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meiner Eltern, die mir alle Möglichkeiten geboten haben um eine ausgeze-
ichnete Ausbildung zu erhalten und für mich immer Stütze und Ratgeber
waren.

Mein besonderer Dank gilt auch Anita Sobe, dafür dass sie eine so weite
Strecke diese Weges mit mir gegangen ist.



4

Abstract

Cameras have become ubiquitous in our society. Not only are they built
into things of everyday life like phones or cars, they are also used in surveil-
lance of public and private spaces. Smart cameras which are able to process
the captured video data onboard can be connected to large networks (vi-
sual sensor networks). Typically, visual sensor networks are composed of
resource-limited devices. Here, coordination among the devices is needed to
enable an e�cient use of resources. Especially in cases where visual sensor
networks are deployed without network or power infrastructure, resource-
coordination is especially necessary to prolong the network lifetime.

This thesis investigates methods to reconfigure visual sensor networks to
achieve a tradeo↵ between surveillance quality and resource consumption.
First a formal description of the problem is presented. Based on this, the
algorithmic design space of this problem is explored. A centralized approach
using an evolutionary algorithm is presented for use in environments where
no dynamic changes are expected. For environments with slow changes
in the surveillance requirements, a distributed algorithm is described. For
environments with fast changes, this algorithm is complemented with an
object-handover algorithm.

Besides algorithms, software tools which support reconfiguration in vi-
sual sensor networks are presented. This includes a software framework for
sequential data processing and a distributed middleware system.

In extensive evaluations the significant resource savings achievable with
the presented algorithms are shown. Finally, the applicability of the devel-
oped evolutionary algorithm in a di↵erent field is shown. In a cloud server
infrastructure, the load balancing is reconfigured to achieve cost savings
without lowering the service quality.
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Chapter 1

Introduction

Cameras have become ubiquitous in our society. Cameras are in phones, TVs
and many other electronic devices. In addition, there is also a high number
of fixed mounted cameras which are e.g. used for video surveillance of public
and private spaces, highways or other areas. Traditionally, those cameras
are delivering live images to a central place where they are either recorded
or viewed by operators. As the number of cameras increases, the amount
of information delivered at every time instant is becoming too high to be
reliably processed by humans. The advent of so-called smart cameras[101]
is targeted at the one hand at relieving human operators by automatically
processing the captured videos and on the other hand to enhance surveillance
systems with additional services. Unlike traditional CCTV cameras, smart
cameras do not just transmit the recorded videos but they are equipped
with processing capabilities and can extract relevant information from video
data. This can be done automatically without the need to involve a user.
The processed results are delivered to operators. This facilitates the work
of an operator.

Sensor networks are a class of applications where numerous small sen-
sors are deployed in an environment to sense certain types of parameters[3].
Those sensors form a network and exchange data in order to transmit their
sensing results to a consumer. Progresses in miniaturization and wireless
networking techniques have enabled the construction of large-scale sensor
networks at low costs[2, 1]. A sensor network to detect a fire outbreak in a
building could for example be realized using temperature sensors deployed
all over the building which register a fast increase in temperature. Each
sensor can be realized as an autarkic unit by incorporating energy supply
and wireless networking technologies.

VSNs are a special type of sensor networks where cameras are used as
sensors[93]. A camera typically has a limited Field of view (FOV), i.e.,
it cannot record data from 360� around it. Thus,VSNs form a subclass of
sensor networks, the class of directional sensor networks. Smart cameras are
often deployed in VSNs. Smart cameras are equipped with computational
units and are able to process the collected data directly onboard[79].

VSNs have gained huge interest in the research community over the last
decade. In traditional camera surveillance systems, operators have to view
the streams coming from multiple cameras in order to detect relevant events.
This procedure is exhausting and error prone. By composing camera net-

9
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works from smart cameras, more intelligence can be brought to the network,
thus helping users to concentrate only on important information[78].

Current VSNs rely on a certain infrastructure like wired access to the
power grid or a fixed networking infrastructure. This limits their application
to areas which provide this infrastructure. In order to be able to deploy
a VSN without infrastructure, they must be able to operate from scarce
resources.

1.1 Motivation

The motivation for this thesis is to investigate on operating VSNs without
infrastructure and with no fixed energy supply. This demands for a method
to optimize the resource consumption to maximize the network lifetime. In
the SRSnet project, several approaches for energy optimization in a VSN
have been evaluated.

1.1.1 Use Case: SRSnet

Smart Resource-aware multi-Sensor Network (SRSnet) is a cooperative re-
search project of Lakeside Labs1, the Groups of Pervasive Computing and
Transportation Informatics at Alpen-Adria Universität Klagenfurt as well
as the Italian companies EyeTech2 and InfoFactory3.

The major goal of this project is the development of techniques and
methods to enable the deployment of VSNs in harsh environments, i.e.,
areas where no permanent power supply or wired networking is available.
This poses several challenges that must be met.

First, the network must be able to be operated from unreliable power
sources such as batteries and solar cells.

Second, the overall energy consumption of the system must be low enough
to enable a suitable lifetime of the network. This requires the use of low-
power hardware as well as a software-based approach to resource conserva-
tion.

Finally, the software executed at the sensor nodes must be tailored to
be run on a platform with low computational power.

Project Organization

Our deployment use-case is the Carinthian Nationalpark ”Hohe Tauern”. In
a park like that, the surveillance network is deployed in a biologically sensi-
tive environment to autonomously detect various events such as intrusions
into restricted areas, animal wildlife or perform tasks like visitor counting.

1http://www.lakeside-labs.com
2http://www.eye-tech.it
3http://www.infofactory.it

http://www.lakeside-labs.com
http://www.eye-tech.it
http://www.infofactory.it
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Figure 1.1: The project parts of SRSnet and their relations. Low-level anal-
ysis, complex event detection and energy optimization are executed directly
on the platform. Relevant processing results are sent to the data warehouse.

To achieve this, components for sensor data processing, event detection,
storage as well as algorithms for resource-aware reconfiguration must be
employed.

In SRSnet this done by combining the low-level features extracted from
sensor data into high-level events by using a complex event detection engine.
Low- and high-level features and events are fed into a data warehouse which
presents results to end-users. Sensor data processing and complex event de-
tection are hosted at the sensor platform itself. Additionally, the component
for resource-aware reconfiguration determines the parameters for the sensor
data processing part during the runtime and thus, it is also hosted on the
sensor node. The data warehouse is realized as a web-based service. Figure
1.1 shows how the components of SRSnet integrate.

During the three years project time of SRSnet new techniques and meth-
ods for operating a smart camera network in infrastructure-limited environ-
ments have been developed. In the first year, several test data recordings
have been performed in the National Park ”Hohe Tauern” as well as in the
Lakeside Park in Klagenfurt. Based on the collected test data, techniques for
computer vision on limited-performance hardware as well as a fast method
to perform complex event detection have been developed. During the second
year, a first test deployment in the National Park was done. In the final year,
improvements have been applied and a final deployment was undertaken to
show the final network performance.

The work in the SRSnet project is in part covered in this thesis. The
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development of algorithms for the energy optimization module led to the
development of the resource-aware reconfiguration algorithms presented in
section 4. In addition, the energy-e�cient, high-performance wireless VSN
node which is presented as the PandaCam later in this thesis (section 6)
was built in this project. Further, SRSnet sensor network, which contains
all project parts connected by a common software framework was used in
many experiments presented in section 6.

1.2 Contributions to the State of the Art

This thesis explores the problem space of finding or approximating resource-
optimal configurations for VSNs. This requires finding an optimal assign-
ment of tasks to camera nodes in a VSN with the goal of a reduced resource
consumption while still providing su�cient sensing and processing perfor-
mance to achieve meaningful application results. It also includes finding
optimal operating parameters for image processing tasks on smart cameras.

The main contributions of this thesis include:

Formalization of the problem. A formal description of the problem space
and of the optimization goals has been developed and is used as
basis for the development and evaluation of algorithms[19].

Exploration of the algorithmic design space. In course of this thesis
several algorithms for di↵erent areas of the problem space have
been developed[76]. This includes

• A centralized algorithm for environments with no dy-
namic changes[19].

• A distributed algorithm for low-dynamic environments
where changes occur infrequently[21].

• A combined, distributed reconfiguration and handover
algorithm for highly dynamic environments[20].

Implementation, Demonstration and Evaluation. The algorithms have
been tested intensively in real and simulated environments. In a
test deployment the realizability of a resource-aware VSN powered
by autarkic energy sources has been shown[5, 4].

Generalization. Beginning with VSNs, the algorithms and models have
been applied in a di↵erent application area. In a cloud computing
infrastructure [18], the central algorithm is applied for server task
assignment.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows.
Section 2 covers important related work. Starting from single smart

cameras, the development of VSNs is described. In addition, more focus is
put on resource limitation in smart cameras and smart camera networks.

In section 3, a formal definition of the reconfiguration problem is given.
We introduce a formal description for coverage and resource consumption
and the corresponding optimization goals for the algorithms presented later.

Section 4 describes the exploration of the algorithmic design space. Three
algorithms for di↵erent environmental dynamics are presented. A central-
ized, evolutionary algorithm for environments with no dynamic changes is
presented first. It is suitable for a-priori calculation of configurations or in
settings, where it is feasible to collect all necessary input data in one cen-
tral node. For applications, where surveillance requirements change slowly
over time, a distributed algorithm is presented next. It exchanges messages
between nodes to negotiate the best solution. Based on this algorithm, we
show a third approach for applications where requirements for surveillance
change fast. As an example we use object tracking, where cameras need to
react fast in order to not lose track of an object

In section 5, software tools to support various aspects of reconfiguration
are presented. We present a software framework which helps in development
of evolutionary algorithms, a software framework for dataflow processing and
a middleware system which helps in the development of distributed (VSN)
applications.

We evaluate the presented algorithms in section 6. We show evaluation
results from realworld and simulated scenarios for our algorithms.

A generalization of the resource-aware reconfiguration is described in
section 7. We show the application of the central reconfiguration algorithm
in a cloud-computing environment. The servers used as backend in a mobile
applications are load-balanced according to the assignment calculated by
this algorithm.

Finally, section 8 concludes the thesis and gives an outlook to related
future research directions.
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Chapter 2

Related Work

In this chapter, relevant related work to the field of smart camera systems
and applications is discussed. First, smart cameras and their applications are
described. Then, applications of VSNs and middleware systems to support
VSN operation are presented.

2.1 From Smart Cameras to Visual Sensor Net-
works

Unlike traditional cameras, smart cameras have the ability to perform in-
situ processing of the captured image and video data. Smart cameras are
embedded devices consisting of a video sensor, a processing unit with at-
tached memory and communication facilities. As the sensor captures new
image data, it is directly processed in the processing unit. After that, a
high-level description can be produced and disseminated using the commu-
nication facilities.

Typical tasks performed on a smart camera are the capturing of images,
image registration, object detection, object tracking and reasoning about
the object class, intentions and actions of tracked objects. Depending on
the application scope, di↵erent algorithms have been proposed to perform
all these tasks.

Smart cameras have a wide range of applications. They are used for
tasks like detecting motion in simple security applications or gestures for
human computer interaction [101, 85]. A more complex applications is the
surveillance of crowded public spaces like train and subway stations or air-
ports [38, 39, 74]. The goal is to detect suspicious behaviors and threats to
public safeties like lost luggage (as depicted in figure 2.1).

Smart cameras are also well suited for monitoring tra�c [10]. They can
be deployed at a fixed location and report unusual events like car accidents
and congestion[68].

In elderly care, smart cameras can be used as an unobtrusive way to
ensure the welfare of inhabitants by automatically detecting e.g. falls[98, 31].

Depending on the application goals, di↵erent forms of image processing
may be performed. However, in any case, the chosen procedures must be
performed on a typically resource-limited system. Thus, careful evaluation
of the utilized image processing algorithms is crucial.

15
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(a) The captured image data (b) The objects detected in the video are
one piece of luggage and a person moving
away from it

Figure 2.1: The basic workflow of a smart surveillance sytem for left luggage
detection. The image data is captured, objects are detected and classified.
After that an alert may be issued to an operator. Still images were taken
from the i-Lids dataset for AVSS 2007

2.1.1 Smart Camera Platforms

Several hardware platforms for smart cameras have been proposed in recent
years. They di↵er in form factor, computational performance and power
consumption. Simple image processing algorithms may be performed on
devices which provide only very limited processing power but in return use
only little energy during operation.

Already in 1999, Moorhead and Binnie presented an approach towards
a smart camera [60]. An edge detection algorithm chip is combined with
a CMOS sensor. This yields high processing performance at low energy
demand.

In 2002, Albani et al. [6] presented a system on chip (SoC) design for
computer vision applications called VISoc. The chip includes not only a
visual sensor but also a RISC-processor and a vision co-processor as well as
several supporting components.

Cyclops [72] is a low-power wireless smart camera node. Its low power
consumption is ensured by various techniques such as on-demand access to
hardware resources like external SRAM or switching unused hardware sub-
modules to low-power states. Further, it integrates components for parallel
processing and extendability. A Cyclops node is typically attached to a host
processor which is then responsible for data processing.

The CMUcam3 platform [82] consists of an image sensor, a frame bu↵er
and a 60 MHz microcontroller. It provides su�cient processing power for
performing simple tasks like segmentation and consumes only approximately
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0.5 Watts in full operation. The image sensor delivers images of 352⇥288
pixels at 50 frames per second.

The Fleck platform [89] is a modular system consisting of a base board
which can be extended with expansion boards like GPS or camera. Besides
that, Fleck also features a real-time clock, a radio module and a trusted
platform module (TPM) for security-related applications. Data processing
is performed either on the built-in Atmega128 microcontroller or on an op-
tional DSP expansion board. Flecks power consumption depends on the
modules connected to it.

MeshEye [42] is a low-power stereoscopic smart camera platform for
smart video surveillance. It combines a VGA camera sensor with two kilo-
pixel imagers. The kilopixel imagers are used to perform simple object
detection and their stereoscopic setup is used to determine parameters like
distance and size. The corresponding image from the VGA sensor can then
be used to perform high-level vision analysis. In this way, a more energy
e�cient approach to stereoscopic image processing can be achieved since
the kilopixel images are sigificantly smaller than standard-resolution sensor
data. Computations on the MeshEye platform are performed on a 50 MHz
microcontroller.

Citric [14] is a platform providing a higher amount of processing power.
A processor running at a maximum frequency of 624 MHz and a large RAM
of 64 MB make Citric a suitable platform for more demanding computer
vision tasks. It is further equipped with an IEEE 802.15.4 wireless radio
enabling communication among nodes and to a backend. Despite its high-
performance specifications, it consumes in average approximately 1 W dur-
ing normal operation which makes it suitable for battery-powered operation.

Microsoft Kinect1 is a special platform which has gained a lot of interest
in recent years is [90, 107]. It is a self-contained vision sensor platform able
to not only capture images but also provide 3D-information on the captured
scene. It uses two cameras (one RGB, one infrared) in a stereo setup to
gain depth information in addition to the captured image data. Contrary
to platforms with similar capabilities which have been available for quite
some time, the Kinect is available at a very low price making it suitable for
large-scale deployment. Already, the research community has adapted the
Kinect platform in various fields like robotics [27, 95] or care applications
[15, 91, 62, 66].

Special Purpose Smart Cameras

In some cases, the architecture of a smart camera platform can be specially
tailored to meet a certain application purpose. Depending on the intended
use, di↵erent hardware components and setups can be chosen.

1http://www.xbox.com/Kinect and http://www.kinectforwindows.org

http://www.xbox.com/Kinect
http://www.kinectforwindows.org
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Kleinhorst et al. [48] present the INCA+ platform, a smart camera
especially aimed at face recognition applications. They divide the tasks
involved in face recognition into two categories:

Low-level operations on pixel level which can be performed in a massive
data-parallel fashion, like grayscaling or brightness correction

High-level tasks where parallelism is required at the task level, e.g. edge
detection or scanning a database for matching faces

INCA+ is a multi-processor platform consisting of a massively paral-
lel SIMD-enabled (Single Instruction Multiple Data) processor for low-level
tasks and a DSP for high-level tasks connected in series. Thus, captured
images are first processed by the SIMD processor and the results are then
passed to the DSP for further processing. The system can detect faces at
a rate of four frames per second, and recognize faces at three frames per
second.

TRICam [7] is an embedded platform for multimedia surveillance appli-
cations in remote locations under harsh conditions. It features a powerful
DSPs for image processing, a FPGA for bu↵ering frames between video sen-
sor and the DSP as well as several communication interfaces. If necessary,
it can be expanded to use up to three DSPs.

GestureCam [86] is a smart camera for hand gesture recognition. A
FPGA is used to perform the data-intensive video processing required to
detect hand gestures.

In [8] the authors describe an embedded platform for tra�c surveillance.
While typical smart cameras are equipped with either a CCD or a CMOS
sensor, this platform uses a temporal contrast vision system. Instead of
constantly producing image data (like traditional sensors), here each pixel
of the sensor is sensitive to illumination changes and only transmits data, if
a change in contrast (i.e. some kind of change or motion) is detected. This
drastically reduces the amount of data to be processed. Further processing
is performed on a DSP.

TrustCAM [99] is a smart camera platform especially designed for privacy-
aware surveillance application. Processing is performed on a 480 MHz ARM
Cortex A8 and a DSP. In addition to that, it contains a trusted platform
module which is used to ensure integrity, authenticity and confidentiality of
all captured image data. It is further equipped with a 802.11 WLAN radio
and an XBee module for low-power low-bandwith communication.

Comparison of Smart Camera Platforms

Table 2.1 shows a comparison of smart camera systems. Computing power
and energy consumption are rated from �- low via •- medium to • -
high or ?- unknown if not specified. The table shows the wide range of
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Moorhead-Binnie [60] � — �
VISoc [6] � — �
Cyclops [72] � on host �
CMUcam3 [82] � — •
Fleck [89] µC:�

DSP:

•
ISM
433,
868,
915
MHz

• realtime
clock,
TPM,
expansion
slots

MeshEye [42] � 802.15.4 • stereoscopic
Citric [14] • 802.15.4 • power

man-
agement
IC

INCA+[48] • — ?
TRICam [7] • Ethernet ? up to three

DSPs
GestureCam [86] • — ? FPGA-based
Bauer et. al [8] • — •
TrustCAM [99] • 802.11, XBee •

Table 2.1: Comparison of di↵erent smart camera platforms.

power and performance properties of various models ranging from models
for simple tasks which feature low energy consumption and low processing
power to high performance cameras for complex tasks which require more
energy during the operation. In addition, the provided networking facilities
di↵er from low-power low-bandwith 802.15.4 to wireless LAN. In addition,
di↵erent processing units and application-specific extra components can be
found.

2.1.2 Visual Sensor Networks: Distributed Smart Cameras

A single smart camera definitely is an enhancement over a simple video
camera. However, there are problems that cannot be solved with just a
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single smart camera. Occlusions in a scene are one example of problematic
situations. If objects are hidden by other objects or the environment, a
single camera might deliver unreliable or faulty results. Other examples are
surveillance of wider areas or buildings. Many problems can be overcome
by using multiple cameras and fusing the data of multiple cameras in order
to achieve a global result. This is called a Visual Sensor Network (VSN)
[53] or a network of distributed smart cameras [79]. Typical properties of
a VSN are i) distributed (in-network) sensing and processing on ii) embed-
ded devices with typically iii) low-power wireless networking technologies
as communication media. Figure 2.2 shows the research field of distributed
smart cameras is positioned within related fields.

Figure 2.2: Fields contributing to distributed smart cameras

A VSN is a distributed system of smart cameras where each camera
processes the captured data locally and exchanges information with other
cameras in the network to reach the global goal. Many di↵erent applications
of distributed smart cameras have been proposed so far [93, 1, 97].

ASAP [88] is a camera network to enable situation awareness of comput-
ing systems. It is able to survey a certain area, process the collected data
and trigger certain actions based on detected events (sense-process-actuate).
As an example, ASAP senses video data, processes it to detect and identify
faces and triggers an alert if a person has entered a prohibited area. ASAP
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implements an agent-based approach to abstract sensing and high-level pro-
cessing. ASAP is able to incorporate heterogeneous sensors like cameras,
RFID readers and fire detectors. The results of the sensor fusion can later
be queried using an SQL-like query language.

In [94] a VSN for distributed object tracking is presented. A distributed
Kalman consensus algorithm is used to establish a common model of the
ground plane on all cameras. This knowledge is later used to perform object
hando↵ between cameras.

SensEye [49] is a VSN aimed at improved latency and energy-e�ciency.
It is composed of multiple layers where each layer has di↵erent capabilities
and features in terms of sensing and processing capability and energy de-
mand. A lightweight and energy-e�cient layer of CMU-cams (see section
2.1.1) attached to simple Motes, the second layer consists of Stargate boards
which are more powerful, the third layer features PTZ-cameras connected
to embedded PCs. The lowest layer performs simple object detection. By
default, the higher and more powerful layers are in sleep mode. Whenever
relevant detections are made in the lowest layer, higher layers are activated
to perform more demanding tasks. By always choosing the lowest possible
layer to perform a specific task, SensEye is able to be very energy e�cient
and yet responsive to important events.

DMCTRAC [43] is a distributed smart camera network consisting of
PTZ-cameras. These cameras need additional control to ensure that cam-
eras are always oriented optimally to fulfill a certain task. To achieve this,
a master/slave approach is taken where one camera has the tracking re-
sponsibility for a certain object and is thus adjusting its PTZ parameters in
order to follow it while it moves. The other cameras are acting as slaves by
providing additional information and searching for new objects.

Fleck et al. [31] present an application of smart cameras in the area of
assisted living. Here, especially the assistance of elderly persons is in focus
of the project. A network of smart cameras which perform person tracking
and activity recognition is employed. The collected data is sent to a server.
Multiple visualizations use the data of the server to show the recognized
events as a virtual 3D reconstruction[32], in a 2D overview map or as the
raw video feed.

Kwangsu and Medioni [47] use a VSN of static and mobile (robotic)
cameras in scenarios where robots for human interaction need additional
information about the surroundings. The static camera nodes perform per-
son tracking and feeds this information to mobile robots which use stereo
cameras to detect command gestures of users.
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2.2 Resource-limited Camera Networks

In many multi-camera networks [37], the available resources are limited.
Especially in the field of distributed smart cameras [79] and VSNs [1, 93],
resource limitations must be considered during system design. While data
in traditional camera networks is processed at a central node, in VSNs the
processing of the visual data is distributed among the individual camera
nodes. This leads to minimized communication e↵ort since no raw data
must be transferred. Thus, the communication infrastructure can rely on
channels with lower bandwidth which consume less energy [80].

Recently, research interest has focused on resource assignment in camera
networks. First, computing platforms and sensors are one such field. As
described in section 2.1.1, resource e�cient camera platforms have already
been proposed.

Second, a software-side approach to dynamically manage resources can
be employed. Suitable functional configuration for nodes and network which
minimize resource consumption during operation have to be found [93].

Maier et al. [52] describe dynamic power management method for camera
networks called PoQoS. Individual camera components change their power
modes based on the current performance requirements of the network. For
this an genetic algorithm for multi-objective optimization is used. It presents
multiple solutions for the optimization dimensions ’maximizing service qual-
ity’ and ’minimizing power consumption’. A dedicated management com-
ponent then picks one of the solutions and reconfigures the cameras appro-
priately.

In Winkler et al. [100] a multi-radio approach is proposed. The system
dynamically switches between low and high power radios depending on the
current requirements of the application. During normal operation, a low-
power channel is used to transmit management commands. Whenever larger
amounts of data need to be transferred, a high-power radio is activated.

Karuppiah et al. [46] present a hierarchical approach to resource man-
agement and reconfiguration of distributed smart cameras. In this system,
fault containment units (FCU) rely on a redundant set of resources which
are provided as services. The local redundancy within the FCU allows to
compensate faults at the local level. If this fails, the FCU can propagate
the error up the hierarchy where it might be compensated by another FCU.
Within the FCU hierarchy, resources are allocated dynamically to adapt to
di↵erent bandwidth requirements (e.g. raw data vs. compressed images).

Durmus et al. [26] propose the ”event based fairness scheme” for fair
resource management in VSNs. It allocates resources in the network ac-
cording to the event category and priority to ensure fair routing of events
but to also prioritize more important events. This is achieved by adapting
packet queues in routing nodes and the contention window.

Shiang et al. [87] evaluate di↵erent strategies for the allocation of wireless
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networking resources. Three algorithms, a centralized, a game-theoretic and
a greedy approach, are proposed and an evaluation on which algorithm is
best for which setup is performed.

Zou et al. [109] reconfigure routing, network flow control and video en-
coding to optimize for network lifetime. Based on a model of power con-
sumption for network coding, a distributed algorithm to reconfigure the
network parameters is developed.

Casares et al. [11] try to maximize processor idle time on smart cameras
in order to prolong the node lifetime. Depending on scene content, the
method can selectively send camera nodes to sleep to save energy.

Yu et al. [103] propose a camera selection and energy allocation strategy
for battery powered camera networks. The goal is to deliver a user-requested
view in a VSN. The method selects cameras and allocates resources using a
stochastic model of the network lifetime.

He et al. [41] characterize relationship between power consumption and
rate-distortion performance of a video encoder. Based on this the authors
investigate on the optimal power allocation between encoding and wireless
transmission, i.e. when increasing compression to reduce the amount of data
is cheaper than transmitting more data and compressing less.

Chen et al. [13] propose an adaptive resource management mechanism for
camera hando↵. The method incorporates the number of currently tracked
objects on a node and the resources needed to track an additional one. By
prioritizing objects in the scene, it is possible to achieve a defined minimum
frame rate while tracking.

In [61] the authors propose a camera control scheme using additional sen-
sors to selectively turn on and o↵ cameras to save energy. In this case, audio
sensors which use less energy than cameras are used to detect interesting
events and only then, cameras are activated to perform video surveillance.

Monari and Kroschel [59] present a framework for single-object multi-
camera tracking which performs sensor selection and task migration. The
framework dynamically instantiates a new distributed object tracking pro-
cess for each new object which is then tracked over multiple cameras. There-
fore, each instance only focuses on one single object and is not required to
incorporate other properties of the scenes.

2.3 Sensor Placement and Selection

A fundamental question in building sensor networks is where to place the
sensors. During operation, selecting the right subset of sensors for a specific
task is another crucial aspect to providing optimal coverage at low cost[50].
The area of interest is often described by a set of critical sites (referred to as
control points), and each control point has to be covered by at least k sensor
nodes. Optimal node placement has been shown to be a NP-hard problem
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[102]. To tackle such complexity, heuristic approaches to approximate an
optimal solution have been proposed (e.g., [65]).

Camera networks having directional sensors pose additional complexity
in finding an optimal placement [64, 92]. Similar to the omnidirectional
case [12], often integer linear programming (ILP) models are used to repre-
sent the problem [63]. Several heuristics to approximate have been proposed
[34, 40]. These approaches are based on di↵erent constraints regarding the
sensors (homogeneous vs. heterogeneous; fixed vs. mobile), assumptions on
the environment (static vs. dynamic), sensor coverage models and the op-
timization goals. For instance, simple 2d representations like segments or
trapezoids are often used to model the covereage are of a sensor (e.g., [44]
[64] and [40]).

Coverage in Pan Tilt Zoom (PTZ) camera networks changes during op-
eration due to the change in the PTZ parameters. This can be exploited to
achieve the maximum useful coverage of an area [55]. Changes like moving
control points can be adapted to and thus e.g. continuous tracking coverage
can be ensured. Here, it is especially important to employ suitable control
mechanism for accurate control of the cameras. This requires sophisticated
coverage models [57, 46]. Several PTZ reconfiguration algorithms have been
presented. Piciarelli et al. [67] use activity maps, where areas of high ac-
tivity are highlighted, to reconfigure PTZ parameters in order to cover the
most active areas. Soto et al. [94] use cooperative network control based
on multi-player game learning to continuously track objects in a PTZ net-
work at a desired resolution. In [71] the authors present a tool to simulate
a camera network using virtual reality. Cameras can be freely placed and
moved. This can then be used to develop and improve methods for camera
reconfiguration.

Placement, coverage and routing in VSNs have often been identified as
being multi-objective optimization problems [81]. Rajagopalan et al. [73]
employ evolutionary algorithms to optimize placement coverage, routing and
aggregation for Wireless Sensor Networks (WSNs).

2.4 Middleware for Distributed Smart Cameras

Middleware systems take over typical tasks which are common in many
distributed computing systems like communication or modularization. They
help in building scalable and fault tolerant distributed applications.

Middleware systems specially designed for VSNs aim at providing sup-
port for developers of VSN applications in speeding up and facilitating de-
velopment [77, 58]. Cougar [9] or TinyDB [51] are data centric middleware
approaches. Middleton et al. [56] propose an agent-based middleware for
large camera arrays that provide intelligent access to sensors and in-network
processing. Other approaches using agent-oriented middlewares are Agilla



2.4. MIDDLEWARE FOR DISTRIBUTED SMART CAMERAS 25

[33] DSCAgents [69] and In-Motes [35]. A CORBA implementation for
smart camera systems is presented in [105]. [106] presents an embedded
middleware for person tracking where computationally expensive parts are
hardware accelerated using a novel system on chip design. These middleware
systems focus on reliable services for ad-hoc networks and energy awareness
[104]. The spectrum ranges from a virtual machine on top of TinyOS, hid-
ing platform and operating system details, to more data-centric middleware
approaches for data aggregation (i.e., shared tuplespace) and data query.
Agilla [33] and In-Motes [35], for example, use an agent-oriented approach.
Agents are used to implement the application logic in a modular and ex-
tensible way and agents can migrate from one node to another. Cougar [9]
or TinyDB [51] follow the data-centric approach, integrating all nodes of
the sensor network into a virtual database system where the data is stored
distributed among several nodes.

[106] presents an embedded middleware for person tracking where com-
putationally expensive parts are hardware accelerated using a novel system
on chip design.

Detmold et. al [17] present a multi-layered middleware for distributed
video surveillance. The signal processing layer at the bottom is responsible
for collecting raw video streams and managing the video processing. A ser-
vices layer o↵ers facilities for topology estimation, camera management and
streaming. The topmost layer is concerned with interpretation of collected
video data. This middleware however, is not suitable for embedded oper-
ation since it builds on top of services like HTTP transport which cause a
major overhead. Thus it builds upon an infrastructure of backend servers
which handle CPU-intensive processing tasks.

In [25] the authors present a publisher-subscriber middleware for DSP-
based smart cameras. It can be used for dynamic reconfiguration, i.e. for
changing the tasks running in the system. Publishers provide data which is
then consumed by subscribers. Both can reside either on the same DSP or
on a remote processor connected via PCI.

This framework is used in [24] to perform power-aware reconfiguration on
DSP-based smart cameras. Reconfiguration here means either changing the
QoS-level (e.g. framerate) or locality (processor, node) of a task or changing
the power levels of hardware components. Since QoS and power demands are
contrary dimensions for optimization, an evolutionary algorithm for multi-
dimensional optimization is employed to solve the problem.

In [45] Jovanovic et al. use the previous two approaches for dynamically
changing the configuration of a VSN. They focus on exchanging and chang-
ing software tasks running on the respective cameras. This enables higher
flexibility, robustness and resource utilization in a VSN.

[75] presents an agent-oriented approach to middleware for DSP-based
smart cameras. Here, autonomous agents are used to transfer processing
functionality between nodes. In a multi-camera tracking case study, agents
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hop from one node to another in order to continuously track an object
moving through the surveyed area. The authors present an evolved version
of the middleware with improved performance characteristics in [70]. This
middleware system is then further developed and presented in [69].

A middleware for resource-aware data management using a distributed
event space is proposed in [83].

A publish-subscribe middleware for wireless sensor networks has been
recently presented in [96]. A special feature of this system is that it is able
to connect clusters of a sparse WSN by piggybacking data on mobile nodes
(e.g. mobile phones) moving between clusters. However, its HTTP-based
communication causes some overhead in the communication channel.

2.5 Di↵erences to the State of the Art

Although the presented related work has some similarities to the approach
presented in this thesis, there are significant di↵erences.

First, we consider the coverage and task assignment problem as finding
an optimal VSN configuration where the in-networking processing (i.e., task
assignment) can be changed as well. This requires the algorithms to adapt
to changes in the requirements at runtime. Thus, our algorithms can process
a non-static task assignment.

Second, resource consumption and sensor coverage are modeled corre-
sponding to the di↵erent requirements of the camera nodes. In this thesis
models of two di↵erent hardware platforms are shown. They can be com-
bined in one network. The presented algorithms then choose the models
according to the platform of each sensor node individually. Resource con-
sumption and coverage quality are modeled for di↵erent algorithms of the
same class (e.g. multiple algorithms which perform background subtrac-
tion). This enables an algorithm to choose a certain algorithm according to
resource and quality requirements.

Finally, e�cient approximation algorithms are presented for environment
with di↵erent dynamic characteristics. We demonstrate algorithms which
are designed for di↵erent levels of dynamics in the environment. A cen-
tralized evolutionary algorithm for scenarios where the the task assignment
does not change is presented along with two distributed algorithms which
deal with infrequent and very frequent changes in the task assignment.



Chapter 3

Problem Definition

This section is adapted from [19, 20, 21]. In this chapter we define the VSN
reconfiguration problem in more detail. After an overview of the challenges,
we develop a formal description of the problem and define the optimization
goals.

3.1 Overview and Assumptions

As shown in section 2, resource awareness is a booming research topic in
the field of VSNs. Managing the resources available on embedded camera
platforms is key to its e�cient operation. Cameras with more tasks assigned
than they can handle will not deliver the expected results and performance
while cameras with a lot of free resources decrease the network e�ciency. In
networks with both limited computing resources and limited energy reserve,
a resource management mechanism can extend the network lifetime.

In this thesis, we concentrate on resource limited VSNs with various
requirements for resource management. First, we consider networks where
a set of heterogeneous tasks must be performed. This means that not all
cameras perform the same processing on the collected data but rather that
e.g. one camera may be tracking objects while another one may perform face
recognition or motion detection. Tasks typically have constraints in terms of
location and quality, i.e, one task needs to be performed at a certain part of
the area of interest (e.g. face detection at gates) and with a certain quality.
A smart resource management mechanism needs to choose the camera to
perform a certain tasks considering the camera’s resource state, the quality
and the location requirements of the task to perform.

Second, we consider networks where some tasks require collaboration
between cameras. A typical use case is distributed object tracking, where
at each point in time, one camera is responsible for tracking a specific ob-
ject. Whenever this object is about to leave the camera’s FOV, it must be
handed over to another camera to guarantee continuous tracking. This use
case poses a challenge not only in selecting a suitable camera for handover
but also considering the resource constraints of each camera involved. It
is not possible to hand over an object to a camera which is already at its
resource limits. Thus, the resource management must be tightly integrated
into the handover mechanism to guarantee flawless, resource-aware tracking
performance.

27
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Finding an optimal network configuration while at the same time sticking
to various functional and resource requirements is fundamental in this area.
In contrast to typical optimization problems, we focus here on a combined
sensor selection and resource allocation problem. Objectives are (i) selecting
a subset of cameras nodes in the network which provide su�cient coverage
to monitor the area of interest, (ii) selecting the sensors’ frame rate and
resolution accordingly and (iii) assigning the required monitoring and data
processing procedures to the camera nodes. This configuration of the camera
network must satisfy both the resource requirements on the camera nodes in
the network as well as the monitoring constraints of all observation points.
Finally, we aim at constructing a generic framework for task assignment and
resource allocation to reconfigure camera networks in various scenarios with
di↵erent levels of activity.

A sample of the considered configuration problem is depicted in fig-
ure 3.1(a). A set of n camera sensors S is placed on a 2D space. We represent
the coverage area of each camera with a segment. The set T = t1, . . . , tm
contains all observation points in the area. Each t

j

2 T has to be covered by
at least one camera at a given QoS. Frame rate (fps) and pixels on target
(pot) (i.e. the pixel resolution at the observation point) determine the QoS
delivered for one observation point. The covering camera (s

i

covering t
j

) has
to deliver the monitoring activity a

t

j

of the observation point, i.e., a set of

image processing procedures P̃
s

i

must be executed at s
i

while not exceeding
the available resources (processing, memory and energy) of the camera.

A potential solution to the example configuration problem depicted in
figure 3.1(b). Cameras s1, s3 and s5 are selected. t1 is covered by s1, thus
this camera is configured to achieve at least 8 fps and 20 pot. It performs
change detection. t2 and t3 are covered by s3; thus, s3 must achieve 18 fps
and at least 30 pot at t2 and 40 pot at t3. s3 performs change detection
and object tracking procedures. Finally, s5 covers t4; this camera must be
configured to achieve at least 8 fps and 30 pot and execute object detection
procedures.

For modeling the network configuration problem we make the following
assumptions1:

• The camera network consists of directional sensors with a fixed
position and fixed field of view (FOV). The frame rate and the
resolution of the image sensor can be changed within an a-priori
known set of sensor configurations.

• Each camera is able to capture images (at the defined resolution
and frame rate), to execute a sequence of image processing pro-
cedures and to transfer data/results to other camera nodes in the

1In [19] we describe an extension of our network configuration approach to optimize
PTZ camera configurations. Naturally, we are able to relax some of these assumptions for
this extension, i.e., fixed FOV and 2D space modeling.
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(a) Example

(b) Solution

Figure 3.1: A simple example for a sensor selection and resource alloca-
tion problem. Five cameras s1, . . . , s5 with fixed FOV (red segments) are in
place. Four observation points t1, . . . , t4 are to be covered by cameras. A
suitable network configuration must be found, i.e., the (sub)set cameras re-
quired to cover all observation points as well as the assignment of processing
parameters (fps, pot) and all necessary image processing procedures to the
cameras in this set. Quality requirements and resource optimization crite-
ria must be met. Potential optimization criteria include minimizing global
energy usage or maximizing overall network lifetime.
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network. This data transfer is realized in a simple peer-to-peer
manner. Complete communication coverage among the nodes and
a potential base station is assumed.

• The observation points are static locations in the monitoring area
which must be covered by at least one camera’s FOV at su�cient
resolution, i.e., pixels on target. The pixels on target are deter-
mined by the sensor resolution and the distance between camera
and observation point.

• We currently only consider convex 2D space without obstacles
restricting the camera’s FOV.

3.2 Problem Formulation

We consider a set
S = {s1, . . . , sn}

of n camera sensors.
For each sensor s

i

its

• geographical position (x
s

i

, y
s

i

)

• available resources r
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, e
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) describing processing, mem-
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• l possible data input configurations D
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is a tuple (res
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j

) representing a certain resolution and
the frame rate of the image sensor

are known.
The set D = {D

s1 , . . . , Ds

n

} represents the input configurations for all
cameras.

As illustrated in figure 3.2, a camera’s field of view is represented by the
orientation ✓

s

i

, the covering angle �
s

i

and the covering distance !
s

i

.

T = {t1, . . . , tm}

is a set of m observation points. For each t
i

2 T we know

• its geographical position (x
t

i

, y
t

i

)

• the required monitoring activity a
t

i

2 A (where A is the set of all
monitoring activities that the sensors are capable of)

• the required QoS expressed as pixels on target pot
t

i

and frame
rate fps

t

i
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Figure 3.2: The 2D model of the camera’s field of view which is defined
by the covering angle � (blue) and the covering distance ! (green) and the
orientation ✓ (red). The location of the sensor are depicted by x and y. The
field of view is indicated as gray area.

A high-level monitoring task which must be achieved at an observation
point t is represented by activity a

t

. Image compression and streaming,
change detection, object detection, object tracking and person counting are
examples for high-level activities. An activity is realized by executing some
image processing procedures at a camera. In general, there may exist several
di↵erent combinations of single image processing procedures which realize a
certain activity. For example, object tracking can be achieved by combining
a background subtraction procedure (e.g., mixture of Gaussian or frame dif-
ferencing), an object detection procedure (e.g., connected components) with
a tracking algorithm (e.g., CamShift or KLT tracking). Di↵erent combina-
tions of these procedures achieve the desired activity, but naturally impose
di↵erent resource requirements.

For each a 2 A we define the set P
a

=
�
p
a1 , . . . , pap

 
representing alter-

native procedures for achieving a. Thus, each p
a

i

2 P is a set of procedures
p
a

i1
, . . . , p

a

i

b

. The execution of all these procedures is necessary to achieve
a.

A camera is able to execute multiple activities at once. For each activity
a
i

assigned to that camera an appropriate p
k

from P
a

i

must be selected. The
set of sets P̃

s

j

contains all p
a

i

assigned to s
j

. If P̃
s

i

= ; no image procedure
is assigned to s

i

, and this camera can be switched o↵ to save resources.

3.2.1 Dynamic Environments

In some environments, surveillance requirements may change at runtime.
Observation points may be removed or added, their requirements or location
may change or moving objects may pass through the area which have to be
tracked continuously.

The properties of some tasks in this network change slowly. The task of
performing motion detection may change its quality requirements or location
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at some time e.g. based on operator input or activity maps [67]. However,
those changes are assumed to occur infrequently.

Other tasks like object tracking require highly dynamic action by the
cameras. As the object moves, a camera must determine when to hand over
the object to a neighboring camera (assuming a shared field of view) before
losing it.

In addition to observation points, we also define objects to track. They
share the quality requirements of observation points but represent agile ob-
jects in the observed area. They have high dynamics, thus the sensor net-
work must react quickly in order to not lose track of objects. If an object
approaches the borders of the FOV of a camera, it must be handed over to
a neighboring camera. In this handover procedure, the cameras must decide
which of them is best suitable for tracking the object, i.e. which is able to
deliver the required quality at low resource cost (computational capacity,
memory or energy reserves). The set of all p objects to track is defined as
O = {o1 . . . op}.

Figure 3.3 depicts our dynamic reconfiguration problem. A set S of
n camera sensors is placed on a 2D space such that they have a partially
shared FOV; the coverage area of each camera is represented by a segment.
Within the fields of view of the cameras’ five observation points (dots) and
one moving object (square) are placed.

Figure 3.3: A sample scenario with cameras s1 � s4. FOVs are depicted as
segments, five observation points represented as dots and one object with
its trajectory.

In this combined coverage and handover problem we want to minimize
the resource costs inflicted by static tasks (such as background subtraction)
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as wells as tasks with dynamic portions (such as tracking). However, re-
source consumption is not the only optimization criterion. We also include
the surveillance quality expressed as minimum pixels on target and framer-
ate for all objects and targets. Hence, we solve a multi-criterion optimization
problem in two dimensions where we find the tradeo↵ between surveillance
quality and resource consumption. To be able to perform the reconfiguration
at runtime, a distributed approach is required.

3.3 Reconfiguration

To optimize resource consumption, an estimation on resources must be made
before deciding on the configuration. A function r̃(P̃

s

i

, d
s

i

) ! (c̃
s

i

, m̃
s

i

, ẽ
s

i

)
calculates the required resources. It specifies processing, memory and energy
resources for the individual procedures. It depends on a specific data input
configuration according to the models described in section 4.1. The required
resources are specified on a single frame basis.

Pixels on target for a certain t
i

are computed using the function f(D⇥T ).
It is based on our simple 2D geographical model presented in section 4.1.1.

Feasible Configuration

We search for feasible configurations of the complete network. This means
that all resource requirements, QoS requirements and activity requirements
must be satisfied. Thus, for each sensor s

i

, the required memory and pro-
cessing resources of all assigned procedures P̃

s

i

must not exceed the available
resources. The required resources for the given input data configuration can
be computed by r̃(P̃

s

i

, d
s

i

). Thus, the following condition must hold:
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In order to satisfy the QoS requirements, every observation point must
be covered by at least one sensor. This point must be within the field of
view of the camera. The sensor must be configured to guarantee a certain
number of pixels on target:
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(3.2)

where l represents the number of sensor configurations.
Finally, to satisfy the activity constraints, every observation point must

be covered by at least one sensor which must execute the set of image pro-
cessing procedures that achieve the desired activity for that observation
point:

8t 2 T9s
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^ 9p 2 P̃
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j

: p 2 P
a

t

(3.3)
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3.3.1 Optimization Criteria

In general, there are multiple feasible configurations possible for a given
network configuration problem. Thus, we are interested in configurations
which optimize some criteria. This optimization can be performed in multi-
ple optimization criteria and with di↵erent optimization objectives. In this
thesis, we are focusing on three di↵erent criteria: (i) quality, expressed as
pixels on target, frame rate and surveillance activity; (ii) energy demand;
and (iii) processed data volume. Naturally, di↵erent criteria can be defined
as well.

Since r̃ calculates the resource usage for processing a single frame, we
define the remaining lifetime of a node using the required (ẽ

s

i

) and available
energy (e

s

i

) as well as the frame rate:

L
s

i

=
e
s

i

ẽ
s

i
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s

i

In terms of energy usage, the optimization can follow di↵erent criteria.
Examples criteria include:

• Minimum global energy usage:

min
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(3.4)

• Maximum lifetime for a specific node s
i

:

max (L
s

i

) (3.5)

• Maximum overall network lifetime:

max (min (L
s

i

)) (3.6)

Considering the data volume processed on a node we can minimize the
data volume with respect to resolution and frame rate.

min
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(3.7)

To express surveillance quality at the task level, we assign a quality
rating to the processing procedures using the function q(P̃ ). This function
then maps a set of image processing procedures to a quality ranking. By
accumulating all quality values, we achieve a global quality measure for our
surveillance tasks.

max
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i
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!
(3.8)
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Building on top of the problem and goal formulations presented above,
we can explore the design space defined by the formulations. This includes
optimizing in one or more dimensions like resource demand and quality
and in multiple levels of environmental dynamics where observation points
change and objects must be handed over. In the next chapter, we look at
the approach taken to perform this design space exploration.
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Chapter 4

Resource-Aware
Reconfiguration

VSNs for di↵erent application purposes and in di↵erent environments show
di↵erent dynamics in reconfiguration. In a VSN with no dynamics, the tasks
to be fulfilled do not or rarely change at all. Thus, it is typically su�cient
to calculate a configuration a priori and start the network operation on pre-
defined parameters. Whenever changes occur more frequently at runtime, a
distributed algorithm is a smart solution. Since a central algorithm needs all
resource and task information in one place, all nodes would need to regularily
transmit the corresponding data to the central node. This is an expensive
operation. Further, the central node is a single point of failure and thus,
no reconfiguration can be performed once it has failed. In a distributed
algorithm, all nodes participate in calculating a solution. In our design we
try to minimize the communication e↵ort needed to give nodes su�cient
information to calculate the solution. This removes the need for a central
node calculating a new configuration, thus removing communication e↵ort
and increasing the algorithm e�ciency.

In this thesis we explore resource-aware reconfiguration in environments
with di↵erent dynamics. For environments with no changes at runtime we
present an Evolutionary algorithm (EA) which is a centralized solution used
for a-priori configuration calculation. For applications where observation
points change at runtime, a distributed reconfiguration algorithm is de-
scribed. In VSNs where moving objects are handed over between cameras
and where thus a high dynamic can be observed, a hybrid observation point-
based reconfiguration and object handover algorithm is developed.

All algorithms use the same models to calculate coverage and estimate
resource consumption. Those predictions are used as basis to decide on task
allocation and algorithm parameters.

The remainder of this chapter is organized as follows. In section 4.1 we
first see how models for coverage and resources are constructed. Section
4.2 describes the centralized EA, section 4.3 describes the distributed algo-
rithm for low dynamic environments. Finally, section 4.4 shows the hybrid
reconfiguration and handover algorithm.

37
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4.1 Resource- and Coverage-Models

To perform an optimization of coverage and task assignment, a target goal
has to be defined. In case of resource-aware task assignment, the resources
must be an optimization goal along with the desired surveillance quality. To
assess the quality of a configuration, a prediction on the surveillance quality
and resource consumption of this configuration has to be made. This requires
models of both of these optimization dimensions.

4.1.1 Coverage Model

The coverage model is used to predict how good an object is covered by
a certain camera. It incorporates the Field of view (FOV) of the camera
as well as the distance to the object, the resolution of the camera and the
surveillance task it is performing. Besides the basic visibility of the object
(i.e. if it is in the FOV of the camera), quality is expressed by the pixels
on target, i.e. the number of pixels in the camera image which show the
objects, and the activity performed on the camera.

To compute the pixels on target for a certain target t
i

we use the function
f(D ⇥ T ) which is based on our simple 2D geographical model. The pixels
on target can be calculated by using the angular size of a unit sized object

at the given distance dist
i,j
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)2 between camera

s
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and observation point t
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.
By taking into account the camera’s resolution res

i

and the camera’s
covering angle �

i

, we can estimate the 1D resolution at the target, i.e., the
pixels on target of a unit sized object of 1m. This simple estimation is based
on the ratio between the angular size of the target within the camera’s FOV
(which can be approximated by 360

2⇡·dist
i,j

) and the covering angle �
i

.

We define
o as the objects real 1D size
r as the objects angular size within the cameras FOV and
d as the distance dist

i,j

.

d

o
=

360�

2⇡r
(4.1)

If we assume that the size of an object o is 1, this leads to Equation 4.2.

d =
360�

2⇡r
) r =

360
2⇡

d
(4.2)

Assuming that the image in a camera corresponds to a segment of a
circle (which’s size is �, the covering angle), we can say that the (horizontal)
resolution of the image res corresponds to full �. To get the amount of
pixels for an object of a certain angular size we multiply the resolution by
the fraction of r

�

(see Equation 4.3).
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pot = res · r
�

(4.3)

By substitution of the angular size using Equation 4.2, we can define the
function f as shown in Equation 4.4 independent of size measures. This is a
very simple model for calculating the pixels on target but it is su�cient to
develop an algorithm. If needed, this model can easily be exchanged with a
more complex one.

f(d
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if s
i

is covering t
j

.

0 otherwise.
(4.4)

4.1.2 Resource Model

The resource model predicts the load generated by a certain task in terms of
required CPU and memory resources. In addition, we calculate the energy
demand of a platform under a certain load. To model the resources used
by a certain task, we take into account the action which is performed, e.g.
which computer-vision algorithm is used to process image data. Combined
with parameters for image size and platform information we estimate the
load generated on the target device. Using a lookup table, we can assess
the energy consumed by the device during operation. This lookup table is
constructed by measuring load and energy demand when running the real
algorithms on the device. Another option to construct this model is using
a mathematical description of algorithm complexity, platform performance
and energy consumption information. This however is typically more com-
plex to construct and is computationally more expensive at runtime and
thus not a good option for using on an embedded system.

4.2 Central Algorithm for Static Environments

In this section, which is adapted from [19], we present a centralized solution
for the problem presented in section 3 for environments with no dynam-
ics. The presented algorithm is implemented based on the nEMO software
framework for multi-objective optimization (see section 5.1). The search
space for the combined coverage and resource allocation problem is typi-
cally very large. The number of potential solutions for this problem is very
high. Thus, a combinatorial search strategy becomes infeasible. Since this
search problem is also multi-objective (there exist multiple optimization di-
mensions), the solution is no single point in the search space but a set of
Pareto-optimal solutions. A popular approach to tackle multi-dimensional
optimization problems is the use of evolutionary algorithms (EA) [16] which
are inspired by biological processes and apply the ”survival of the fittest”
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principle in an iterative way [108]. Only the best solutions found in one iter-
ation of the algorithm are kept as basis to generate new, improved solutions.

In an EA, one permutation of the problem space variables is called a chro-
mosome or individual. Many chromosomes form a population (the working
set of the algorithm). In every iteration (also referred to as epoch) a certain
number of chromosomes is altered by the genetic operators mutation and/or
crossover. The mutation generates a copy of a single chromosome and alters
some variables of the copied chromosome. The crossover recombines parts
of two chromosomes to generate a new one.

During the breed of a new generation by mutation and crossover, the
population may grow. To keep the population size constant, the fittest
chromosomes must be selected at the end of each epoch. The selection
strategy is an elementary part of the evolutionary algorithm and consists of
two phases: (i) assigning a fitness value to each individual, and (ii) selecting a
subset of the population based on the fitness values and the applied selection
strategy.

The fitness of a chromosome is used to measure how it compares to other
chromosome. It consists of one or multiple numerical values calculated by
a fitness function. The fitness function is problem-specific and calculates
how good a chromosome reaches the optimization goal. In multi-objective
optimization, the fitness function typically calculates one numerical value
per dimension. These values are then called a decision vector.

In the selection, the best chromosomes of the current population are
chosen, the remaining are discarded. For single-dimensional problems, the
population is sorted according to the chromosomes’ fitness values. The chro-
mosome with the lowest fitness are removed until the population size is
reached.

In multi-dimensional problem spaces, this approach is not suitable since
each chromosome has more than one fitness value. Typical selection strate-
gies for multi-dimensional problems take only non-dominated individuals
into consideration. An individual i is said to dominate another individual
j if no element in the decision vector of i is smaller than the corresponding
element in the decision vector of j while at least one element is larger.

If the selected population is smaller than the targeted population size,
dominated individuals may be added to the population again to ensure a
maximum diversity.

The execution of an evolutionary algorithm can be influenced by chang-
ing the targeted population size (i.e., the number of individuals present
after selection), the mutation rate and the crossover rate (i.e., the number
of mutation and crossover operations in one epoch). Evolutionary algo-
rithms make heavy use of random variables (e.g., to select a chromosome to
mutate).
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4.2.1 Evolutionary Modeling and Approximation

Algorithm 1 Hierarchical evolutionary algorithm for approximating the
camera coverage and task assignment problem.

proc coverage and assignment(S, T,A) ⌘ //S,T,A as defined in section 3.2
//OUTPUT: active sensors S’ with assignments for D’ and P̃
//ENCODING: for every sensor s

i

its status and input config. d
i

2 D
i

pop := set initial population()
for e := 1 to number of epochs do

mutate(pop) //mutate sensor status and input configuration
evaluate(pop) //assign fitness using Equ. 3.2)
pop := select(pop)
c := filter covering solutions(pop) //take only ”covering” solutions
task allocation(c)
update(pop,c) //update the population with the task allocation results
elitist selection()

od

proc task allocation(c): ⌘
//INPUT: sensor selections satisfying ”coverage”
//OUTPUT: feasible solutions with ranking
//ENCODING: for every sensor s

i

2 S0 its assigned procedures p̃
i

pop := set initial population
for e := 1 to number of epochs do

mutate(pop) //procedure assignment
evaluate(pop) //(Equ. 3.1 and 3.3)
pop := select(pop)
elitist selection(pop)

od

We approximate the combined camera coverage and task assignment
problem in a hierarchical, evolutionary approach (cp. Algorithm 1). As
illustrated in algorithm 1, the algorithm takes the sets of sensors S, ob-
servation points T and activities A as inputs and returns a set of selected
sensors S0 ✓ S with assigned sensor configuration D0 and procedures P̃ .

In the first step, we focus on the coverage problem and search only for
sensor selections and input configurations satisfying the coverage require-
ments (Equ. 3.2). At the end of each epoch, these ”covering” solutions are
passed over to a second evolutionary algorithm searching for feasible task
assignments. This second step focuses on the resource and activity con-
straints (Equ. 3.1 and 3.3). Thus, the joint output of both steps satisfies
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all conditions for feasible solutions which are ranked according to the speci-
fied fitness functions. Although our problem formulation considers scenarios
with uncovered observation points (i.e., points which are outside the FOV of
all cameras) as infeasible, our algorithm implementation is able to eliminate
these points in a preprocessing step and still present solutions for all covered
points.

Note, that the camera coverage and task assignment problem can also
be approximated by a standard, non-hierarchically evolutionary algorithm.
However, our hierarchical approach helps to significantly reduce the number
of calls to the fitness functions which are computationally expensive and
dominate the overall runtime of the evolutionary algorithm. In the following,
we describe both steps of our approach in more detail. Note, that in both
algorithm steps, we generate the initial population by randomly select initial
resolutions, frame rates and activities from a given set. To generate an initial
set of tasks for a certain activity (task assignment), we randomly select initial
procedures that fulfill the given activity.

Camera Coverage and Input Data Configuration

In the first step we try to select the necessary sensors and set the resolution
and frame rate such that every observation point is covered appropriately.
The optimization goal is to minimize the data volume processed on all cam-
era nodes.

For the genetic encoding, a chromosome is represented by the status
(on/o↵) and the input data configuration d

s

i

of each sensor s
i

. The avail-
able input data configurations are represented in the set D. We only apply
mutation as genetic operator which simply corresponds to randomly chang-
ing the sensors’ status and input data configuration. The fitness function
is given by Equ. 3.2. The decision vector generated by the fitness function
is defined by two parameters. The first parameter is equal to the number
of observation points ”covered” by the chromosome, i.e., the number of ob-
servation points which have a properly configured camera covering them.
The second parameter corresponds to a cost metric referring to the data
volume processed at all sensors. It is calculated by the maximum possible
data volume of all nodes normalized by the total data volume processed at
all nodes.

costratio =

nP
i=1

(res
max

s

i

· fps
max

s

i

)

nP
i=1

(res
s

i

· fps
s

i

)
(4.5)

Task Assignment

The ”covering” solutions at each epoch of the first step serve as input to
the second step. Here we try to find a task assignment for every camera
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such that each activity of the covered observation points can be achieved
and the resource requirements of the cameras are fulfilled. The optimization
goal is the energy consumption and lifetime as specified in the optimization
objectives (Equ. 3.4, 3.5, 3.6 and 3.8, respectively).

A chromosome is represented by the set of assigned procedures p̃
i

to
all activated cameras s

i

2 S0. The potential assignments of procedures are
specified in P . In this step we also perform only mutation as genetic opera-
tor. Thus, the assignments of procedures to cameras are changed randomly.
The fitness function is defined by Equ. 3.1 and Equ. 3.3. For each solution
we can calculate the processing, memory and energy requirements, i.e., for
each feasible assignment P̃ the required resources c̃

s

0
i

, m̃
s

0
i

, ẽ
s

0
i

are computed

for all cameras s0
i

2 S0 by applying the function r̃.
The function r̃ can be realized either by a mathematical model of the

resource consumptions or by empirical measurements of the resource con-
sumptions on the target hardware. For our algorithm we adhere to the
second approach and measured the required resources for all algorithms and
input data configurations on the available camera platforms. These resource
values are stored in a table. Thus, the resource function r̃ can then be real-
ized as a simple table lookup.

The fitness function for this algorithm checks if the resource requirements
are met on all cameras. The first parameter in the decision vector is the
total globally achieved quality calculated according to Equ. 3.8. The second
parameter is computed according to the resource-related optimization goal.
For criterion 3.4, we calculate the global energy usage e

global

and use 1
e

global

as fitness value. For criterion 3.5, we calculate the lifetime for node s
i

and
this value it as fitness value. For criterion 3.6, the minimum lifetime is taken
as fitness value.

Elitist Selection

For both steps we use an elitist selection [108] method which stores the
best found chromosome independently of the main population in order to
avoid the loss of already found good chromosomes. In every epoch we add
chromosomes to the elite which are not dominated by any other element in
this elite. Note that chromosomes may remain in the elite. Thus, if the
same chromosome is still in the elite in later epochs, we (re-)use the stored
task assignment for that chromosome and can avoid the expensive execution
of the second step, i.e., a call of the algorithm ”task allocation()”.

If a feasible task assignment is found, the chromosome remains in the
elite, otherwise it will be removed. By restricting the use of the task alloca-
tion algorithm to only the members in the elite (and not to all members in
the population) we need to test only a small subset of the whole population.
In fact, this approach guarantees that only the chromosomes with the best
performance will be tested for resource and activity requirements.
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4.2.2 PTZ Optimization

Our approach for sensor selection and resource allocation considers only
static cameras. However, some camera networks might consist also of cam-
eras with pan, tilt and zoom (PTZ) abilities. Whenever PTZ parameters
are changed, the configuration needs to be updated. In this case, the EA
needs to be run again using the new network layout.

To be able to use the evolutionary algorithm it in PTZ scenarios, we com-
bine our approach with the expectation-maximization algorithm described
in [67]. This approach uses activity maps. An activity map shows the distri-
bution of activity in the area of interest over time. The PTZ parameters are
reconfigured in a way, that the area is covered optimally, i.e. that hotspots
in the activity map are better covered than areas with low or no activity. A
detailed description can be found in [19].

After the PTZ optimization has been performed, it is necessary to re-do
the task assignment. The output of the PTZ optimization algorithm is the
location, orientation and zoom factor of every camera in the network.

This output is the input for the task assignment evolutionary algorithm.
Observation points can be generated from activity maps i.e., an observation
points are placed in areas of high activity, but can also manually placed
by users. Afterwards the task assignment algorithm can find a new task
allocation for the reconfigured PTZ network.

4.3 Distributed Solution for Low Dynamics

In this section, which is adapted from [21], we describe our distributed algo-
rithm to solve the coverage and task assignment problem in scenarios with
low dynamics. The basic idea is that camera nodes autonomously act in a
greedy manner to cover observation points (also called targets) in their FOV.
They then exchange messages (so called descriptors) describing the required
resources to cover an observation point to inform other nodes of their lo-
cal solution. Improved solutions are identified by comparing the exchanged
descriptors. By performing periodic re-evaluation of the assignments (the
targets covered by that camera), the solution can be improved iteratively.

We assume that the information on a new observation point is dissemi-
nated by a single node. The node might for example decide based on activ-
ity maps [67] where a new observation point must be placed. In this case,
this node will be the first to transmit information about the new observa-
tion point. If an external operator defines new targets, this information will
enter the network at a single sensor node, thus this node will further dissem-
inate this information. We assume no knowledge on camera neighborhood,
the cameras exchange descriptors with broadcast messages. If we know the
neighbors however, we can multicast the descriptors to these nodes and re-
duce the communication in the network. Neighboring cameras are connected
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via two edges in the coverage graph.

Each camera stores the best descriptor for a certain target, be it a local
solution or the solution of a remote node. This stored descriptor is broadcast
whenever the camera receives a worse descriptor. We support multi-hop
dissemination of descriptors using this mechanism. This mechanism also
improves the robustness against message loss.

Algorithm 2 shows a pseudocode description of the distributed algorithm.
Nodes react to events such as the occurrence of new targets or the reception
of new descriptors. Due to this simple protocol, we can quickly react to
changed environmental circumstances and detected events in the monitored
area.

Figure 4.1 shows a sample execution with three nodes. After node A
broadcasts an initial descriptor for the new observation point, node C is the
first to answer but the best solution is found by node B. In steps 3 and
4, the nodes A and C confirm the best solution of B by broadcasting the
corresponding descriptor once again. This is also done to enable multi-hop
communication and to compensate for message loss.

Step
Node 0 1 2 3 4
A d

A

d
B

B d
B

C d
C

d
B

Figure 4.1: A sample execution pattern of the algorithm in a slotted rep-
resentation. Node A defines the observation point, Node B has the best
solution for it. d

X

denotes a message which carries the solution found by
node X.

4.3.1 Information Exchange with Descriptors

Nodes in our approach use descriptors to inform other nodes that an ob-
servation point has been covered with a certain amount of resources. A de-
scriptor is a small packet containing only the identifier of the sender node,
information about the observation point and the resources needed to cover
it. Depending on the optimization goal, the resource field can contain e.g.,
the energy used to cover a point (this corresponds to the optimization goal
of global min energy usage, Equation 3.4) or the remaining runtime that the
node has in the current configuration before its energy reserves are depleted
(this corresponds to the optimization goal of maximum network lifetime,
Equation 3.6).
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Algorithm 2 Event-based pseudo code of the distributed algorithm.

Algorithm distributed coverage and assignment()
begin
proc define(t) ⌘ //On define new observation point
if in FOV(t)
then

calc settings(t, out res, out fps, out activity)
d := calc res(res, fps, activity) //d is a descriptor
broadcast(d)

fi.

proc receive(d, t) ⌘ //On receive descriptor d for target t
if ¬in FOV(t) then exit fi
if is best solution(d) then exit fi
if ¬queue exists for(t)
then

q
t

:= create queue(t)
q
t

.add(d)
set timer(q

t

, ⌧ + ✏)
else

q
t

.add(d)
restart timer()

fi.

proc timer elapsed(q
t

) ⌘ //Timer of queue q
t

for target t has elapsed
d := best descriptor(q

t

)
d
l

:= get local descriptor(t)
d
s

:= get stored solution(t)
d
b

:= best(d
l

, d
s

, d)
if d

b

= d
then

store(d) fi //store d as remote best descriptor for t
broadcast(d

b

).

do periodically ⌘
foreach uncovered target t in FOV do
if t can be covered
then

calc settings(t, out res, out fps, out activity)
d := calc res(res, fps, activity) //d is a descriptor
broadcast(d)

fi od
od

do periodically ⌘
t := select target() //select one of the targets covered by this node
d := get local descriptor(t)
broadcast(d)

od
end
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4.3.2 Processing of New Targets

During the operation of the VSN, nodes can detect hotspots that need ad-
ditional surveillance activities. For those spots, they are able to define new
observation points with the respective surveillance requirements. There is
also the possibility, that new observation points are introduced by external
operators. This is done in the procedure define.

If a node defines a new observation point, it calculates the necessary
resolution, framerate and activity needed to cover this points. Using these
quality factors, it calculates which additional resource usage results from
those settings. There are cases where a target can be covered ”for free”
if a node already covers another target that requires the same (or higher)
settings. In all other cases, the additional resource demand is used as basis
for a descriptor (the di↵erence between the current resource usage and the
predicted total usage if the target is covered). From these calculations, nodes
construct a descriptor for this target which is sent out to the other nodes.

4.3.3 Processing a Descriptor

Nodes do not reply to each new descriptor at once. Rather, they wait for
a configurable interval ⌧ + ✏ for other descriptors for the same target to ar-
rive and they process only the best descriptor. Replying to new descriptors
immediately would require a higher amount of messages to reach an agree-
ment. ✏ is a small random factor for cases where the communication medium
provides no medium access control (MAC). It prevents nodes from sending
their results at the same time and to achieve a sequential communication
pattern. On a MAC-enabled medium, ✏ is 0.

Upon receiving a descriptor (procedure receive), the node first checks
if it covers the respective observation point. If so, it either adds it to an
existing queue or creates a new one for this target.

4.3.4 Evaluation of Bu↵ered Descriptors

After the bu↵ering interval ⌧ has elapsed, the node calculates a local de-
scriptor (the costs for it to cover it locally) and also checks if it has a
descriptor stored that was sent out by another node. This is done in pro-
cedure timer elapsed. From those two the node selects the better descriptor
and compares it to the best of the bu↵ered ones. The best descriptor is
stored locally as accepted solution and is broadcast to the other nodes as
a confirmation. If the node’s local descriptor is the best, it will cover the
given target. A node that has no observation points assigned can shut down
its sensory layer to save energy.
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4.3.5 Periodic Activities

Each node periodically o↵ers one of the targets it covers (typically the most
”expensive” one, but other selection criteria can be chosen as well) in order to
find nodes that may possibly cover that node with lower resource usage. This
incrementally increases the quality of the solution. We call this mechanism
the runtime re-evaluation of observation points.

Note, that the periodic o↵ering of already covered targets is also used as
a keep-alive signal to detect faulty nodes. This increases the robustness of
the system and reduces the number of messages exchanged at runtime.

4.3.6 Initialization

The algorithm starts as soon as a node defines an observation point as new
target. This may be done by an external operator who wants to re-focus
the sensor attention to a certain area. Occurring events in the monitored
area may require the network to focus on a certain area. Using activity
maps [67], new observation points may be generated at activity hotspots.
There are several other possibilities to generate new observation points that
depend on the application of the sensor network.

In our approach, the nodes act greedily to cover observation points. Only
upon receiving a descriptor with a lower resource consumption, it will hand
o↵ that observation point. A descriptor is broadcast by a node as soon as
it considers the target covered or if it wants to re-evaluate the assignment
of the node. This is also used to o↵er an already assigned target: the node
responsible for that target just broadcasts that target’s descriptor and if
another node has a better descriptor, it is reassigned to that node.

4.3.7 Termination

Without runtime re-evaluation, the algorithm terminates after the nodes
have covered all observation points or as soon as the nodes can have no more
observation points assigned. As long as there are uncovered observation
points, a node that is able to cover that point will try to do that. By
enabling the runtime re-evaluation of assignments, the nodes constantly keep
exchanging messages. The interval in which they try to hand o↵ targets
can be configured and enables faster improvement of the solution at short
intervals or less message tra�c at longer intervals.

4.4 Distributed Solution for High Dynamics

In this section (adapted from [20]) we look at resource-aware reconfiguration
in very dynamic environments. Here, it is necessary that a reconfiguration
algorithm is able to handle frequent updates and react also to short-lived
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tasks. As a use-case, we look at how to integrate object handover into the
distributed algorithm. The goal is to be able to hand over moving objects
from one camera to another as they move through the surveilled area.

We tightly integrate the the socio-economic object handover algorithm
described in [28, 29] with the distributed coverage and task assignment al-
gorithm presented in Section 4.3 in order to deal with not only observation
point reconfiguration but also object handover in a resource-aware manner.
The network performs a long-term reconfiguration for tasks with low dynam-
ics (represented as observation points). For highly dynamic objects that are
tracked by the cameras, we additionally perform object handover between
cameras as necessary. However, situations might occur, where the resource
allocation at a certain camera does not permit to track an additional object.
In this case, the camera will try to perform a reconfiguration in order to free
resources before entering the auctioning process.

Algorithm 3 shows a pseudo-code description of our algorithm. As de-
scribed in section 4.3, the distributed coverage and task assignment algo-
rithm uses descriptors to exchange information between nodes. For a new
observation point, the defining node calculates and broadcasts an initial de-
scriptor1. As before, descriptors are bu↵ered and evaluated at the nodes.
The best descriptors are stored as accepted solution. Periodic re-evaluation
allows for later improvement of the solution.

Further, this algorithm is now combined with the object handover algo-
rithm [28, 29]. This is done to enhance long-term reconfiguration with the
capability for handling moving objects in tracking algorithms. A node track-
ing an object can decide to perform a handover. If the handover requires
a node to free resources, it will start a reconfiguration for its observation
points.

4.4.1 Handover via Auctions

In the handover algorithm we use the passive approach as described in [28]
where an auction is initiated whenever the tracked object is about to leave
the FOV of the camera responsible for tracking it. In this case, the camera
will send a message including an object description to initiate the auction.
After waiting the auction timeout interval, the auctioneering camera com-
pares all received bids and hands the object over to the winning camera.

1Note, that we describe the coverage and task assignment algorithm to be using broad-
cast communication. However, if the handover algorithm has built up a suitable vision
graph, we can use this vision graph to switch to multicast operation in order to reduce
the number of messages required.
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Algorithm 3 Event-based pseudo code of the distributed algorithm. Pro-
cedures define and receive defined in Algorithm 2 remain unchanged and are
omitted here for better readability.

Algorithm hybrid coverage and handover()
begin
proc timer elapsed(q

t

) ⌘ //Timer of queue q
t

for target t has elapsed
d := best descriptor(q

t

)
d
l

:= get local descriptor(t)
d
s

:= get stored solution(t)
d
b

:= best(d
l

, d
s

, d)
if d

b

= d
then

store(d) //store d as remote best descriptor for t
broadcast(d

b

)
fi
foreach pending auction for o

i

do
calc settings(o, out res, out fps, out activity)
b := calc res(res, fps, activity) //b is a bid
if required resources are within limits
then

send bid for(o i,b)
fi

od.

proc init handover(o
i

) ⌘ On handover necessary for object o
i

init auction(o
i

).

proc process auction init(o
i

) On receiving an auction initialization ⌘
if is visible(o

i

)
then

calc settings(o, out res, out fps, out activity)
b := calc res(res, fps, activity) //b is a bid
if required resources are within limits
then

send bid for(o i,b)
else

get most expensive target(out t
j

)
init reconfiguration(t

j

)
fi

fi.
end
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4.4.2 Calculating the Bid

On receiving an auction initialization message, a camera determines if it
is able to track this object o. If so, it will calculate the required sensor
settings and resource requirements for performing this task. This is done
using models of the hardware platform and of the surveillance activity (as
described in section 4.1). In case the object can be covered within the
resource constraints, the camera calculates the utility u(o) for the object to
express its valuation according to Equation (4.6). Thereafter, the camera
will transmit a bid containing the utility as the o↵ered amount of money.
As usual in marked-based control systems, currency is an artificial construct
and only used for management purposes; no real money is exchanged.

u(o) = e
n

(o) · pot
n

(o) · fps
n

(o) (4.6a)

e
n

(o) = (e
cur

(o)/(e
max

� e
min

) (4.6b)

pot
n

(o) = (pot
cur

(o)/pot(o)) (4.6c)

fps
n

(o) = (fps
cur

(o)/fps(o)) (4.6d)

In Equ. (4.6a) we use normalized values for energy consumption e
n

(o),
framerate fps

n

(o) and pixels on target pot
n

(o) (indicated by a subscript
n

)
to calculate a bid according to the resources required for tracking and the
quality a camera can guarantee. The energy consumption in Equ. 4.6b is
normalized between 0 and 1 depicting the minimum e

min

and maximum
e
max

energy consumption on this node. e
cur

describes the required energy
consumption for covering the targets assigned to that node plus the energy
required for additionally tracking o.

The normalized quality indicators pot
n

and fps
n

in Equ. (4.6c) are cal-
culated by using the required framerate and pixels on target of o (fps(o) and
pot(o)) compared to the currently delivered quality (pot

cur

(o) and fps
cur

(o))
that consider additionally its assigned tasks.

From Equation (4.6b) it can be seen that the value for e
n

(o) ranges
from 0 to 1. Contrary, Equations (4.6c) and (4.6d) show that pot

n

(o) and
fps

n

(o) can have values larger than 1. The values are relative to the quality
required by o (where a value of 1 means that the requirements are exactly
met). However, a sensor may deliver more or less than the required pixels
on target.

4.4.3 Reconfiguration on Handover

If a camera receives an auction initialization but tracking the object would
consume more resources than available, it initializes a reconfiguration for
one of its assigned observation points. If it can free resources after the
reconfiguration, it will participate in the auction.
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Chapter 5

Tool support for VSN
Reconfiguration

This chapter covers the software tools developed in course of this thesis.
Each tool supports a part of the reconfiguration process. The nEMO frame-
work aids in the development of EAs and is used to implement the central
algorithm presented in section 4.2. nIPO and the Ella middleware are used
in developing distributed, modularized applications. nIPO helps in realizing
a processing activity a as described in section 3.2 by connecting individual
algorithmic implementations (procedures p

i

) to build a dataflow. The Ella
middleware cares about message and data transport and aids in building
fault tolerant, flexible distributed applications. As indicated in the respec-
tive sections, each software tool has been made available to the general
public as open source software.

5.1 nEMO - A Framework for Evolutionary Mul-
tiobjective Optimization

In this section (adapted from [19]) we show a software framework for de-
veloping evolutionary algorithms. It is called nEMO1 (.net Evolutionary
Multi-objective Optimization).

To accelerate the development of algorithms and to minimize change ef-
fort, we have implemented a generic framework for evolutionary single- and
multi-objective optimization problems. It facilitates the reuse of core evolu-
tionary algorithms, encoding of the chromosomes, and the specification of fit-
ness functions for decision vectors of arbitrary lengths (� 1). Consequently,
our framework is able to perform multi-dimensional approximations.

nEMO is implemented in C#.Net and is compatible to Mono2 and can
thus be used on various platforms including Windows, Linux and MacOS.

In order to solve a new optimization problem using nEMO, the following
tasks need to be performed:

1. Define the model and implement a corresponding chromosome
along with suitable mutation and crossover operations

1http://nemo.codeplex.com
2http://www.go-mono.org
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2. Define the fitness function

Figure 5.1 gives an overview on the architecture of nEMO. It defines basic
interfaces for fitness functions, chromosomes and selections. To implement
a new EMO based on nEMO, a class implementing IChromosome must be
created. In it, the model and its manipulations can be implemented. A class
implementing IFitnessFunction provides the corresponding evaluation facil-
ities. Chromosome and fitness functions are problem-specific and have to
be created for each new algorithm. However, selection methods are already
provided with nEMO. It contains elitist and non-elitist selection method. If
necessary, user-defined selection methods may be used by implementing a
subclass of the SelectionBase class.

The framework will then run the evolutionary optimization autonomously.
nEMO comes with predefined single- and multi-objective selection strategies.
However, the selection strategy can be modified if necessary as well.

The Optimizer class is used to control the algorithm itself. It requires
a fitness function, an ancestor, the population size, mutation and crossover
rates as parameters. Each epoch of the algorithm is then triggered by a
dedicated method. The core algorithm of the framework performs muta-
tion, crossover and selection in each epoch. Optionally, it can enforce the
population size in cases where the number of non-dominated solutions is
smaller than the population size. In this case, it will randomly select as
many chromosomes as necessary from the dominated solutions. Large parts
of the algorithm can automatically be parallelized to achieve higher perfor-
mance on multi-processor systems. This is done in mutation, crossover and
fitness assignment steps. The selection is done in parallel as well.

5.2 Dataflow Processing in VSNs

In this section (adapted from [22]), we look at the way data is processed in
typical VSN applications and how software can support this.

In many VSN applications, a dataflow towards as sink (e.g. an operator
computer) can be seen. Certain steps of processing have to be performed
for every source data stream (i.e. video from camera sensor) before the data
is finally processed at the sink (e.g. displayed or stored). As an example,
an activity a as defined in section 3.2 like simple object tracking can be
realized in multiple steps. First, data is captured from a sensor. Then a
background subtraction is performed. Third, objects are detected in the
frame and finally association to objects in the previous frames is performed.
This sequential dataflow from the source through all processing steps is very
common to VSN applications.

A VSN application needs to be flexible in order to be reconfigured at run-
time. Processing parameters (like framerate or resolution) may be changed
or parts of the application may be exchanged or moved to other nodes.
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Figure 5.1: An overview of the nEMO architecture
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The software framework presented in this section can be used to quickly
reconfigure such an application by exchaning plug–ins at runtime.

Performing all processing steps at either the smart camera or the sink
may not always be the best solution. Instead, some parts of processing can
be done at intermediate nodes or split between source and sink nodes. As-
suming a network of heterogeneous devices and heterogeneous capabilities,
the search space for this optimization problem increases drastically. In sec-
tion 5.2.2, we present an evolutionary algorithm which is designed to find
suitable solutions for this problem. First, we show a software framework for
dataflow-based applications.

5.2.1 The nIPO framework for Dataflow Processing

To facilitate implementation of (distributed) dataflow applications, we present
the nIPO3 (.net Input Processing Output) framework. It features a flexi-
ble structure for exchange and combination of single modules using a dedi-
cated plug–in system. It can be used to realize dataflows in distributed and
non-distributed applications where each step of the dataflow may easily be
exchanged if necessary.

In this section we first explain the requirements that we identified for
this software. We then present our software design which fulfills those re-
quirements and explain further details on the framework.

Requirements

For our software we identified some key requirements that have to be fulfilled
in order to provide a platform that can be used in large–scale clustered
networks.

Figure 5.2: Data flow within the framework. One or more input plug–ins
continuously pass data to a chain of processing plug–ins. Resulting data is
transferred to multiple output plug–ins.

Scalability:
The software has to be able to accept a variable number of inputs and de-
liver a variable number of outputs. This is essential to evaluate clustering

3http://nipo.codeplex.com

http://nipo.codeplex.com
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by varying the number of connected cameras. Additionally, the processing
work performed in an instance must be variable and easy to change. To
allow di↵erent types of work to be performed in the cluster node, a mecha-
nism to easily exchange the processing part must be provided.

Composability and Flexibility:
We want applications which are built on top of our software to be composed
from exchangeable modules. This increases the level of code reuse and thus
speeds up application development.

To support a variety of application scenarios, the software should not
restrict the data flow by means of data type or data content.

Deployment Support and Monitoring:
The software is intended to provide facilities to easily get a VSN node up and
running. This includes selecting and composing the processing part, collect-
ing the necessary configuration values and deploying the software modules.

To collect performance indicators in a large network, a VSN node must
be able to monitor itself and collect relevant data. In some cases it is not suf-
ficient to just monitor process specific parameters like CPU usage or memory
consumptions. A mechanism to monitor the data produced by each step in
the dataflow is required.

Further Requirements:
We want our software suitable for many application scenarios, thus it must
also be easy to use for developers and users. Additionally the software needs
to be platform independent and thus be applicable in many environments.
To provide a powerful but resource–saving platform, we try to minimize the
memory and performance overhead caused by the software itself.

Framework Design

The framework design reflects a sequential dataflow in an application but
defines also further types of modules to provide more flexibility in designing
applications.

nIPO is implemented in C#.Net 2.0. It runs on any platform where
a .NET or Mono4 runtime is available, i.e. at least under Windows, most
Linux distributions, Solaris, BSD and MacOS.
Plug–In Structure:
Many applications can extend their functionality using plug–ins. Contrary,
in our framework the plug–ins actually determine the functionality of the
application. In its core, nIPO defines a classical IPO (input-processing-
output) chain of plug–ins. However, this concept is not strictly enforced.

4http://www.mono-project.com/
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There are also plug–ins which are not part of the processing chain itself and
nIPO allows for loopbacks in the data flow.

nIPO plug–ins communicate via events. There are predefined events for
the IPO chain plug–ins to pass data from one stage to the other. For each
data packet that an input plug–in produces it raises an event. This event
is then handled by the processing plug–in. Each plug–in can define its own
events and use an event-registrar to make it accessible to other plug–ins.
Using this you can define your own communication flow within nIPO (like
loopbacks and branches).

nIPO defines the following plug–in types:

Input: Input plug–ins capture or generate data from any given source like
files, network or sensors. Input plug–ins run in dedicated threads
and continuously pass data to the processing chain.

Processing: Processing plug–ins perform the actual processing work. This
might be e.g., image processing or any other data processing task.
The processing part can be composed from multiple processing
plug–ins which form a pipeline (further called processing chain).

Output: Output plug–ins are the data sink of the IPO pipeline. They may
store data, display it or send it via the network.

Service: Service plug–ins provide certain services to plug–ins (like shared
data or utility functions, e.g., camera calibration). nIPO defines
a generic service discovery mechanism that can be used to search
for a certain service. If the service type is known in advance, a
plug–in can also search for a service by its (.net-) type.

Observer: Observer plug–ins have no pre–defined functionality. They act
as pure event handlers (listeners or observers) and are invisible
to other plug–ins. Using the generic event discovery mechanism,
they can catch events in nIPO. This enables to extend the core
nIPO functionality. As an example, think of a plug–in that col-
lects statistics on the data flow (how many bytes of data are pro-
cessed, what is the system load, ...). Such a plug–in would be
implemented as an observer and just consume internal events.
There are various other application scenarios for observer plug–
ins like providing a user interface (this may also be done by an
output plug–in) or providing instance dependent services to an
external application.

Figure 5.2 gives an overview on core structure and the IPO dataflow
within nIPO.
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Generic Data Transfer:
For information interchange between plug–ins an asynchronous, event-based
mechanism that is independent of data type and content is implemented.
Thus, arbitrary data may be processed and passed within the framework
as long as the receiving plug–in is able to interpret the incoming data
(i.e.,process the type of data delivered to it).

A computer vision application that works on low level image data will
most likely pass images between plug–ins while a fusion algorithm for high–
level data may pass only lists of detected objects. nIPO performs a com-
patibility check to ensure that all plug–ins receive only supported data.

This enables a wide spectrum of applications and the exchange of single
plug–ins without the need to exchange or recompile other parts. In the
context of a camera network we can receive the input data for a multi-view
fusion algorithm either from synchronized video files or from live data over
a network connection (or any other data source). The processing plug–in
containing the fusion algorithm does not need to be exchanged when the
input source changes. Also for a certain set of input video files we can
compare di↵erent fusion algorithms by simply exchanging the processing
plug–in.
Monitoring:
To achieve a generic mechanism for performance monitoring we provide a
monitoring interface which, again, is plug–in based. Every monitor plug–in
may listen to events in the system in order to extract performance infor-
mation. This may be done with or without active support by each plug–in,
i.e. plug–ins may define and dispatch certain events that are performance
related (e.g. the amount of bytes transferred over a network connection).

In cases when just processing events is not su�cient (e.g., whenever the
data flowing between plug–ins must be inspected) we insert dedicated proxy
plug–ins into the dataflow which dumps or analyzes the incoming data and
then forward it to the next plug–in. This procedure is visualized in figure
5.3.

Figure 5.3: The result of the object detection algorithm is dumped trans-
parently for all other plug–ins.
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5.2.2 Finding an Optimal Dataflow in VSNs

Based on nIPO we now present an algorithm which can optimize the dataflow
in a VSN. It models sensor nodes of heterogeneous architecture and the
dataflow between them in the chromosomes. The fitness function uses the
models of hardware and algorithms presented in section 4.1 to compute the
required resources and thus assign fitness values to chromosome instances.

Chromosome

The chromosome models the network as a list of nodes where every node
has a hardware platform (e.g. an ARM- or Intel Atom-board) and a set of
available algorithms. Each node in the network has a target node where
the result of the local processing is transmitted to. Before transferring data
over the network, a compression step is automatically inserted. Just like
the algorithm presented in section 4.2, this algorithm can also choose from
a number of resolution and frame rate settings to find the optimal balance
between quality and processing load.

Since nodes can delegate tasks to other nodes, each node can contain
multiple processing pipelines, one for itself and several others from other
nodes. This mechanism can be used to move data processing along the data
flow between source and sink of each flow. The actions to perform for each
source stream are pre-defined (e.g. ”tracking must be performed for stream
1”), however the concrete algorithms to achieve this are not (as described
as A and P in section 3).

In the mutation step, this chromosome can perform the following actions:

1. Change sensor settings, i.e., resolution or framerate.

2. Move a task to the target node.

3. Move a task back to the preceding node (i.e., the node where it
receives its input from).

4. Change the target node of a node, i.e., direct the dataflow over a
di↵erent node.

5. Change an algorithm for a certain task type, e.g. choose frame
di↵erencing for background modeling instead of mixture of Gaus-
sians.

Fitness Function

The fitness function grades each chromosome according to one of the follow-
ing goals:

1. Global minimum energy consumption
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2. Maximum network lifetime, i.e. the time until the first node fails

3. Maximum lifetime of a target node, i.e. the time until the battery
of this node is depleted.

The fitness function uses models of the algorithms available at each node
to calculate the estimated CPU and memory consumptions. Those values
are then used to estimate the energy consumption.

Models

The models used for calculation of resource demands are the same as for
the algorithm in section 4.2. Algorithms are tested on the target platforms
to build estimation models of CPU and memory demands. The energy
consumed under di↵erent workloads is measured and from this an estimation
model for energy consumption is built.

5.3 Middleware for Distributed Processing in VSNs

The development of distributed operation in a VSN can be very well sup-
ported by a middleware system. Typical operations like data transport,
coordination or node discovery can be supported by a middleware and do
not need to be implemented in every application individually.

This section describes a middleware system to help develop distributed
smart camera applications5.

5.3.1 Requirements

In order to be useful in the context of VSNs a middleware must match several
requirements. First, it must provide meaningful services to the application
(e.g., communication). Second, it must be flexible enough to allow for appli-
cation restructuring and quick exchange of functionality. Thus, applications
should be constructed from several modules or plug–ins. Third, it should
be made easy for developers to port their existing code to the middleware
system. Further the middleware should provide mechanisms to decouple
individual modules, i.e. make them independent from each other wherever
possible.

Further, it is required that the middleware is simple, both in structure
and in being simple to understand. This enables it to be used without a
big e↵ort to learn its usage concepts. Further, a simple structure makes it
faster in execution and easier in maintenance.

In the following sections, we present Ella, a distributed publish/subscribe
middleware system.

5This section is adapted from [23]
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5.3.2 Architecture

In this section, we present the architecture of the Ella middleware. While
there are several paradigms for middleware systems, like RPC or tuple
spaces, we chose a data-driven approach, namely a publish/subscribe sys-
tem. This allows for a high degree of flexibility since it provides decoupling
in space and time[30]. In contrast to other publish/subscribe implemen-
tation (e.g. [96]), Ella is completely distributed without the need for any
central coordination.

Publish/Subscribe

Publish/Subscribe, as illustrated in figure 5.4 is a mechanism which allows
for elegant decoupling of functional elements within applications. Publish-
ers are modules which produce data (e.g. capturing of images, fetching data
from a specific source) and pass it on to consumers which are called sub-
scribers which process the data. A module may be publisher and subscriber
at the same time, i.e. it processes data from another publisher and pub-
lishes the results itself. A component for publish/subscribe management
takes care of decoupling. Instead of directly connecting the publisher and
subscriber modules, a publisher announces its events and a subscriber can
announce interest in certain types of events. The publish/subscribe man-
agement takes care of matching published events and subscriptions and is
also responsible for delivering the published data to all subscribers. A key
requirement of publish/subscribe is that neither publishers nor subscribers
need to be aware of each other. A publisher does not need to keep track of
where its data is sent to and how many subscribers exist for its events, and
a subscriber does not need to care about where publishers are located and
where their data is coming from (i.e. the local node or a remote node). All
this is transparently handled by the publish/subscribe middleware.

As illustrated in figure 5.4 a) this can in a simple case be done at a
central component which keeps track of all publishers and subscribers and
relays data to the correct subscribers. However, an architecture like this is
hardly scalable because the central component may become a bottleneck.
Figure 5.4 b) illustrates a distributed publish/subscribe architecture, where
a small publish/subscribe management component resides on each node in
the network and is responsible for its local modules and for connecting them
to remote nodes.

Decoupling

A publish/subscribe system enables decoupling in the following dimensions:

• Space decoupling: Modules do not need to know where they and
other modules are located in the network. This means that pub-
lishers do not hold any references to subscribers and vice versa.
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(a) Centralized publish/subscribe

(b) Distributed publish/subscribe

Figure 5.4: Illustrations of centralized and distributed publish/subscribe

In a VSN, e.g., a publisher of images does not need to care if they
are delivered to one or more displays or other modules.

• Time decoupling: Publishers and subscribers do not need to par-
ticipate in an interaction at the same time. The publisher might
for instance publish an event while there is no subscriber con-
nected. Publishers which start after a subscriber can still be
matched to an earlier subscription request. In a VSN, cameras
may not start up at the same time, still they must form one dis-
tributed application.

• Synchronization decoupling: Preparing events does not block the
publishers, and subscribers can be notified of an event, even though
they are currently executing another activity. As an example, a
publisher of images can capture the next image while the current
image is still delivered to subscribers.
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Subscribing

Ella uses type-based subscription, i.e. a subscriber specifies a certain data
type to subscribe to. As an addition, Ella provides the possibility to request
a template object from each subscriber. The middleware will then ask each
publisher (which is matching in type) to generate such a template object
and will hand it to the prospective subscriber. The subscriber can then
decide whether this specific publisher is accepted or not. In addition, upon
subscribing, the subscriber can decide to exclude remote publishers to obtain
only subscriptions from the local node. This can be useful whenever node-
specific information is requested like the current resource allocation.

Publishing

Creating a publisher for Ella is a straightforward task. Instead of forcing de-
velopers to implement a specific class hierarchy (i.e. subclassing a publisher
base class or implementing a publisher interface) we use code annotations
to declare a certain class to be a publisher. These code annotations can be
reflected by Ella at runtime to detect publishers in code libraries. This ap-
proach has several advantages. First, it makes it very easy to adapt existing
code to run on top of Ella. This requires mainly annotating the existing
code and adapting the way of data passing to the mechanism provided by
Ella. Second, it makes the development of modules more flexible because
developers are not bound to any inheritance hierarchy and thus it it easier
to integrate Ella into any software architecture. Third, Ella-based code is
easily readable and maintainable because the annotations directly inform
about what the specific module does.

Listing 5.1 shows an example publisher which publishes the current time.
It provides this in two ways, first as a formatted string and second as a
DateTime object. The published types are declared in brackets on top of the
class definition. Each published event type must have a unique identification
number. This enables one module to publish an arbitrary number of event
types. Further attributes identify methods used to create new instances
and start or stop an instance. The TemplateData attributes are used to
identify methods which provide template objects. However, this is optional
and needs not to be implemented by every publisher.

Listing 5.1: A sample publisher

1

2 [Publishes(typeof(String), 1)]
3 [Publishes(typeof(DateTime), 2)]
4 public class TestPublisher
5 {
6 private bool _run = false;
7

8 [Factory]
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9 public TestPublisher() { }
10

11 [Start]
12 public void Run()
13 {
14 _run=true;
15 while(_run)
16 {
17 Publish.Event(DateTime.Now.ToLongDateString(), this, 1);
18 Publish.Event(DateTime.Now, this, 1);
19 }
20 }
21

22 [Stop]
23 public void Stop() {
24 _run = false;
25 }
26

27 [TemplateData(1)]
28 public string GetTemplateObjectString(int id)
29 {
30 return id == 1 ? DateTime.Now.ToLongDateString() : string.

Empty;
31 }
32

33 [TemplateData(2)]
34 public DateTime GetTemplateObjectDateTime()
35 {
36 return DateTime.Now;
37 }
38

39 }

Network Management and Remote Operation

To support a convenient way of developing and deploying software modules
for Ella, the middleware provides a transparent node discovery mechanism
which is used to detect any running Ella instances on other nodes in the
network. This relieves the developer of the need for managing other nodes
in the network. As soon as an Ella instance is detected, it is registered as
a known host and it will also be checked for suitable publishers of events
requested by local subscribers. This way, it is much easier to scale an existing
application without having to modify existing code. As soon as Ella detects
other instances, it will include them in its operation.

On startup, Ella tries to first discover other nodes in the network. By
default this is done with a UDP broadcast. This broadcast also contains
connection information necessary to address this node in the network. How-
ever, this may be exchanged with any other suitable discovery provider (e.g.
for non-IP compatible media like ZigBee). Upon reception of a broadcast
message, a node will send a unicast answer to the broadcasting node with
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its own connection information. Thus, each node keeps a local directory of
known remote hosts. This directory is used when searching for matching
publishers on other nodes.

Whenever a subscriber requests a new subscription, all remote hosts will
be inquired about matching publishers. If some are found, proxy objects at
the remote node and stubs at the subscriber node will be created which act
as transparent transport points for published event data. A proxy acts as
subscriber at the remote node, serializes the event data and sends it to the
stub. The stub deserializes it and publishes it as a local publisher for the
original subscriber to receive.

The requested subscription types by each subscriber module are cached
by the local Ella instance. Whenever a new node is discovered in the network
which runs suitable publishers, they will start to deliver their events to the
local node.

Communication

Ella instances on remote nodes use an e�cient message structure to exchange
data. A binary protocol is used to encode message types and to transport
any necessary data. For any given message payload, only 9 bytes of overhead
are added, one byte for the message type, and four bytes each for the sender
node ID and the message ID. For small networks this can be reduced by
only using single bytes for the sender node ID.

Besides data communication, Ella provides also a control channel which
can be used to exchange application-specific messages between publishers
and subscribers. Instead of transporting data, control commands can be sent
between publishers and subscribers. As an example, an image processing
module could instruct the image capturing module to adapt its framerate.

Implementation Details

Ella has been developed in C#.Net. It is capable of running in the open
source Mono6 runtime and can thus be deployed on all major operating sys-
tems and many other platforms. Since it is only performing high-level tasks
like I/O and management of subscriptions, its overhead compared to a native
implementation is very low. In addition, it is easily possible to integrate na-
tive code components into any .Net application. Thus, performance critical
applications parts can be written in e.g. C++ and be integrated into Ella
with low e↵ort. Of course, pre-existing native code can be integrated as well.

Static Facade:
Ella can be accessed from an application using a facade pattern with static

6http://www.go-mono.org
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classes and methods. The key goal is to provide a fluent and easy-to-
understand interface to the middleware. The most important classes and
methods of the facade are shown in figure 5.5.

Listing 5.2: A sample main method for Ella. Calls to facade classes are

shown in red.

1 public static void Main(string[] args)
2 {
3 Start.Networking();
4 TestPublisher p = new TestPublisher();
5 if(Is.Publisher(p))
6 {
7 Start.Publisher(p);
8 }
9 TestSubscriber s = new TestSubscriber();

10 Subscribe.To<DateTime>(s, s.Notify);
11 Console.ReadLine();
12 Stop.Publisher(p);
13 Stop.Networking();
14 }

The application programmer as well as a module developer do not need to
take care about any instance handling of the middleware since this is han-
dled internally by Ella. Instead of instantiating a manager class and adding
publishers to that instance, a call to Start.Publisher handles all of it. The
code sample in figure 5.2 shows an example of how to initialize Ella with
new modules.

Subscription Handling:
On each node, Ella keeps a list of all subscriptions relevant to this node,
i.e. all subscriptions where modules of this node are publishers and/or sub-
scribers (this is also true for subscriptions only on the local nodes). When-
ever a publisher publishes a new event, all subscribers are found in this list.
In the simplest case, this data is delivered to a local subscriber (which is on
the same node). For remote subscribers, this list contains the proxy at the
publisher node. A proxy serializes the event data and sends it to the receiver
node. There, a stub reconstructs the data and publishes it locally for the
intended subscriber to receive it. In cases, where unreliable transport can
be used to deliver data (i.e., where loss of data can be tolerated), a UDP
multicast mechanism can be used in order to save communication costs.

Event Correlation:
In some cases, a user might want to indicate that two events are somehow
correlated. For example the image of a camera and the result of a tracking
algorithm might correspond to each other. For this case, Ella provides a
simple mechanisms where a publisher can indicate such a correspondence.
This is then delivered to all modules which subscribe to both events.
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Figure 5.5: The static facade used to access Ella functions

5.3.3 Requirements Conformity

Ella provides several useful services to an application. It handles discovery
and communication, provides a control channel and helps in modularizing
an application. It enables the flexible reconfiguring of an application with
its module-based architecture. The use of code annotations to declare Ella-
specific code regions makes it very easy for developers to port their existing
code. The transparent subscription mechanism of publish/subscribe enables
decoupling in space, time and synchronization of modules.

5.3.4 Use Case: EPiCS

In the EPiCS project7, the Ella middleware was used to build a single-object
multi-camera person tracking system which uses a market-based algorithm
to handover the tracking responsibility from one camera to another.

In the EPiCS case-study application, we perform distributed person
tracking on multiple cameras where at any point in time, only a single
camera is responsible for tracking the person. In the event that the person
leaves the field of view (FOV) of the currently tracking camera or is no
longer detected, the camera initiates a handover where the other cameras

7http://epics-project.eu

http://epics-project.eu
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try to find the person. This is either done on all cameras, or on a subset
of neighboring cameras. The neighborhood of a camera is the set of other
cameras which are possible targets to hand an object over to. The handover
is performed by means of an auction as described in [28]. In any case, each
camera typically streams its currently captured video stream to an operator
PC running a graphical user interface.

Looking at the global dataflow of this application, this means that the
tracking module is not always active on every camera. Only after winning
the handover auction, the tracker is activated.

As depicted in figure 5.6, three major modules are concerned in the real-
ization of this system. The CV component is responsible for performing the
computer vision tasks of acquiring images from the sensor and performing
tracking as soon as the tracking responsibility is assigned to the respective
camera node. The Handover component takes care of agreeing with other
cameras on the tracking responsibility. In case a tracked object is about to
leave the field of view of the camera, the Handover component will initialize
an auction. All cameras which detect the object can send a bid for it. The
camera with the highest bid will win the auction and will then be responsible
for further tracking the object. The UI module is a visualization component
for the security operator who will initially select the object to be tracked.

Figure 5.6: The realization of the EPiCS use case on top of Ella.

Using the publish/subscribe mechanism and the control channel in Ella,
this application can be realized with an elegant decoupling of components.
First, CV is publishing images (to be displayed in UI ) and tracking results
(containing the location in the image and the confidence of the tracked
object) in case it is responsible for tracking. Both, UI and Handover are
subscribed to this tracking information. UI uses it to show the bounding
box of the tracked object as overlay to the camera image stream. Handover
is informed of the current tracking status with this information and can
react to e.g. a lost object.

Handover is publishing an auction state event which initializes and ends
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an auction. If a camera wants to contribute to an auction with its own
bid, it will use the control channel to directly address the auction initiator.
Handover uses tracker control messages on the control channel to start and
stop the tracker and to pass the model of the object to be tracked to the
tracker. UI does the same once the operator has selected an object to track
in one of the cameras’ views.



Chapter 6

Evaluation

In this section (adapted from [19, 20, 21]), we evaluate the algorithms pre-
sented in this thesis. We first look at the central algorithm and then com-
pare the distributed solutions to its benchmark results. Before presenting
detailed evaluations of the algorithms, we present the hardware platforms
used to build the resource models used by the algorithms.

Hardware platforms

The hardware platform on which a VSN application is executed plays a
major role for the minimization of energy consumption. Minimizing the
resource consumption at the software level makes only sense if the underlying
hardware is already energy e�cient.

In course of this thesis, two types of smartcam platforms were employed.
First, we use Intel Atom-based smart cameras built by SLR Engineering1.
As a second platform, we use custom-built PandaBoard2-based camera sys-
tems (as shown in figure 6.1).

The SLR cameras are equipped with an Intel Atom processor running at
1.6 GHz and an 100 MBit Ethernet interface. Furthermore, the SLR camera
has a CCD image sensor with a native resolution of 1360⇥ 1024 pixels.

In contrast, the PandaBoard platforms are equipped with Logitech HD
Pro c920 webcams. The PandaBoard platforms are based on Texas Instru-
ments OMAP 4430 system-on-chip which features a dual core ARM Cortex-
A9 MPCore CPU running at 1.2 GHz and uses a 802.11 b/g/n wireless
connection to the network. The connected Logitech c920 webcam operates
with a native resolution of 3MP. The PandaCam is the current result of
our e↵orts to build an energy-e�cient smart camera with high computing
power.

6.1 Evolutionary Approximation

To evaluate the central EA, we perform systematic tests of our algorithm
using a simple, a medium and a complex scenario. We evaluate the impact of
parameters such as population size, mutation rate and number of epochs on

1www.slr-engineering.at
2http://www.pandaboard.org
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Figure 6.1: The Pandaboard-based camera using an USB sensor.

Point pot fps activity

t1 10 8 change detection
t2 10 4 change detection
t3 20 18 object tracking
t4 15 8 object detection

Table 6.1: The quality requirements of observation points 1-4 expressed as
pixels on target, frames per second and activity.

the performance of the evolutionary algorithm. We further study the run-
time of our algorithm, explore the tradeo↵ between surveillance quality and
resource utilization and compare the predicted resource of the assigned tasks
with the measured resource consumption on the target platform. Finally,
we evaluate the integration of the PTZ optimization.

6.1.1 Scenarios

Simple scenario

Our first scenario is the example setup from section 3 (see figure 3.1(a)).
This simple scenario consists of five cameras and four observation points on
a 10000 m2 area. The requirements of the observation points can be seen
in table 6.1. The algorithms used in the task assignment are shown in table
6.3 (these apply to all scenarios).

For this simple scenario, a single optimal solution for sensor selection
and sensor configuration exists if the following preconditions are fulfilled: i)
all processing tasks have an equal quality assigned ii) no node has resources
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Sensor res fps activity

s1 SQCIF 8 change detection
s2 QCIF 4 change detection
s3 QVGA 18 object tracking
s4 o↵ o↵ o↵
s5 VGA 8 object detection

Table 6.2: The optimal solution for the simple scenario assuming no previ-
ously allocated resources on the nodes.

allocated to other tasks initially and iii) at most one activity per sensor is
assigned. Then, s4 is switched o↵ and object tracking is assigned to s3. This
is because s3 is closer to t3 and can thus provide pot coverage at a lower
sensor resolution. The optimal configuration for this scenario is shown in
table 6.2. The total global data volume is at about 5.6% of the maximum
global data volume.

Assuming that the amount of free resources of s3 is initially reduced to
10% of the available resource (i.e. it already performs other tasks), the task
of object tracking can only be assigned to s4 and s3 should be switched o↵.

In our evaluations, we show the success rate for the simple scenario. We
show how often the algorithm finds the optimal result for this scenario. For
all scenarios, we show how often it finds a feasible result at all.

Complex scenario

We tested our approach in a more complex scenario of 100 sensors and 20
observation points in an area of 62500 m2 (see figure 6.2). The observation
points require between 10 and 30 pixels on target.

PTZ scenario

We demonstrate the combination of our approach with the PTZ coverage
optimization in a medium sized scenario with eight cameras and five ob-
servation points on an area of 8000 m2. We first perform the expectation-
maximization algorithm to find the optimal PTZ-parameters of each sensor.
Then, we run our evolutionary algorithm to find the optimal sensor config-
uration and task allocation.

Impact of increasing number of solutions

We further evaluate the behavior of our algorithm in scenarios that are
within the same level of complexity but which have a di↵erent number of
possible solutions. In a basic scenario of seven observation points we vary
the number of covering sensors. Every additional covering sensor increases
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Figure 6.2: The randomly generated complex scenario consisting of 100
camera sensors and 20 observation points.

the number of solutions. This impacts the runtime and the final result. Our
basic scenario has five cameras placed such that every point is covered by
exactly one camera. We then add cameras to achieve degrees of overlap of
two, three and five. Additionally, we constructed two scenarios that have
additional non-covering cameras. The scenarios are shown in figure 6.3.

For these scenarios we show multi-objective approximation including the
quality ratings of algorithms. We manually assign a quality rating to each
algorithm for our second algorithm stage (see table 6.3).

Algorithm Quality

Simple Frame Di↵erencing 0.5
Double Frame Di↵erencing 0.8

Mixture of Gaussians 1
Blobfinder 1

Kalman Tracker 2
CCCR Tracker (openCV) 0.6

Table 6.3: Quality rating for algorithms.
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(a) One camera per obser-
vation point.

(b) Two cameras per obser-
vation point.

(c) Two overlapping
cameras per observation
point with additional
non-covering cameras.

(d) Three overlapping cam-
eras per observation point.

(e) Three overlapping
cameras per observation
point with additional
non-covering cameras.

(f) Five overlapping cam-
eras per observation point.

Figure 6.3: Scenarios with di↵erent degrees of overlap and complexity.



76 CHAPTER 6. EVALUATION

��

���

���

���

���

����

�� ����� ����� ����� ����� �	���


�
��

�
���

��

�
��
�

����
�����
�����


����
���
�������� �����
�����!�"����� �����#
$�	��

����
���
�������
�����
��
�����!�"����� �����#
$�	��

%
&������
�������
�����
��
�����!�"����� �����#
$�����
'����
(���
�������
�����
��
�����!�"����� �����#
$�	���

Figure 6.4: The relation between number of epochs and the rate of finding
optimal and feasible results (success rate), respectively.

6.1.2 Number of Epochs

Typically, in evolutionary algorithms, the results improve with increasing
number of epochs. It can easily be seen that an increased population size
will also require increasing the number of epochs to achieve the same results
at the same mutation rate.

In figure 6.4 we show the change in number of feasible and optimal results
with increased number of epochs. By choosing a suitable population size,
a predictable rate of feasible results can be achieved. Depending on the
complexity of the task, a larger number of epochs may be required.

6.1.3 Population Size

The population size represents the number of di↵erent permutations present
at a certain point in time. A larger population size increases the probability
that the population contains good individuals.

For our algorithm, it is necessary to increase the population size with
increasing complexity of the scenario. As our results show, a population size
of 5000 individuals is su�cient to achieve good results even for the complex
scenario. For less complex scenarios, population sizes between 100 and 1000
are su�cient.

Figure 6.5 shows the impact of larger population sizes on the resulting
rate of finding feasible solutions. It can be seen that the solution quality of
complex scenarios can be improved by increasing the population size.
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(a) Simple scenario.
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(b) Medium scenario.
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(c) Complex scenario.

Figure 6.5: Relation between population size and the rate of finding feasible
results (success rate) for a) Simple b) Medium and c) Complex scenario.
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6.1.4 Mutation Rate

Since the mutation rate determines how many chromosomes are altered per
epoch, it greatly influences the number of epochs needed to find good results.

Figure 6.6 shows the influence of mutation rate on the achieved rate of
feasible solutions. It can be seen that larger mutation rates not necessarily
yield higher success rates. Thus, the mutation rate must be chosen carefully.
Selecting the right mutation rate depends on population size and chromo-
some complexity. With a too high mutation rate, the algorithm might miss
good solutions, if it is too low, the algorithm will require more epocs to
achieve feasible results.

6.1.5 Algorithm Runtime

Evolutionary algorithms typically have a very large search space which
causes long runtimes. We show that our algorithm has a linear runtime
w.r.t. population size (Figure 6.7a), number of epochs (figure 6.7b) and
mutation rate (figure 6.7c). Note that the runtime values shown are inde-
pendent of the scenario complexity, i.e., to run 1000 epochs at 0.5 mutation
rate and population size 1000 takes the same amount of time for the complex
and the simple scenario, respectively.

We performed the tests on a standard PC equipped with an Intel Core2Duo
processor with 2.5 GHz. For each scenario we ran at least 1500 test runs at
di↵erent combinations of mutation rate and population size and took dumps
of the algorithm state at certain epochs.

Runtimes for scenarios with increasing degree of FOV overlap are shown
in figure 6.8. It can be seen that an increasing number of solutions has a
small impact on the runtime (whereas this also means that feasible solutions
might be found earlier). Increasing the scenario complexity by adding non-
covering cameras however, has almost no impact on the runtime.

6.1.6 Surveillance Quality

By assigning quality ratings to algorithms, we can explore the tradeo↵ be-
tween surveillance quality and resource utilization. Figure 6.9a shows the
Pareto front for the scenario of medium complexity for an elite size of 20 (i.e.,
we choose 20 non-dominated solutions from the Pareto front). Energyscore
is calculated by 1/e

n

where e
n

is total energy consumption in the network.
Since the optimization algorithm always maximizes values in the decision
vector but lower energy values are better, we perform this invert operation.
Thus, a higher value in energyscore means a lower energy consumption.

Figure 6.9b shows an example Pareto front for the scenario with five
overlapping cameras per observation point. We used an elite size of 100 for
this experiment. This shows that there is a large number of possible solutions
that our algorithm is able to find. All those solutions must be regarded as
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(a) Simple scenario.

(b) Medium scenario.

(c) Complex scenario.

Figure 6.6: The relation between mutation rate and the rate of finding
feasible results (success rate) for a) Simple b) Medium and c) Complex
scenario.
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(a) Population size. 1000 epochs. Mutation rate: 0.5.

��

���

���

���

���

���

���

�	�

�� ����� ����� ����� ����� �����

��
��
��

��
	

��
�


��
������������
���������������������

���������������� �

!������

��

���

���

���

���

���

���

�	�

�� ����� ����� ����� ����� �����

��
��
��

��
	

��
�


��
������������
���������������������

���������������� �

!������

(b) Number of Epochs. Population size: 1000. Mutation rate: 0.5.
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(c) Mutation Rate. 1000 epochs. Population size: 1000

Figure 6.7: Runtime with respect to population size, number of epochs and
mutation rate.
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Figure 6.8: The runtimes for our overlap scenarios. ”Overlap1” e.g., refers
to the scenario where each observation point is covered by one camera aso.

Node Tasks
1 SingleGaussian
2 FrameDoubledi↵
3 FrameDoubledi↵, Blobfinder, Kalman
4 o↵
5 FrameDoubledi↵, Blobfinder

Table 6.4: The result of the task allocation for the simple scenario.

equally good tradeo↵s between quality and resource usage. From those
feasible solution, one has to be selected. This may be done according to a
predefined weighting of quality versus resource usage or by any other metric
or selection function.

6.1.7 Measurements of Resource Consumption

The result of our evolutionary algorithm is a feasible camera configuration
and a task allocation along with a prediction of the resource demand. To
evaluate the accuracy of the resource prediction, we experimentally test the
resource consumption of the assigned tasks on a real platform. Based on the
SLR hardware platform we use in our tests (see section 6), we first construct
the mapping r̃ from measuring algorithm performance on this hardware.
We run the algorithms with videos of di↵erent resolutions as inputs while
measuring resource and energy usage.

We can then use r̃ as a lookup table in the algorithm to predict the
resource demand of a certain configuration. We implement the application
according to the task assignment in table 6.4 and measure the CPU load
and power usage. For these tests, the application reads images from a video
file of the calculated resolution and executes the assigned tasks.

We use Atom-based embedded boards as target platforms. These are
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(a) Medium complexity scenario. Elite size: 20.
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(b) Scenario with five cameras per observation point. Elite size: 100.

Figure 6.9: Pareto fronts for a) medium (PTZ) scenario and b) scenario with
5 overlapping cameras. Global minimum energy usage is used as resource-
related optimization goal.
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Node CPU
p

[%] Power
p

[W] CPU
m

[%] Power
m

[W]
1 4.32 0.09 3.6 0.1
2 0.34 0.01 0.21 0.01
3 17.55 0.35 16.2 0.3
5 12.28 0.25 11.6 0.2

Table 6.5: The predicted and measured resource usage for nodes in the sim-
ple scenario. CPU

p

and Power
p

are predicted values, CPU
m

and Power
m

are measured values.

also used in the SLR cameras. We test all algorithms on pITX-SP 1.6 plus
board manufactured by Kontron3.

As it can be seen from table 6.5, our predictions match with the mea-
sured results. The small di↵erence between predicted and measured result
is caused by the operating system which cannot be completely cut out in
tests.

6.1.8 Integration of PTZ Reconfiguration

In PTZ scenarios we want i) to find feasible configurations and task alloca-
tions and ii) to select the subset of sensors which is required to cover the
observation points. The sensors which are not required, can then be com-
manded to basic coverage while the other sensors can focus on detection and
tracking at the observation points.

PTZ optimization

To test the automatic configuration of the pan, tilt and zoom parameters
of the proposed PTZ network a map representing a certain area has been
selected. On such a map eight di↵erent cameras have been deployed to cover
the entire environment. In figure 6.10 a representation of the testbed area
together with the deployment configuration of the PTZ network is presented.

Initially, a camera configuration has been achieved by running the PTZ
reconfiguration on a homogeneous activity map (e.g., each cell of the map has
the same activity density). Then, ten di↵erent trajectory clusters have been
defined. These activity maps are later used to define observation points.

The PTZ cameras are reconfigured as described in [19]. Based on the
generated activity maps, the cameras are oriented in a way, that the cover-
age on the area is maximized. This is done by employing the expectation-
maximization approach described in [67].

3http://www.kontron.com
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Figure 6.10: Deployment of the cameras (black circles) on the monitored
environment. Each camera is placed at height 14m.

Sensor selection and resource allocation

Taking the result of the PTZ optimization as input, we run the sensor selec-
tion and resource allocation optimization. In the areas of high activity, we
place observation points requiring object detection or object tracking. The
resulting input for algorithm is shown in figure 6.11.

Table 6.6 shows the results for the sensor selection and sensor configura-
tion. Table 6.7 shows a resulting task allocation. The resulting Pareto front
for the task allocation is shown in figure 6.9a).

Sensor res fps activitiy

1 SQCIF 4 object detection
2 VGA 18 object tracking
4 QVGA 4 object detection
7 SQCIF 12.5 object tracking
8 QCIF 2 object detection

Table 6.6: The result for sensor selection and sensor configuration. Sensors
3, 5, 6 are switched o↵.
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Figure 6.11: Input for the sensor selection and resource allocation optimizer.

Sensor Tasks CPU [%] Mem. [MB] Power [W]
1 FDD, BF 0.24 0.77 0.005
2 FDD, BF, K 70.22 18 1.4
4 FDD, BF 1.65 1.49 0.03
7 FDD, BF, K 2.03 0.73 0.04
8 FDD, BF 1.01 1.49 0.02

Table 6.7: The resulting task allocation. FDD: Frame Double Di↵. BF:
Blobfinder. K: Kalman. Sensors 3, 5, 6 are o↵.
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6.2 Distributed Algorithm for Low Dynamic En-
vironments

In the following sections (adapted from [21]) we evaluate the distributed
algorithm for reconfiguration in environments with low dynamics. We use
simulation as well as real environments.

To evaluate the distributed reconfiguration algorithm, we first regard
the theoretical boundaries of its communication complexity. After that, we
show results from practical evaluations.

6.2.1 Communication Complexity

In this section, we show a theoretical evaluation of the communication com-
plexity of the presented algorithm. To assess the communication complexity
of our algorithm in terms of best and worst cases, we model the communi-
cation in a slotted fashion. We assume that only one node can transmit its
message at a given time and that all other nodes overhear this message and
that the nodes send messages in random order.

For this evaluation, we define the node neighborhood as the joint obser-
vation of a certain target by multiple cameras, i.e., it is the set of all cameras
which have this target in their FOV. Using the function

c(s, t) =

(
1 if t is in the field of view of s.

0 otherwise
(6.1)

we define the neighborhood of cameras wrt. an observation point t as

N
t

= {s 2 S|c(s, t) = 1} (6.2)

Note, that we define best and worst case communication complexity for
a single observation point only. To calculate the respective numbers for a
scenario consisting of multiple observation points, the best and worst cases
for each of those points must be summed up.

Best Case

In the best case, the node which initially introduces a new target also has the
best solution for it. In this case, it broadcasts its descriptor and all neighbor-
ing nodes reply to confirm. This corresponds to a best case communication
complexity of |N

t

| messages for a single observation point t where |N
t

| is the
number of cameras in the neighborhood wrt. this target point. This case is
visualized in figure 6.12 with a neighborhood of size four.
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Step
Node 0 1 2 3
A d

A

B d
A

C d
A

D d
A

Figure 6.12: The best case communication complexity. Node A has already ini-
tially the best solution. It broadcasts the corresponding descriptor and receives a
confirmation from each neighbor.

Worst Case

The worst case arises if the node which initially defines a new target has
the least optimal solution for it and if the subsequent communication is
performed in reverse order of solution optimality (i.e., nodes with the best
solutions act last). From the set of nodes Ñ which have not yet transmitted
their solution, always the node n

i

2 Ñ for which the condition

8n
j

2 Ñ , j 6= i : d
n

i

< d
n

j

holds, will transmit its solution (where the expression d1 < d2 means that
d1 is a worse solution than d2).

We assume that the first nodes to confirm the slightly better descriptor
are only those which have a worse solution. This means, that for the least
optimal result, one message is sent (by this node itself), for the next better
result, two messages are sent (one by the node that broadcasts this solution
and one by the node with the worse solution as confirmation), and so on.
In this constellation we reach the worst case communication complexity of

|N
t

| · (|N
t

|+ 1)

2

A worst case for a four nodes scenario is shown in figure 6.13. Assume that
solutions are better according to the alphabetical order of the node IDs.
Thus, Node D has the best solution, C has the second best, B the third
best and A has the worst solution. However, it is node A which initially
defines the observation point and transmits an initial descriptor. Node B
replies with the next best solution which is then confirmed by A before C
transmits its solution. It can easily be seen that any other transmission
order would result in a lower number of required messages. If, for example,
D transmits its solution immediately after the initial descriptor of A, the
total number of messages required is 5.
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Step
0 1 2 3 4 5 6 7 8 9

A d
A

d
B

d
C

d
D

B d
B

d
C
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D

C d
C

d
D

D d
D

Figure 6.13: The worst case communication complexity. A defines the observation
point but has the most expensive solution for it. D has the best and C the second-
best solution.

Figure 6.14: The camera and observation node placement in the practical scenario

6.2.2 Practical Evaluation

To give a thorough evaluation of the distributed algorithm for low dynamics
reconfiguration, we conduct a series of tests with multiple scenarios. In both
a real implementation and in simulations we evaluate the properties of the
presented algorithm. First, we use the central algorithm presented in 4.2
as a benchmark for the distributed approach in order to assess in which
circumstances the distributed version has deviating results. Second, we also
evaluate the number of messages the algorithm needs to achieve its results
and we show that this number is within the theoretical borders presented
above. Note, that since a descriptor easily fits into a single message in almost
every wireless communication technology, the number of messages is equal
to the number of descriptors exchanged during operation. Third, we show
the behavior of the distributed algorithm in scenarios with message loss.

We show that the distributed algorithm has a short runtime (measured
in the number of messages exchanged to achieve a result), is reliable even in
scenarios with message loss as high as 15% and scales linearly in terms of
messages needed per observation point.

In section 6.1.7 the appropriateness of our resource models has been
demonstrated. We have shown that the predictions of our energy and re-
source usage models closely match the tests on real hardware. To achieve
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results for large scenarios, we rely on simulations. However, we first show
the results from a real deployment to show that results from simulation and
real deployments correspond.

Realworld Scenarios

We first show an evaluation of the algorithm in a real scenario built at the
Alpen-Adria Universitt Klagenfurt campus. We use this scenario to validate
the models used in the later simulation.

To show the algorithm in a practical application, we define a scenario
with four Pandaboard-based4 embedded cameras equipped with an Cortex
A9-based OMAP4 processor. The cameras cover an area of approx. 1500m2.
They observe five, partially shared observation points. The scenario is shown
in figure 6.14. The observation points require either simple background sub-
traction, object detection or tracking. The corresponding task implementa-
tions are realized by using standard OpenCV5 algorithm implementations
(BgStatModel, BlobDetector, TemplateTracking). Cameras start the image
processing procedures according to the observation points they are respon-
sible for. We measure the time until a stable solution is reached. We further
compare the solution which the algorithm achieves in our real scenario to
the results of our simulation with the same scenario parameters. We do this
to show that our simulation adequately corresponds to real deployments.

Simulated scenarios

We have defined seven scenarios that pose di↵erent challenges to the algo-
rithm. We choose typical deployment scenarios for VSN with i) separated
clusters with overlapping FOV that may arise in applications with surveil-
lance of separate rooms in buildings or intersections of streets as well as
ii) connected fields of view that are typical when a continuous surveillance
should be achieved like pathways or large halls.

The first two scenarios—which have separated clusters—are used to show
the behavior of the algorithm in low-complexity settings. Both scenarios
have the same observation points but scenario b has more sensors covering
those points. In scenario a 10 sensors are deployed while 15 sensors cover
the observation points in scenario b. Scenarios a and b are shown in figure
6.15.

The other two scenarios have no clear separation of clusters and are
thus more complex to solve. Scenario d contains additional sensors and
observation points to scenario c but has additional sensors and points added
which leads to more complexity. Every node in scenario d transitively shares
its field of view with every other sensor. In total, scenario c contains 9 sensors

4http://www.pandaboard.org
5http://opencv.willowgarage.com
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(a) Two cameras per observation
point.

(b) Three overlapping cameras per
observation point.

Figure 6.15: The low complexity scenarios a) and b). They share the same obser-
vation points, but scenario b) has one additional camera per cluster.

and 9 observation points while scenario d has 15 sensors and observation
points respectively. The complex scenarios are shown in figure 6.16.

Scenario Best Case Worst Case Average Overlap
real 14 27 2.8
a 14 21 2
b 21 42 3
c 21 36 2.33
d 38 70 2.53

Table 6.8: Best and worst case communication complexity along with the average
number of FOV overlap per observation point for scenarios a - d.

In all scenarios we use the resource usage prediction of the central algo-
rithm as a reference solution for the distributed algorithm. We measure the
performance of the algorithm in terms of deviation from the targeted results
(the higher the deviation, the more resources will the solution demand dur-
ing runtime). We also measure the number of messages the algorithm needs
to achieve this result.

The experiments are performed in two steps:

1. By disabling the periodic re-evaluation, we can estimate the qual-
ity of results achieved when the algorithm terminates after all
points have been covered.

2. By enabling the re-evaluation for 100 messages, we can see the
improvement made by this mechanism. In all of our test cases
we show, that this improves the solution quality (except in cases
where the optimal result is already reached initially).

Additionally, we perform the same evaluation again for scenarios c and
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(a) Medium complex scenario
with interdependencies

(b) High complex scenario with
circular cluster interdependen-
cies.

Figure 6.16: Two scenarios with more complexity and interdependencies c) and
d).

d with message loss rates of 5% and 15%. Again, we first look at the initial
result and then compare them to the result after a re-evaluation phase of
100 messages.

Large-scale Networks

Additional to the four fixed test scenarios we evaluate the behavior of the
proposed approach with three very large networks. A randomly generated
scenario of 100 sensors and 25 observation points is used. By adding more
observation points we derive two further scenarios containing 33 and 50
observation points respectively.

Targets Best Case Worst Case Average Overlap
25 48 77 1.92
33 68 116 2.06
50 102 169 2.04

Table 6.9: Best and worst case communication complexity along with the average
number of FOV overlap per observation point for the complex scenarios with 25,
33 and 50 observation points.

6.2.3 Evaluation Results

We first show results of our realworld deployment and then use simulations
to test our algorithm in larger and more complex scenarios.
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Measured result Simulation result
Deviation 2.45% -
Time 12s -

Messages real 26 21
CPU load node 1 95.3% 90.6%

Table 6.10: Results of the realworld deployment compared to the simulated results.

Realworld Results

In table 6.10 we show the results from our practical test. It can be seen that
the simulation achieves results very similar to a real system both in terms of
achieved results and required messages. The deviation of 2.45% means that
the resources required by the solution of the distributed are 2.45% higher
than the result predicted by the simulation. We also show how the actual
processor load on node 1 corresponds to the predicted load. The di↵erence
here is caused by additional I/O operations performed by the application
which are not reflected in the simulation’s models.

Simulation Results

We compare the distributed and the central algorithm. This is important to
assess the solution quality it will deliver at runtime. The central algorithm
needs information about all nodes as input, and thus it is not a↵ected by
strongly connected fields of view. Opposed to that, each node running the
distributed algorithm needs to find a solution only using its local knowledge
and the limited amount of information it receives by the descriptors of other
nodes.

In our simulations we perform 500 simulation runs per scenario and
show the average, minimum and maximum deviation from the reference
result of the central algorithm. We also present the average, minimum and
maximum number of messages needed to initially cover all points. We also
show, how often the algorithm finds the optimal result initially and after an
re-evaluation phase of 100 message. Note, that even if the optimal result is
not found, the result is still valid but requires a higher amount of resources.
Additionally we show the average, minimum and maximum deviation from
the reference result after the re-evaluation.

The results of this test series are shown in table 6.11. It can be seen
that the algorithm performs very well in the simple (a and b) and medium
complex (c) scenarios. It is able to find the optimal result for scenario a
already in the initial assignment phase. Also, the number of messages needed
is very low making the algorithm very suitable for resource-limited networks.
Note that the results for scenario c are better after the re-evaluation than
in scenario b. This is based in the fact, that the average overlap in scenario



6.2. DISTRIBUTED ALGORITHM FOR LOWDYNAMIC ENVIRONMENTS93

c is lower (as shown in table 6.8).

Scenario
a b c d

Deviation initially [%]
Average 0 1.5 5.1 11.9

Min - Max 0 - 0 0 - 36.8 0 - 15.5 0 - 64.9

Number of messages
Average 17.5 31.2 29.4 54.1

Min - Max 14 - 21 22 - 43 21 - 43 44 - 78

Optimal results in initial run [%]
100 45.1 16.2 4.5

Optimal results after +100 messages [%]
100 45.5 54.8 41.8

Deviation after +100 messages [%]
Average 0 1.3 3.7 6.7

Min - Max 0 - 0 0 - 12.2 0 - 7.8 0 - 55.5

Table 6.11: Results of the distributed algorithm compared to the central EA with
no message loss.

Note, that for the scenarios b, c, d in some cases more messages than in
the worst case are needed. This is because the theoretical worst case is calcu-
lated by slotting the communication of the algorithm for simplicity reasons.
This gives a good approximation for the most cases. In the real implementa-
tion however, communication is not slotted but we perform unsynchronized
bu↵ering (i.e. there are no common time slots for all nodes). There are rare
cases, where the nodes’ descriptor bu↵ering times are suboptimal, slightly
more messages than the worst case can be produced.

We can see that the algorithm finds the optimal result for scenario d
initially in 4.5% of our test cases but is able to increase this rate after the
re-evaluation to nearly 42%. Thus, it can be seen that the algorithm finds
results fast and that the re-evaluation allows the improvement of the solution
already after a small number of additional messages.

Impact of Message Loss

A distributed algorithm that may be used in networks with non-reliable
message transport must be able to deal with message loss. We performed
simulations with 5% and 15% message loss to evaluate our approach. We
assume a broadcast medium where a message loss means that the current
message containing one descriptor is lost.

The results for 5% message loss are shown in table 6.12. It can be seen
that the results are still very close to the results with no loss. It can be
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Scenario
c d

Deviation initially [%]
Average 21.96 25

Min - Max 0 - 229.2 0 - 218.3

Number of messages
Average 27.96 51.2

Min - Max 21 - 38 38 - 64

Optimal results in initial run [%]
16.8 2.2

Optimal results after +100 messages [%]
57.8 45.2

Deviation after +100 messages [%]
Average 3.3 7.1

Min - Max 0 - 12.6 0 - 55.5

Table 6.12: Results of the distributed algorithm compared to the central EA with
5% message loss.

seen that in the average deviation from the optimal result increases and
reaches a rather high deviation in some rare cases. Here, the added value of
performing a continuous improvement after the initial assignments can be
seen very clearly since the improvements made after additional 100 messages
is very large.

As table 6.13 shows, the algorithm still works well in scenarios with
message loss of 15%. It shows the same behavior also for this rate of message
loss. Initial results show a larger deviation from the optimal result which is
then greatly reduced by the runtime re-evaluation of assignments.

Large-scale and Complex Networks

To show the behavior of our approach in large-scale and very complex net-
works we have randomly generated a network of 100 sensors and populated
it with 25, 33 and 50 observation points.

We show in table 6.14 that the algorithm yields results very close to the
optimum and that the average number of messages needed per observation
point remains stable.
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Scenario
c d

Deviation initially [%]
Average 43.7 56.7

Min - Max 0 - 275.4 0 - 285.0

Number of messages
Average 25.8 50.0

Min - Max 21 - 37 38 - 67

Optimal results in initial run [%]
5.4 0.4

Optimal results after +100 messages [%]
35.7 36

Deviation after +100 messages [%]
Average 3.8 9.2

Min - Max 0 - 12.6 0 - 55.5

Table 6.13: Results of the distributed algorithm compared to the central EA with
15% message loss.

# Observation points Deviation [%] # Msgs. Msgs. / OP

25 0.36 - 0 - 1.5 63.5 - 57 - 70 2.54
33 0.3 - 0 - 1 93.5 - 81 - 110 2.83
50 0.73 - 0 - 2.6 138.9 - 117 - 152 2.73

Table 6.14: The results for 25, 33 and 50 observation points (first column). We
show the deviation from the central algorithm’s result (column two), the number
of messages required (column three) and the number of messages per observation
point (column four).



96 CHAPTER 6. EVALUATION

6.3 Hybrid Distributed Algorithm for High Dy-
namic Environments

In this section (adapted from [20]) we evaluate our approach by first showing
the advantage in terms of energy demand of using our approach compared
to always tracking with the highest possible quality. Second, we show that
the reconfiguration can be used to free resources on cameras that would
otherwise be unable to track an object. Finally, we compare our approach
to a centralized approach in a larger scenario.

6.3.1 Scenarios

To show the basic mechanics in our approach, we take the scenario shown in
figure 3.1(a) with four cameras with partially overlapping FOV. In the first
scenario, we remove all observation points. The results shown below were
obtained by means of simulation.

The moving objects in all scenarios require tracking at eight frames per
second and with 14 pixels on target. These quality requirements must be
met in order to achieve a feasible solution. Tracking at higher settings
will result in improved quality but also higher resource demands. We take
six snapshots (steps) of the scenario, calculate the benchmark results and
compare them to the results of our approach (in-between steps we assume
continuous tracking). Whenever an objects comes close to the edge of the
FOV of a camera, the node will try to perform a handover.

We calculate the utility for the tracked objects according to Equation
4.6a and the predicted energy consumption in the total network (according
to our platform and algorithm models) in each step.

6.3.2 Evaluation Results

Figure 6.17 shows that the reduction of consumed energy for our first sce-
nario is apparent. While the total utility is lower in our approach, the object
is still tracked at its required quality and the energy consumption is 45%
lower.

In the second scenario, camera S3 is covering two observation points
with high quality requirements. If no dynamic reconfiguration is applied,
the camera is unable to additionally track the object when it enters its field
of view. Thus, the system loses track of the object which results in a zero
utility. Figure 6.18 shows how the system adapts the task allocation from
before and after step 5 in order to free resources on S3.

The third scenario is more complex than the first two and defines ten
sensors and eight fixed observation points. Over 10 steps, up to six objects
move concurrently in the area of interest. The sensors are arranged to cover
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Figure 6.17: The energy consumption and utility in scenario one compared
to the benchmark.
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(a) State before handover.

(b) State after handover and reconfiguration.

Figure 6.18: The task allocation before and after the reconfiguration in step
5 in scenario 2. It can be seen that node s3 has changed its configuration in
order to track object o1. To free resources it has handed over observation
point t4 to node s4.



6.3. HYBRID DISTRIBUTED ALGORITHM FORHIGH DYNAMIC ENVIRONMENTS99

an L-shaped area that could be e.g. a large corridor in a building or a
pathway between buildings. The setup is shown in figure 6.19.

Figure 6.19: Scenario 3 defines ten sensors and eight fixed observation points
in an L-shaped area of interest.

Again, the centralized algorithm presented in section 4.2 is used as bench-
mark. The optimal assignment calculated by the centralized algorithm for
each step is compared to the results of our approach to that. Since the cen-
tral algorithm cannot deal with moving objects (its input is O[T ), we need
to provide a static input for it. For each of the defined ten steps, we can use
the central algorithm to calculate an optimal benchmark solution based on
the static object placement in the respective step. Thus, the moving objects
appear to the algorithm as observation points. While this does not give
implications for where to hand over an object, the optimal solution for each
step is a benchmark for the minimum energy consumption possible. The
results of the proposed approach di↵er in several cases because an object
has been handed over based on its movement direction.

In each step, we compare the total utility (the sum of the delivered
utilities of all objects) and the total energy consumption in the network to
the results of the central algorithm. Further, we show how many times the
network performs a handover or reconfiguration operation.

Scenario three results are shown in figure 6.19. The utility is always
higher or equal to the benchmark but also the energy demand is in some
cases higher due to the required handover. Our results show that the average
total utility for all tracked objects in the network was 202% higher than in
the benchmark solution but that the average energy demand only increased
by 4.2%. Thus, with the hybrid algorithm we have combined the ideas
of reconfiguration with low dynamics with a handover mechanism for agile
objects and still operate with nearly the same energy demand.
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(a) The overall energy demand in the net-
work in the proposed solution compared to
the benchmark

(b) The total utility in the proposed ap-
proached compared to the benchmark so-
lution.

Figure 6.20: Comparison between the proposed solution and the benchmark
for scenario 3.

Table 6.15 shows the actions that have been taken in the individual steps
by our algorithm. We show in which step it hands over an object and in
which steps it needs to reconfigure observation points prior to handing over
a moving object. It can be seen that several handover operations have been
performed and in some cases also reconfiguration due to high object densities
were necessary.

Step # Handovers # Reconf.
1 0 0
2 0 0
3 1 0
4 2 0
5 3 1
6 3 1
7 2 0
8 3 1
9 3 0
10 3 0

Table 6.15: The number of handovers and reconfigurations in each step.

6.4 Evaluation Results Summary

In this chapter we have performed an evaluation of the algorithms presented
in section 4. We have shown for the central algorithm that it is able to ap-
proximate the Pareto front for the multi-objective optimization problem of
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surveillance quality versus energy consumption. We have shown that the al-
gorithm can flexibly be adapted to di↵erent scenarios in terms of population
size and mutation rate.

In simple and complex scenarios, we have shown that the algorithm has
a high reliability in finding feasible solutions. We have also shown that the
predictions of the resource model closely correspond to real measurements.
Further, we have shown how a PTZ reconfiguration can be integrated into
the algorithm in order to deal with varying area coverage.

For environments with low dynamics we have evaluated the distributed
algorithm which performs observation point reconfiguration. We can show
that it achieves results which closely match the benchmark results of the
central algorithm. We further show that in a real scenario, the algorithm
achieves a result which corresponds to the simulation predictions and which
is found fast enough to react to slow changes in the environment.

We have shown for our distributed algorithm for high dynamic environ-
ments that it achieves significant resource savings by performing reconfig-
uration of sensor settings. We have further shown that it prevents objects
from being lost due to insu�cient resources on the handover target node.
Finally, we have shown that we can achieve large increases in surveillance
quality at very low additional resources costs.
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Chapter 7

Server Infrastructure
Reconfiguration

To show that the evolutionary algorithm for resource-aware reconfiguration
presented in this thesis is not only applicable to VSNs, we port this method
into the field of large server infrastructures. In recent years, we see that web-
based and mobile applications drastically increase in terms of the services
o↵ered and the number of users. Typically, such applications need a large
server infrastructure as a backend. Such a backend consists of multiple
load-balanced servers which process thousands of client requests per second.

Applications for mobile devices have become a fast growing market seg-
ment. The increasing number of smartphones which are GPS-enabled and
have high-bandwidth internet connection is a driving factor for the devel-
opment of location-based multi-user applications. Already today, massive
multiplayer online games (MMOG) are very successful. Combined with the
trend towards more mobility we expect that mobile massive multiplayer on-
line games (MMMOG) will be an important part of the mobile application
market in the coming years. Although the individual application scenario
may be di↵erent, many of these applications will share some common prop-
erties. They are typically client-server based, location-based and enable user
interaction.

Typically, server load balancing is done by replicating the processing
instances to multiple servers and adding a load balancing layer to redi-
rect requests to servers with free capacities. This however, requires the use
of data synchronization between server instances. In the GeoBashing [18]
server infrastructure described below, we have taken advantage of the geo-
based nature of a mobile multiplayer game by assigning servers geographical
responsibility areas and by load balancing based on those responsibilities.
This reduces the data to be shared between servers and enables a more e�-
cient load balancing. To find the optimal assignment of regions to servers, we
adapt the evolutionary algorithm to perform reconfiguration on the server
load balancing.

In the following sections (adapted from [18]) we describe the server ar-
chitecture for geo-based load balancing and a use case in form of a mobile
massively multiplayer online game. Finally, we look at an EA to optimize
the load balancing based on resource-aware reconfiguration.
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7.1 The Geobashing MMMOG Architecture

The server infrastructure basically consists of a web service layer and an
application server (AS) layer. The web service layer is only a thin entry
point to the application server layer. The application servers perform all
game-specific tasks. Figure 7.1 shows the Geobashing architecture.

Figure 7.1: From a high level view the Geobashing architecture consists of
a web service and an application server layer.

Web Service Layer

Since web services, or—more particularly—the web server they are running
on, represent a major bottleneck in many web applications, their function-
ality is reduced to a minimum in our system. The main tasks of this com-
ponent are user authorization and forwarding of requests to the application
server. Due to this reduced functionality, a transparent load balancing of
the web services can be realized easily, using any well–known load balancing
mechanism (e.g. DNS-based load balancing). In order to support the appli-
cation server load balancing described below, web services hold a mapping
between users and responsible application server instances. This mapping
is the only shared state that all web services have to access and is used to
directly address the currently responsible application server for a user. If a
mapping between a user and an application server cannot be found, the re-
quest is relayed to the root application server. To make these data available,
a distributed hash table (DHT) is used.
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Application Server Layer

The application nodes implement the game logic and manage the game state.
We assume the game state to be a set of static and dynamic game objects,
which have a certain position on a map. Since heavy load on these nodes
has to be expected, a load balancing technique must be implemented. In
our approach the load on the AS instances is balanced based on the user’s
current position which is part of every user request. The server topology
consists of multiple application servers where every node is responsible for
a certain geographical area (which we call the server’s bounding box).

Since responsibility areas may be nested, we organize the application
servers in a tree where the bounding boxes of all sub servers are contained
in the root server’s bounding box. To ensure a distinct mapping of user
positions to servers, the bounding boxes of sub servers must not intersect
(however, they may be fully contained in each other). Every server knows
its sub server but not its superordinate node. The advantage of this server
infrastructure is that a server only maintains the state of game objects that
are within its responsibility area and that are not contained in a sub server’s
bounding box. The server hierarchy provides the possibility to deploy a
server infrastructure that addresses areas with a higher player density. If
such an area is identified, the load can be split by adding more servers to
the particular sub tree.

Like in every other application there are also requests that simply query
data. In the context of mobile games these requests often enable the client
application to provide parts of the game in o✏ine mode (e.g. transfer chal-
lenges to the client). In the presented architecture, requests which are not
geo-related (e.g., a query for player character details),can be handled by any
application node.

Game State

To support our architecture, we assume the game to have a lightweight game
state that consists of only two object types: static and dynamic objects.
Static objects are bound to a non-changing position on the map, whereas
dynamic objects move on the map. Only static objects are stored in the
persistent storage while dynamic objects are added on the fly.

Data Storage

The persistent storage is only accessed by the application nodes. The storage
is used whenever static game objects need to be stored, modified or queried.
Its main task is to provide the possibility to query static game objects based
on a provided search area, e.g. whenever a new application server node is
initialized.
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Request Handling

Every application server processes a request in two phases (see figure 7.2).
In the first phase a sub server that is responsible for the request (i.e. the user
position is contained in the sub server’s bounding box) is searched. In phase
two the request is either forwarded (if a suitable sub server was found; the
sub server then performs the same query again) or handled by the current
server. After handling the request, the response is returned through the
server tree. This server selection process ensures that a request is always
handled by the server with the smallest bounding box containing the user
position. Since this lookup is an expensive operation, the response contains
the ID of the server that actually handled the request. Thus, on the next
request, the server can be queried directly.

The mapping between a user and the responsible application server is
stored in the previously mentioned DHT in the web service layer. Since
users move while being logged in, it is possible that the mapping between
a user and a server becomes invalid. In this case the application server re-
sponds with a redirect message (see figure 7.2), indicating that it is no longer
responsible for the particular user. The calling web service then redirects
the request to the root application node, a new responsible application node
can be selected and the user-to-server mapping is updated.

A special type of request is the so called in-range request which queries
game objects within a certain search area. In the application server in-
frastructure there is the possibility that this search area intersects with the
responsibility areas of more than one server. In this case, the request is per-
formed by the server that completely contains the search area. This server
forwards the requests to all responsible sub servers and aggregates the data.

Figure 7.2: Selection of the responsible application server (simplified). WS
is the calling web service.
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Latency Reduction

The presented load balancing mechanism is applied to distribute the load to
multiple application servers within a single data center. By extending the
web service layer, the same strategy can be used to achieve a distribution
to di↵erent data centers. This addresses the need to reduce the latency on
the client. In such a scenario the server infrastructure is present at multiple
sites where every site has a di↵erent responsibility area. For this to work,
the web service layer has to have knowledge of the global distribution and
bounding boxes of the di↵erent sites. The lightweight game state supports
such a multi-site infrastructure by partitioning the static objects according
to their positions, as all objects are contained in a well-defined bounding
box.

Fault Tolerance

The combination of the responsibility areas of servers, the possibility to redi-
rect a request and the lightweight game state have an additional advantage.
Due to this, a fault tolerant application server infrastructure can easily be
realized. The system supports the transfer of the game state from one server
to another without the need for a complex synchronization mechanism. If an
application node fails, the web service layer will no longer be able to connect
to this particular node. In this case the request will be forwarded to the
root application node. If—at any point—a server cannot be reached, this
particular server will be deleted from the parent’s sub server list. Thus, the
whole server sub tree will no longer be reachable. A user who was previously
managed by a server in this particular sub tree will be assigned to a new
server. Thus, all dynamic objects of the game state are migrated on the fly.
The static objects can be easily added to the game state of the server now
responsible by simply querying the data storage providing the bounding box
of the failed sub tree.

Implementation Details

To support fast development of client applications, the implementation of
the web service layer solely relies on Restful Web services (based on HTTP).
The web service and the application server are implemented in .NET. For
the communication between the web service and the application servers or
between di↵erent application servers .NET Remoting is used.

To provide an easy way to exchange and extend the functionality of the
application server, it is realized using the plug-in framework presented in
section 5.2.1. This enables game developers to use the Geobashing MMMOG
architecture and build di↵erent game concepts on top of it. To support
faster querying of position-related data at runtime, an R-tree [36] is used
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to store the game objects at the application servers. We use the R-tree
implementation of Sharpmap [84]. For the DHT we use Memcached [54].

The default communication pattern in our architecture is a client-side
pull communication. Nevertheless, in some cases the server may want to
explicitly notify the client of some event (to improve the game flow). For
those cases we use a push communication channel based on SMS messages.

7.2 The Geobashing Game

As a use-case of our architecture we present the Geobashing game. Geobash-
ing combines player interaction with mobility aspects, sports and role play
elements. Players in this game can challenge other players with di↵erent
tasks. By completing challenges, players earn experience points and virtual
money. This part of Geobashing is called the active part (players have to
actively choose to create or participate in a challenge).

In contrast to other games, Geobashing is meant to be played all day.
Players can leave the application running in the background while carrying
their phones. The application periodically sends the current GPS position
to a server (this is called the passive part). The update frequency is con-
trolled by the server which yields the possibility for server-controlled energy
management based on e.g. player density. The server also evaluates if other
players are nearby. Like in other role plays, a player can attack if nearby
players are encountered.

7.2.1 Game World

The world of Geobashing is a virtual overlay to the real world. Every game
element has a geographical position attached. A Geobashing player only
needs to know the part of the virtual world that is immediately surrounding
her current position.

7.2.2 Game Elements

A character is the virtual representation of the player and has the attributes
attack, defense, stealth, health, a level and experience points, a purse for
money and can carry items.

Items are static objects, i.e., they are bound to a certain position and
do not move. Players can carry a certain number of items with them. They
consume storage slots and can alter character attributes (e.g., the mighty
sword of destruction, or the red baby-trike). They can be dropped or picked
up by a player which enables trading between players.

Traps are similar to items, but additionally, they can be dropped and
activated. If a player approaches a trap, a corresponding action is triggered
(e.g., the player loses a specific amount of health points).
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Money is needed for several tasks and is modeled as an item with a
count.

Every player can define a certain position as home base for her character
(e.g., her home). Within a fixed radius around the home base the player is
not attackable. If a player is in this zone, she automatically restores health
points. Additionally, she can exchange money and items with the home base
storage or access the global Geobashing item shop. The home base can also
be equipped with items which provide services to its owner or other players
(e.g., a hospital: allows other players to restore health points for money).

7.2.3 Challenges

Players can participate in Challenges. The first time a player participates
in a challenge a starting fee may be paid as a bet. A challenge consists of at
least one position, has a goal and a reward. We have defined the following
types of challenges so far.

A Race Challenge follows the ”be the fastest” principle. A track of way-
points must be passed and the player gets ranked according to her best time.
On expiration, the sum of all starting fees is split among the best partici-
pants. Participants may receive medals, items and/or experience points as
a reward. The creator may place a bet, which gets added to the rewards
and she receives experience points for every participating player beating the
creator’s reference time. If the participant does not pay the fee, she receives
no monetary reward.

Another type is the Paper Chase Challenge. The idea is to give the
character hints or let her solve riddles in order to get the next waypoint.
Neither is the time relevant nor is a participation fee needed, but one can
only participate once. A reward is optional. The creator is rewarded with
experience points for every successful participant. A ranking is not needed
for this type.

The Shape Challenge adopts the idea of GPS drawing1. A player who
draws a given shape with the longest GPS track wins this challenge. Rewards
and rankings are handled in the same way as in the race challenge.

For the most possible freedom players can create an Open Challenge.
The creator only needs to declare a condition and a reward (e.g., ”Pick me
up at noon, drive me to the next bar, I might have a cool item to give
away.”).

The Group Challenge addresses groups of players. A group challenges is
a composition of multiple single player challenges. Players form a group and
find an approach to solve all challenges as fast as possible. All challenges
must be successfully mastered by the group, whereas every player must
participate in at least one challenge. The majority of the group must vote

1e.g. http://www.gpsdrawing.com
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for the start of the group challenge (this starts the timer), it ends when all
challenges have been attended at least once. The experience rewards are
multiplied by a group factor and are distributed to the members, all other
rewards are discarded. The best ranked players are awarded gold, silver and
bronze medals.

7.2.4 Fight

Whenever two players are within a given range, they both are notified of
the other (see screenshot in figure 7.3). This range depends on the stealth
attribute of each player character. The player can then decide whether or
not to attack.

Figure 7.3: A screenshot of Geobashing showing the players in range. The
three icons at the top right indicate (left to right) that GPS is online, players
are in range and that the player is logged in.

In a fight, the attacked player has the chance to escape. If, within
a certain time frame, she can flee from the attacker (by overcomming a
distance), the fight is aborted. Otherwise, if the attacker chases the attacked
player and the time frame expires, a fight is started. The fight is turn-based
and the result is based on the individual attack and defense attributes of
the characters. The fight result is calculated at the server without player
interaction. However, the attacker can cancel the fight at any time. This
also means that the attacked player may try to persuade the attacker to
abort the fight.

7.2.5 Player Interaction

Geobashing itself defines no communication or interaction channels between
players. This means that there is e.g. no messaging system. We assume that
in a game, where players play in the real world, they also should interact
like in the real world. To trade, players have to bargain for good prices for
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their items. To persuade an attacker to abort a fight, a player will have to
be creative. We consider this a very essential part of the Geobashing game.

7.2.6 Interfaces

Geobashing provides a mobile client and a web application. The mobile
client enables the player to participate in challenges. It also periodically
reports the current position to the server and notifies the player of items or
other players in range. Using the web application, a player can manage her
home base, download challenges to the mobile client, view her statistics and
challenge details.

7.3 Optimization of Server Task Assignment

While the server architecture described above can be used to realize a
position-based load balancing, it is still unclear how the assignment of ge-
ographical responsibility areas to servers should be determined in order to
achieve an optimal assignment of regions to servers. In this sections, a task
assignment algorithm for servers is presented which works very similar to
the central reconfiguration algorithm for VSNs.

7.3.1 Chromosome

The chromosome is modeled as a list of servers with assigned responsibility
areas. As described above, those areas must not overlap but may be con-
tained in each other. The chromosome does not know the player distribution
in the area of interest.

Mutation

There are 7 actions possible in the mutation step.

• Add a region

• Remove a region

• Add a server with at least one region

• Enlarge a region

• Shrink a region

• Move a region

• Assign a region to a di↵erent server
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In every action, a certain amount of randomness is applied. This con-
cerns the amount of change in size or location and the selection of a server
or a region to modify. For all these actions no concern is taken regarding
the load on each server. This enables the coverage of the complete search
space. The load is only calculated in the fitness assignment step. If a server
contains no more regions, it is deleted from the server list.

Crossover

The crossover step takes the lists of servers and regions and merges them.
Afterward resulting intersections of regions are removed.

7.3.2 Fitness Function

The fitness function evaluates a chromosome with respect to various param-
eters. First, basic metrics like expected server load and costs per hour are
considered. Further, more elaborate measures like expected latency, num-
ber of servers not under full load and the minimum number of players on a
server can be included.

For each server, the base load (i.e. the load generated by the application
if no clients are connected) as well as the average expected load per 1000
players is used to predict the load on the system at a certain number of
players.

7.3.3 Models

The models used to assess the quality of an assignment are derived from
practical load tests done in our infrastructure2. A mix of real an simulated
clients are used to test the server architecture under load.

Practical Evaluation for Model Building

To evaluate our architecture, we performed several tests with the Geobashing
game. The Geobashing game is not very sensitive to high latencies, but to
preserve a good user experience, latencies below five seconds have proven to
be acceptable.

In a first experiment we test how latencies change if a greater load is
posed on the server. To achieve this we simulate varying numbers of play-
ers that continuously perform the status update request. In this request
the client application submits the current location, the server searches for
surrounding players and game objects and returns this list to the client.
The tests are performed using an Intel Core i7-920 based server with 8 GB
of main memory running Debian with Mono 2.4.4. The web service (run-
ning on Mono XSP2) as well as the single AS run on the same machine. A

2This section is adapted from [18]
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#Simulated Users Avg. client latency[ms] Avg. Processing Time[ms]
0 653 15.8

1,500 704 21
7,500 570 37

Table 7.1: The latency at the client and the processing time per request wrt.
various user numbers.

Geobashing client prototype using the .NET Compact Framework is used
as game client.

The time required to execute the request on cell phone clients (Nokia
E71 running Redfivelabs Net60 runtime for .NET Compact Framework in
the cellular network of A1 Austria) is measured. Additionally, we record the
request duration at the server to be able to assess the latency of the mobile
network. The results of this experiment are summarized in table 7.1.

The di↵erence between the time measured at the clients and the actual
processing time at the server shows that the latency at the client is mostly
caused by the mobile network. In this experiment our server was located in
Germany, the clients were running in Klagenfurt, Austria. Thus, by bringing
the web service closer to the client, a reduction of latency can be achieved.
This experiment also showed that the processing time per request at the
server increased with the number of users. Since we did not simulate the
full range of requests a typical user would perform, we expect a higher load
with the same number of real clients. This in return, indicates the possible
need for load balancing the AS at a number of concurrent users below 10,000.

In a second experiment we evaluate the maximum number of users that
a single AS can handle. In a lab environment we split application server and
web service to separate machines. The AS runs on an Intel Core2Duo 1.86
GHz with 2 GB main memory. All servers are connected using 100MBit/s
Ethernet and run the Mono 2.6.1 LiveCD (based on OpenSuse) with Mono
XSP2 as web server. Again, clients are simulated to generate the necessary
load.

The experiments show that the AS can handle more than 500 requests
per second without significant increase of latency. This roughly corresponds
to 5,000 to 8,000 (simulated) users. Additionally, this experiment shows
that the web service layer has a higher risk of being a bottleneck.

Finally, we evaluate the presented load balancing mechanism. We focus
on the costs of redirects and forwards. In both cases the request cannot be
posed directly to the AS but—starting from the root AS—the responsible
server must be found in the application server tree. In case of a forward, the
responsible server cannot not be found in the distributed hash table (DHT).
In case of a redirect, the server is found but it has denied service because the
user had left the server’s responsibility area. Thus, a redirect is preceded by
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Figure 7.4: A map showing the geographical responsibility areas of AS1-4

one unsuccessful request. If this cost is very high, players migrating from
one AS to a neighboring could generate a high overhead. In addition, we
test the performance of in-range requests that cannot be handled by a single
server (as described in section 7.1).

Using the same lab setup as in our second experiment, we look at the
following setup of application servers: AS1 is the root AS responsible for
the Austria region. AS2 is responsible for the players in Vienna. AS3 covers
southern Austria (Styria and Carinthia) and AS4 covers Klagenfurt and the
Wörthersee region. Thus, AS2 and AS3 are contained in AS1 and AS4 is
contained in AS3. Figure 7.4 shows a map of the responsibilities.

# Requests Avg[ms] Max[ms] Min[ms]
0 3.05 2189 1.3
1 6.13 4124.7 2.7
2 7.14 2351.2 4.1

Table 7.2: The duration to find the responsible AS in case of forwarding.

Table 7.2 shows the time necessary to find the responsible AS in the
application server tree in case the player was not present in the DHT. The
maximum number of redirects within the application server tree is two in
our setup (for AS4; redirect from AS1 to AS3 to AS4). Zero requests means
that the root application server (AS1) was responsible for the player. Table
7.3 shows the search time in the application server tree in case of a redirect.
Zero requests means that after the initially failed request to a sub server
(AS2 or AS3), the application server was responsible for the player.

The results show that forward and redirect di↵er mainly in the time for
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# Requests Avg[ms] Max[ms] Min[ms]
0 5.90 1851.5 3.55
1 8.12 1015.25 4.98
2 10.92 509.45 6.31

Table 7.3: The duration to find the responsible AS in case of redirecting.

the single initial request of the redirect. A direct query to an AS takes about
two to three milliseconds in this setup and the search for a suitable server
takes linear time. By keeping the Player-to-AS mapping in the DHT, in
most cases the responsible AS will be queried directly.

To test the performance of the multi-server in-range requests we simulate
users in the border region of AS4. To find all neighboring players, AS3 had
to merge its own results with the results of AS4.

The average single-server request at AS3 took 0.26ms while the average
time to perform the multi-server request was 3.5ms. The additional request
to AS4 again took approximately 3ms. To save time, a multi-server request
with a higher number of servers involved is performed in parallel. In the
worst case, four servers must be queried to perform this request. This shows
that the relative cost of a multi-server request is high but judging from the
absolute value. However, this will not influence the game flow. Furthermore,
the radius in which Geobashing searches for neighboring players is only
200m, i.e. this case is unlikely to occur often in the Geobashing game.

Cost Model

A second dimension in the task assignment optimization is the financial costs
caused by employing a certain number of servers. Of course, this number
is desired to be low. In a modern infrastructure it is common to rent the
required infrastructure at a cloud hosting provider. Therefore we use the
prices to rent the required number of servers in the cloud as basis for our
model calculation. We take the prices of the Microsoft Azure Service as
basis. From this we derive the costs using the expected number of servers
and expected load on the servers to determine the total running costs for a
certain solution.

7.4 Evaluation of Server Task Assignment

In order to test and evaluate the algorithm a small, a medium and a large
scenario are used. The scenarios represent a certain player density in a
geographic region. In certain parts of this region, the density is higher to
simulate cities. In the remaining parts, the density is lower.
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In a small scenario, we process an area of 250⇥250 kilometers with ap-
prox. 22700 users. The region of interest with the player densities are shown
in figure 7.5.

Figure 7.5: The region of interest of the small scenario. The image represents
a map of the area, the colors indicate the player density. Brighter colors
mean more players in the region. The bright spots indicate e.g. cities with
more players.

The results for this scenario are shown in figure 7.6. The algorithm
proposes several solutions with di↵erent load/cost ratings. The results are
based on the estimated maximum load on the employed servers (all other
servers have a lower load and thus lower latency) as well as the estimated
cost for running this setup in the Microsoft Azure3 cloud (in $ cents per
hour). We calculate the cost based on the prices for small virtual machine
instances (0.09$ per computing hour as of 2013-24-09).

The medium scenario contains approx. 91000 users and has a size of
500⇥500 kilometers. This increases the search space for the algorithm al-
ready drastically. Still, as it can be seen in figure 7.7, it finds suitable results.
One result contains contains a load of over 100%. The fitness function is
configured to tolerate this in a certain boundary to not restrict the diversity
of the results.

The third scenario has a size of 1000⇥750 kilometers. Over 240000 play-
ers are in the region of interest.

In figure 7.8 we can see that the algorithm proposes several solutions
which range from a maximum load of approx. 70% and close to 100%. A

3http://www.windowsazure.com

http://www.windowsazure.com
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Figure 7.6: The resulting pareto front for the small scenario. The graph
shows the solutions in cost ($ cent per hour) versus maximum CPU load on
a server.

Figure 7.7: Resulting pareto front for the medium scenario.
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user could choose to employ 7-13 server instances to cover the region of
interest.

Figure 7.8: Results for the large scenario



Chapter 8

Conclusion

This thesis is concluded by a summary of its contributions and an outlook
to future research directions.

8.1 Summary

Resource constraints in VSNs will be one of the major research focus in the
coming years. It is not only important in order to save energy on battery-
powered devices but it is also necessary to keep cameras at optimal working
loads.

This thesis presents several contributions to the field of resource-aware
reconfiguration in visual sensor networks.

First, a formalization of the problem has been proposed. Resource con-
straints are modeled as observation points and objects to track. Covering
cameras need to provide su�cient surveillance power to cover them. Con-
trary to this, they also need to stick to the available resources and minimize
the consumption of CPU power, memory and energy. This formal descrip-
tion of the problem is an important foundation to develop algorithms which
reconfigure a visual sensor network.

Based on the problem formulation, models for coverage and resources
have been developed. The models reflect the coverage of a visual sensor
networks including the quality of coverage well as the resources needed for
this. In several experimental settings, the models have proven to accurately
reflect real measured values.

In exploring the algorithmic design space of this problem several al-
gorithms for di↵erent environmental dynamics have been developed and
evaluated. A central algorithm is able to calculate solutions for environ-
ments, where observation points do not dynamically change their properties
at runtime. A distributed algorithm handles situations, where observation
points change slowly and may be added and removed at runtime. A hybrid
distributed reconfiguration and handover algorithm deals additionally with
moving objects.

A thorough evaluation of the developed algorithms has been presented.
We have seen that the resource consumption of a visual sensor network can
significantly be reduced using the approaches presented in this thesis. In
real as well as simulated scenarios, the algorithms were able to improve
surveillance quality and lower the resource demand of nodes.

119
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The general usefulness of the presented approach has been shown in a
task-assignment problem for cloud infrastructures. Here, the responsibilities
of servers has been optimized using cost and load as optimization dimen-
sions.

8.2 Future Research Directions

The work presented in this thesis shows several directions for future research
work.

Self-organizing Methods to Improve Reconfiguration

New methods for reconfiguration based on self-organization can be devel-
oped. Methods of self-organization are already included in the hybrid algo-
rithm. This can be extended to make the whole optimization process purely
self-organizing. There are several areas where the approaches presented in
this thesis can be extended with self-organization.

First, models for resource consumption and coverage may be learned in a
self-organizing distributed process to reduce the e↵ort of initially deploying
a visual sensor network. An approach in this direction needs self-aware
VSN nodes which are able to monitor several parameters of their operation.
This includes measurement of resource consumption using load monitoring
for CPU and memory as well as the measurement of energy consumption
using e.g. smart batteries or other sensors. In addition, nodes need to
build coverage models dynamically, e.g., by estimating FOV parameters.
Further, a distributed mechanism to exchange this information is required
to improve the model quality as well as to decrease the e↵ort needed for
model construction.

Second, the (distributed) reconfiguration algorithms can be improved by
self-organizing methods. The inclusion of e.g. a pheromone system to model
the task assignment could be an interesting approach. Here, a reconfigura-
tion can be triggered by the change of pheromone potential which can be
modeled to include coverage and resources.

New Applications of Reconfiguration

New applications for resource-aware reconfiguration can be found. As an
example, in mobile environments, distributed interactive smartphone ap-
plications can be reconfigured. Optimization dimensions may be optimal
resource consumption and enhanced user experience. These dimensions are
again—as quality and resources are in this thesis—divergent since a higher
user experience can be expected to also demand more resources. As an
example, showing a video costs more resources than displaying a textual
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description of the video’s content. However, the video is typically a better
experience for the user than the text is.

Another reconfiguration in this area may include certain application in-
tentions. Here, users may be motivated to take certain actions (e.g., take
a picture and upload it). In a group of app users, each user may be moti-
vated to perform a di↵erent task in order to reach a certain goal. This can
be supported by a reconfiguration which decides which content is shown to
which user. Reconfiguration actions may also include reconfiguration of the
network topology, i.e., to use a local ad-hoc network to connect individual
phones instead of using a central server which requires expensive UMTS
connection active on each phone.

Integration of Resource Reconfiguration in Application Design

A deep integration of resource reconfiguration into the design flow of dis-
tributed software is an interesting direction of research. Regarding (self-
organizing) resource-optimization and reconfiguration as part of a to-be-
developed software from the beginning opens up new possibilities for re-
duced energy consumption and enhanced performance of distributed appli-
cations. General design guidelines for resource awareness in distributed and
non-distributed applications can be developed. Further, the modeling of
reconfiguration and reconfigurable application states and properties can be
included in a software design process.

Tools and frameworks to support and automate reconfiguration and
resource-awareness can be developed. The development of a general frame-
work for reconfigurable applications which provides basic mechanisms to
optimize the resource consumption is a very interesting line of research.
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