception collisions at the MAC layer that may cause some nodes to fail the
reception of some source messages.

Since having a RFGO of 1 is a necessary condition for all nodes to derive the same
emergency navigation graph, not surprisingly, Pure Flooding over an unreliable MAC does
not give the necessary delivery guarantees. The same conclusions hold for PF.

Therefore information dissemination algorithms and MAC layer mechanisms encompassing
reliability mechanisms are mandatory for rescue/evacuation support networked systems.
Some possibilities for further study are:

• Reliability-focused development of new dissemination algorithms;

• MAC layer channel reservation for broadcast transmissions;

• Introduction of acknowledgment mechanisms for broadcasted messages;

• Use of implicit acknowledgment of messages by overhearing its retransmission by a
neighbor;

• Retransmit important messages more than once (e.g. SGHS message related to an
S-edge whose hazard state has changed).

5.4 – Concluding Remarks

We applied the insights gained from the study of information dissemination algorithms to
the design of a sensor-actuator networked system for emergency response in indoor scenarios.
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(a) Delivery Ratio (b) Relative frequency of Global Outreaches

Figure 5.8: Experiment with real deployment

(a) Number of transmissions per message (b) Number of receptions per message and per node

Figure 5.9: Experiment with real deployment

We designed a sensor-actuator networked system for emergency response in indoor scena-
rios. The system guides people to the exits of a building via the shortest safe paths. These
paths are computed independently by each node whenever a new measurement collected by
a sensor is flooded throughout the network.

We proposed new path security metrics and new algorithms for the computation of the
shortest safest exit paths from any point in a building. We implemented the proposed
solutions in a wireless sensor network prototype using Pure Flooding for the dissemination
of hazard state information collected by the sensor nodes. Pure Flooding over an unreliable
MAC layer does not give the necessary delivery guarantees for this type of applications.
Therefore, we plan to investigate new information dissemination algorithms and MAC layer
solutions having reliable message delivery as the main requirement.



“It is not the answer that enlightens, but the question.”

Eugène Ionesco





6
Main Contributions and Future

Work

M
otivated by the relevance of information dissemination algorithms in several networking
scenarios, we characterized the efficiency of some of their main representatives in terms

of transmission cost and reachability. We addressed both replication and network coded based
approaches, devoting our main focus to the class of probabilistic algorithms.

Networks were modelled as random graphs generated by stochastic processes, facilitating
the analyses of the interplay between the network topology and the process of disseminating
information.

With the insights gained from the analysis, we applied information dissemination al-
gorithms into specific networking and application scenarios. In particular, we designed a
sensor-actuator networked system for emergency response in indoor scenarios. It computes
the shortest safest paths to exits using the measurements collected by the sensors and
disseminated throughout the network. The system was successfully tested in a prototype.

103
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Probabilistic Flooding in Stochastic Networks

We analyzed how to set a system-wide forwarding probability ω of probabilistic flooding,
such that all network nodes ultimately receive a message with high probability. For this
purpose, we proposed a graph sampling method, which can be applied in arbitrary networks.
This method yields an induced subgraph, whose node set is obtained by sampling the total
node set uniformly at random with probability ω. We proved that the events “all nodes
receive a flooded message” and “the induced subgraph is connected and its nodes dominate
the network graph” have the same probability, and thus, the analysis of global outreach in
probabilistic flooding can be performed by analyzing the properties of the induced subgraph.

In networks modeled as Erdős Rényi graphs, we derived the exact expression for the prob-
ability of global outreach. In random geometric graphs —as often used in modeling wireless
ad-hoc networks —the local correlation among edges results in stochastic dependencies, but,
in our model, these dependencies become asymptotically negligible with increasing node
density. We derived an asymptotic expression for the global outreach probability, which is
also a good approximation for high node density.

Moreover, we analyzed the impact of border effects in random geometric graphs and
proposed a heuristic to overcome these effects. Finally, we studied probabilistic flooding
in unreliable networks; erroneous links can simply be incorporated into both graph models,
while the basic analysis and proofs remained in principle unchanged.

Network Coded Information Dissemination

Aiming at understanding how distinct forwarding paradigms influence the dissemination
of information over communication networks, we selected one representative of each paradigm
for our study: the network coding algorithm of [FWLB06] and replication based flooding MPR
algorithm of [AQL02]. We evaluated (a) the number of transmissions per source message and
(b) the incurred delay, and (c) the delivery ratio, under three relevant classes of random
graph models.

Somewhat unintuitively, the analytical part of our work shows that over ERGs and RGGs,
the number of transmissions required to flood a message with the NC flooding algorithm
under consideration is asymptotically independent of the number of nodes. This observation
becomes less surprising in retrospect, if we consider that in these classes of graphs the average
node degree increases linearly with the number of nodes. Therefore, a higher number of nodes
corresponds to a higher number of neighbors that can be reached by a single broadcast
transmission. Since random linear network coding mixes multiple messages in a single
transmission, it is very effective at exploiting the benefits of increased node density. With
multipoint relays, however, the number of transmissions per message is not independent of
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the number of nodes.

In contrast, for SWNs, the analysis shows that the number of transmissions per message
of the network coding algorithm scales linearly with the number of nodes. The reason for
these distinct results can be understood by the fact that in SWNs with rewiring the average
node degree remains fixed irrespective of the number of nodes.

Naturally, the number of transmissions depends on other features of the network topology,
as evidenced by Corollaries 1, 2, and 3, and by our simulation results. Consequently, the
question as to which scheme should be preferred requires a nuanced answer.

In ERGs, NC flooding outperforms MPR flooding in terms of number of transmissions per
source message; the extent of this gain is however deeply influenced by the diameter of the
network. Reducing the diameter decreases both the number of transmissions and the delay
gains. A unit diameter implies no gain at all.

In contrast, in general RGGs (non-toroidal distance metric) the considered NC flooding
algorithm does not bring any benefits in terms of number of transmissions per message,
when compared to MPR flooding. This appears to be in contradiction with the observation
in [FWLB06]. However, it is worth noting that [FWLB06] focuses on RGGs on a torus and
compares NC with probabilistic flooding. Our results thus indicate that the existence of
border effects in general RGG topologies has a negative effect on the performance of the
considered NC flooding technique.

In SWNs, the analytical expression for the number of transmissions per message of network
coding shows no dependency on the rewiring probability of the SWN model. This result
is corroborated by the simulation results. In fact, the simulations highlight the stability
of the NC performance metrics (delivery ratio, number of transmissions per message and
delay) within all the rewiring range of the SWN model (i.e. with distinct clustering coef-
ficients and average geodesic distance values). NC flooding demonstrates to be relatively
immune to changes in local connectivity parameters (i.e. presence or absence of strong
local connectivity), suggesting that the strengths of the studied network coding algorithm
in SWN topologies stems from its network-wide coding/decoding operation paradigm. In
turn, the MPR flooding algorithm does not produce significant overhead reduction in terms
of number of transmissions per source message, in poorly clustered SWN topologies. Its
Achilles’ heel resides on the scoped and limiting view of the topological properties centered
in the neighborhood of each node.

Applications in Dynamic Sensor Networks

We designed a sensor-actuator networked system for emergency response in indoor scena-
rios. The system guides people to the exits of a building via the safest shortest paths. These
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paths are computed by sensor nodes whenever a new measurement collected by a sensor is
flooded throughout the network. We characterized the building evacuation problem with help
of graph models. We proposed appropriate security metrics and algorithms that use flooded
hazard information to compute the shortest safest paths to leave a building. Finally, we
successfully implemented a prototype of the sensor-actuator networked system for emergency
response. Since sensor data dissemination using Pure Flooding does not give the necessary
delivery guarantees for this type of applications, we plan to investigate new information
dissemination algorithms and MAC layer solutions that meet high reliability requirements.

Future Work

We now present an overview of possible lines of research based on the work presented in
this thesis.

Further Analysis of Probabilistic Flooding

The analysis of Probabilistic Flooding, performed in this thesis, addressed a reference
algorithm with a network-wide forwarding probability common to all nodes. A natural
extension to this study is to analyze variants of Probabilistic flooding with non-constant
forwarding probabilities (e.g. function of local topological properties such as node density or
node degree and/or function of graph distance metrics).

Another line of research is to relax the reachability metric of the forwarding process. We
considered scenarios that require a forwarding probability that ensures a given target for the
global outreach of a flooded message. Less demanding applications may only require that
each node independently gets the message with at least some target probability. This is an
analytical open problem that deserves to be addressed.

A natural extension to the analysis of the reachability of Probabilistic flooding is to
consider other network models. Some obvious candidates are Small-World Networks, Scale-
Free Networks, and graphs with a specified degree distribution (i.e. the Configuration model).

Network Coded Information Dissemination

In Chapter 4 our study of Network Coded Information Dissemination addressed a class of
algorithms that does not guarantee that the reception by a node of an encoded message that
is linear independent of the ones received so far, will necessarily yield the decoding of (at
least) a source message. As future work, we plan to analyze and propose new network coded
dissemination algorithms in which every reception of a linear independent coded message
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will result in the decoding of a source message with high probability. Moreover, we plan to
propose probabilistic network coded dissemination algorithms that are aware of topological
distance metrics, and that are adaptive and self-regulating depending on the dynamics of the
dissemination process.

Adaptive Probabilistic Dissemination Algorithms

In this thesis we addressed mainly the interplay between Probabilistic Dissemination algo-
rithms and network topology. As future work we plan to develop information dissemination
algorithms that are topology aware and self-adaptive, adjusting the forwarding probability
based on the dynamics of the dissemination process and based on target performance goals.





A
Proofs for Chapter 3

A.1 – Proof of Lemma 1

This proof is based on the Chen-Stein method and follows a similar approach as in [Pen97]
and [FM08]. We first give definitions that are used in this and the following proofs. Consider
the

√
A×

√
A square SA used in the RGG definition. We partition the square SA in m2

disjoint sub-squares Si of side
√
A/m centered at ai ∈ SA, i = 1...,m2. A neighborhood of

dependence Ni for each i ≤ m2 is Ni ! {j : d(ai, aj) ≤ 3 r}, where r is the transmission
range. We define Di as disks of radius r centered at ai, i = 1, ...,m2. Finally, we define
D(r, x) as the area of the union of two disks of radius r with centers at toroidal distance x

apart.

From the Chen-Stein method we have

dTV (W ∗,Po (E(W ∗))) ≤ 2 (b1 + b2) . (A.1)

Now we show that (a) W ∗ is a sum of Bernoulli random variables, (b) E(W ∗) = e−α
∗ , (c)

limλ→∞ b1 = 0, and (d) limλ→∞ b2 = 0. For this purpose we partition the square SA as
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described in 2.4.

For i = 1, . . . ,m2, define X∗
i to be the indicator of the event that there is a single

point of Π∗
s in a sub-square Si ⊂ SA and no points of Π∗

s in the region of all sub-squares
intersecting Di \ Si. We have

lim
m→∞

E(X∗
i )

A λ∗

m2 e−λ∗π r2
= 1. (A.2)

If the two disks of radius r centered at ai and aj cover each other’s centers, i.e. d(ai, aj) ≤ r,
we get

E(X∗
i X

∗
j ) = 0, (A.3)

and if d(ai, aj) > r, we have

lim
m→∞

E(X∗
i X

∗
j )

(

A λ∗

m2

)2
e−λ

∗D(r, d(ai,aj))
= 1, (A.4)

Therefore, the total number of isolated nodes of G∗ is W ∗ = limm→∞
∑m2

i=1 X
∗
i , and

E(W ∗) = lim
m→∞

m2
∑

i=1

E (X∗
i ) = A λ∗ e−λ

∗π r2 = e−α
∗

, (A.5)

where α∗ = λ∗π r2 − ln(A λ∗).

We now show that limλ→∞ b∗1 = 0 and limλ→∞ b2 = 0. Combining (A.2) and (2.4) we get

lim
m→∞

b1 = lim
m→∞

m2
∑

i=1

∑

j∈Ni

E(X∗
i ) E(X

∗
j )

= lim
m→∞

m2
∑

i=1

π (3r)2

A
m2

(

A λ∗

m2
e−λ

∗πr2
)2

=
π (3r)2

A
e−2 α∗ −−−→

λ→∞
0. (A.6)

Defining an annular neighborhood Oi for each i ≤ m2 as

Oi ! {j : r ≤ d(ai, aj) ≤ 3 r} , (A.7)

and combining (2.5) with (A.3), (A.4), (A.7), we get

lim
m→∞

b2 = lim
m→∞

m2
∑

i=1

∑

j∈Ni,j ̸=i

E(X∗
i X

∗
j )

= lim
m→∞

m2
∑

i=1

∑

j∈Oi,j ̸=i

(

A λ∗

m2

)2

e−λ
∗D(r, d(ai,aj)) . (A.8)
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Due to the spatial stationary property of the Poisson point process, we can re-write (A.8) as

lim
m→∞

b2 = lim
m→∞

m2
∑

j∈O1,j ̸=1

(

A λ∗

m2

)2

e−λ
∗D(r, d(a1,aj))

= A (λ∗)2
∫

r≤|x|≤3r
e−λ

∗D(r, |x|)dx

≤ A (λ∗)2π (3 r)2 e−λ
∗ 3
2πr

2−−−→
λ→∞

0. (A.9)

Combining (A.1) with (A.6) and (A.9) yields

lim
λ→∞

dTV

(

W ∗,Po
(

e−α
∗

))

= 0 . (A.10)

A.2 – Proof of Lemma 2

Similarly, applying the Chen-Stein method we have

dTV (W ⋄,Po (E(W ⋄))) ≤ 2 (b1 + b2) . (A.11)

For i = 1, . . . ,m2, define X⋄
i to be the indicator of the event that there is a single point of

Π⋄ in a sub-square Si ⊂ SA, and that there are no points of Π∗
s in the region of all sub-squares

intersecting Di. We have

lim
m→∞

E(X⋄
i )

A λ⋄

m2 e−λ∗πr2
= 1, (A.12)

lim
m→∞

E(X⋄
i X

⋄
j )

(

A λ⋄

m2

)2
e−λ∗D(r, d(ai,aj))

= 1. (A.13)

Thus, the total number of non-dominated nodes of G is W ⋄ = limm→∞
∑m2

i=1 X
⋄
i , and

E (W ⋄) = lim
m→∞

m2
∑

i=1

E (X⋄
i ) = A λ⋄ e−λ

∗π r2 = e−α
⋄

,

where α⋄ = λ∗π r2 − ln (A λ⋄).

We now show that limλ→∞ b1 = 0 and limλ→∞ b2 = 0. Combining (A.12) with (2.4), we
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get

lim
m→∞

b1 = lim
m→∞

m2
∑

i=1

∑

j∈Ni

E(X⋄
i ) E(X

⋄
j )

= lim
m→∞

m2
∑

i=1

π (3r)2

A
m2

(

A λ⋄

m2
e−λ

∗πr2
)2

=
π (3r)2

A
e−2 α⋄ −−−→

λ→∞
0. (A.14)

Combining (2.5) with (A.13), and taking into account the spatial stationary property of
the Poisson process yields

lim
m→∞

b2 = lim
m→∞

m2
∑

i=1

∑

j∈Ni,j ̸=i

(

A λ⋄

m2

)2

e−λ
∗D(r, d(ai,aj))

= A (λ⋄)2
∫

|x|≤3r
e−λ

∗D(r, |x|)dx

≤ A (λ⋄)2π (3 r)2 e−λ
∗πr2 −−−→

λ→∞
0. (A.15)

Combining (A.11) with (A.14) and (A.15), we get

lim
λ→∞

dTV

(

W ⋄,Po
(

e−α
⋄

))

= 0 . (A.16)

A.3 – Proof of Lemma 3

The Chen-Stein method yields

dTV (W ⋄∗,Po (E(W ⋄∗))) ≤ 2 (b1 + b2) . (A.17)

We partition the square SA as described in 2.4. For i = 1, . . . ,m2, define X⋄∗
i to be the

indicator of the event that there is a single point of Π∗
s or Π⋄ in Si ⊂ SA, and that there are

no points of Π∗
s in the region of all sub-squares intersecting Di \ Si. We have

lim
m→∞

E(X⋄∗
i )

A λ+1
m2 e−λ∗πr2

= 1. (A.18)

Let β∗
ij ! λ∗D(r, d(ai, aj)). For d(ai, aj) ≤ r, we get

lim
m→∞

E(X⋄∗
i X⋄∗

j )
(

A λ⋄

m2

)2 (
1− A λ∗

m2

)2
e−β

∗

ij

= 1, (A.19)
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and if d(ai, aj) > r, we have

lim
m→∞

E(X⋄∗
i X⋄∗

j )
(

A λ+1
m2

)2
e−β

∗

ij

= 1. (A.20)

The sum of all non-dominated nodes and all isolated forwarding nodes of G is W ⋄∗ =

limm→∞
∑m2

i=1 X
⋄∗
i with

E (W ⋄∗) = lim
m→∞

m2
∑

i=1

E (X⋄∗
i ) = (Aλ+ 1)e−λ

∗πr2 = e−α, (A.21)

where α = λ∗π r2 − ln (Aλ+ 1).

We now show that limλ→∞ b1 = 0 and limλ→∞ b2 = 0. Combining (A.18) with (2.4) we
get

lim
m→∞

b1 =
m2
∑

i=1

∑

j∈Ni

E(X⋄∗
i ) E(X⋄∗

j )

= lim
m→∞

m2
∑

i=1

π (3r)2

A
m2

(

Aλ+ 1

m2
e−λ

∗πr2
)2

=
π (3r)2

A
e−2 α −−−→

λ→∞
0. (A.22)

For each i ≤ m2 define neighborhoods O(1)
i and O(2)

i as

O(1)
i ! {j : d(ai, aj) ≤ r} , and (A.23)

O(2)
i ! {j : r ≤ d(ai, aj) ≤ 3 r} . (A.24)

Combining (2.5), (A.19), (A.20), (A.23), (A.24), and considering the stationarity of the
Poisson processes, we get

lim
m→∞

b2 = lim
m→∞

m2
∑

i=1

∑

j∈O(1)
i ,j ̸=i

[

A λ⋄

m2

]2(

1− A λ∗

m2

)2

e−β
∗

ij

+ lim
m→∞

m2
∑

i=1

∑

j∈O(2)
i ,j ̸=i

(

A λ+ 1

m2

)2

ee
−β∗

ij

= A (λ⋄)2
∫

|x|≤r
e−λ

∗D(r, |x|)dx

+ A

(

λ+
1

A

)2 ∫

r≤|x|≤3r
e−λ

∗D(r, |x|)dx

≤ A (λ⋄)2π r2 e−λ
∗πr2

+ A

(

λ+
1

A

)2

π(3r)2e−λ
∗ 3
2πr

2 −−−→
λ→∞

0. (A.25)
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Combining (A.17) with (A.22) and (A.25) leads to

lim
λ→∞

dTV
(

W ⋄∗,Po
(

e−α
))

= 0 . (A.26)



B
Symbols, Mathematical Notation,

and Abbreviations

B.1 – List of Symbols and Mathematical Notation

| · | Cardinality of a set
⌊x⌋ Floor function: gives the largest integer that is smaller than or

equal to x

⌈x⌉ Ceiling function: gives the smallest integer that is larger than or
equal to x

[a, b] Interval reaching from a to b, including both a and b

[a, b) Interval reaching from a to b, including a and excluding b

A Area
A(·) Area of a region
Bin(n, p) Binomial distribution with parameters n and p

c(·) Cost of an edge or a path
Cv Clustering coefficient of a node v
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C(p) Average clustering coefficient in a Small-World network with
rewiring probability p

d(·) Degree of a node
d(e) Length of an edge e

d(·, ·) Euclidean distance between two points or two nodes
dE(·, ·) Euclidean distance between two points or two nodes
dT (·, ·) Toroidal distance between two points or two nodes
dTV(X,Y ) Total variation distance between distributions of two integer-

valued random variables X,Y

Di Disk centered at point i

D(r, x) Area of the union of two disks of radius r with centers at toroidal
distance x apart

E(·) Expected value
Fq Finite field of size q

G Graph
GB B-graph (Building graph)
GN N-graph (Emergency navigation graph)
GS S-graph (Spatial graph)
GR R-graph (Radio connectivity graph)
g() Antenna gain
H Hazard state set
h(e) Hazard state of an edge e

E Set of edges
k Number of neigboors of a node in a regular lattice
L Average geodesic distance in a graph
L(p) Average path length in a Small-World network with rewiring

probability p

L·,· Geodesic distance between a pair of nodes
n Number of nodes
N(u) Set of the 1-hop neighbors of u
N l(u) Set of the l-hop neighbors of u
Oi Annular neighborhood centered at point i

O(f(x)) Big O notation: there exists some constant c such that O(f(x)) ≤
c · f(x), for large enough x

p Edge probability
P(·) Probability
Po(λ) Poisson distribution with parameter λ

r Transmission radius
Neighborhood radius

R Set of the real numbers



Appendix B. Symbols, Mathematical Notation, and Abbreviations 117

R Region
SA Square of area A

u Node
v Node
V Set of nodes
Vx Set of exit nodes
w Node
Z+ Set of all positive integer numbers
γ Scaling factor of Algorithm NCFWB

λ Node density
ω Forwarding probability
Ψ Probability of global outreach
Π Poisson point process
Π∗ Thined poisson point process
Π⋄ Thined poisson point process
ζ Message erasure probability

B.2 – Abbreviations

B-graph Building graph

B-RGG Binomial Random Geometric Graph

CHM Continuous Hazard Metric

DHM Discrete Hazard Metric

DR Delivery ratio

ERG Erdős Rényi Random Graph

GS Graph sampling

MAC Media Access Control

MDSP Multiple-Destination Shortest Paths

MPR Multipoint relays

N-graph Emergency navigation graph
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NC Network Coding

NR Normalized Rank

OLSR Optimized Link State Routing

P-RGG Poisson Random Geometric Graph

PF Probabilistic Flooding

PP Point Process

PPP Poisson Point Process

R-graph Radio connectivity graph

RFGO Relative frequency of global message outreaches

RLNC Random Linear Network Coding

RGG Random Geometric Graph

RGGT Random Geometric Graph on a Torus

S-graph Spatial graph

SGHS S-graph Hazard State

SSSP Single-Source Shortest Paths

SDSP Single-Destination Shortest Paths

SWN Small-World Network

WSN Wireless Sensor Network Network
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