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Abstract

This thesis presents an approach to address a handover problem in the distributed

tracking of objects in networks of autonomous smart cameras. In contrast to multi-

camera tracking, distributed tracking assigns tracking responsibility of an object only

to a single camera at a time. This requires the network to decide autonomously which

camera is responsible for tracking an object at what time.

In typical handover approaches either a centralised control is utilised, a priori

knowledge for each camera about their environment and neighbourhood relationships

is provided, or the employed cameras are calibrated. In contrast, we did not rely on any

a priori knowledge at all and assume uncertainty regarding location and orientation of

the cameras as well as the movement patterns of the objects of interest. Additionally,

we did not calibrate our cameras and do not facilitate a central server to control

our system. Inspired by market-mechanisms, we implemented a single-sealed bid

auction mechanism on each camera and enable it to trade tracking responsibilities

for objects of interest among other cameras in the network. Getting to know its

trading partners, each camera is further induced with the capability of learning its

local neighbourhood, the so-called vision graph. This allows each camera in the system

to reduce its own communication overhead, and hence the communication e↵ort of the

entire system. Making use of biology-inspired foraging mechanisms, we implemented

artificial pheromones to build up the vision graph and simultaneously enable the

cameras to forget about neighbours where the response rate to advertised auctions

drained over time.

To advertise auctions within the network of smart cameras to prospective buyers,

we described six di↵erent strategies which are able to exploit the vision graph. Each

of these strategies gives rise to one out of two objectives: minimising network-wide

communication or maximising system-wide tracking performance. The selection of an

appropriate configuration, using a variety of strategies in the smart camera network,

turns out to require knowledge of the camera setup, the environment as well as the

movement patterns of the objects of interest. To neglect a priori knowledge of these

parameters, we implemented multi-armed bandit problem solvers in every camera of

the network. This enables the cameras to learn on their own which strategy fits them

best, given a priority on either minimising communication or maximising tracking

performance. In conclusion, we were able to show that cameras are able to improve

their network-wide performance when learning their own strategy during runtime

compared to obstinately assigning homogeneous strategies.
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angefertigt und die mit ihr unmittelbar verbundenen Tätigkeiten selbst erbracht habe.
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CHAPTER 1. INTRODUCTION

With the improvements in technology, through cheaper production of electronic elements

and better electric and networking infrastructure, cameras persistently advance into novel

areas of use. Video, surveillance or security cameras are nowadays used for many reasons

in diverse areas: monitoring motorways and highways to identify accidents, tra�c jams or

unlawful behaviour; surveillance of shopping areas to identify shoplifters; monitoring pro-

duction lines for quality assurance, or; observation of public areas for crime prevention—to

name just a few.

According to Gerrard and Thompson [43] there are about 1.8 million cameras in pub-

lic areas used for surveillance in the UK. This number is based on an extrapolation of

the available, public surveillance cameras in Cheshire. A clear trend towards increasing

numbers of surveillance cameras is also noticeable in Germany. The number of CCTV

cameras in public areas has increased from roughly 11,000 to more than 17,000 cameras

in only five years [85] in Bavaria alone. The vast majority of these cameras are ‘dumb’

cameras which can only transmit raw image data to a central control or operations room.

This data has then to be stored at a central server and either be processed by a computer

or a human operator. Human operators are usually sitting in front of multiple monitors

analysing images, identifying suspicious behaviour, and tracking people manually. The

drawbacks of transmitting and storing imagery to a central point are on the one hand,

a huge overhead in communication and needed storage capacity, and on the other hand,

a single point of failure in the system as well as a single point of attack for individuals

trying to get their hands on the video data. However, it has to be mentioned that the vast

amount of digital imagery has also fostered a lot of research in computer vision. Detection

of specific faces and objects [47, 65, 95], identification and analysis of situations, atypical

events and poses [11,64], and tracking of a person of interest [94] to automate the process

often undertaken by human operators, are just three exemplary areas of research.

This chapter is structured as follows: Section 1.1 introduces the problem investigated

in this thesis. Afterwards, the research questions are presented in Section 1.2. Section 1.3

summarises the contribution to the state of the art made in this thesis and finally, Sec-

tion 1.4 contains the thesis outline.

1.1 Motivation

In recent years ‘dumb’ cameras have evolved into embedded smart cameras [77,93], com-

bining a processing unit with an image sensor on a single platform. These processing

capabilities, even though limited, allow the smart cameras to pre-process video data on-

site and transmit only aggregated information, or a complete analysis of a scene, instead

2



1.1. MOTIVATION

of plain images. Modern smart cameras are even capable of accomplishing processing

intensive tasks, such as object tracking. In object tracking, a description of the object of

interest is initially provided to the camera. The camera thereafter attempts to re-identify

this object in consecutive frames of its own field of view (FOV). There are various tracking

algorithms to locate objects in each frame matching the given description with the highest

probability. While we employ tracking algorithms to identify and locate moving objects,

we do not elaborate on these fundamental tracking techniques in this thesis.

Soon enough, single smart cameras have been connected to distributed smart camera

systems [75, 78]. Tracking objects in multi-camera systems can be approached in two

di↵erent ways. The first approach uses all cameras to track various objects and the

gathered information is fused at a central control. When tracking objects within multiple

cameras concurrently, cameras need to align their FOVs to ensure the gathered data is

coherent. To do so, a calibration process is employed to remove geometric distortions

caused by the camera lens. Aligning FOVs using a calibration process needs extra work

before the system can go online. This extra e↵ort might be feasible with small numbers

of cameras but could be highly problematic in larger systems with tens, hundreds or even

thousands of cameras. Furthermore, in case one of the cameras’ parameters is changed,

new cameras are added or cameras are removed from the network, cameras might need

to be re-calibrated to ensure proper functionality. We refer to the second approach as

distributed tracking, where each object of interest is tracked by a dedicated camera. This

requires the network to decide which camera is responsible to keep track of a specific

object at any time. Furthermore, the tracking camera has to decide when and to which

camera it should transfer the tracking responsibility to. This process of transferring a

tracking responsibility is know as handover.

Knowledge about the neighbourhood of each camera, utilised in the handover process,

allows us to further separate distributed tracking approaches into two groups: with and

without a priori knowledge. Introducing a priori knowledge about the network topology,

the environment or simply about neighbourhood relations between the cameras, can on

the one hand improve tracking performance of the network tremendously. On the other

hand however, this requires prior work of either a central component, such as a server,

or a human operator. In contrast, we do not assume any a priori knowledge but induce

our cameras with software agents, allowing them to act autonomously, learn about their

neighbourhood and the environment they are embedded in, and enable the network of

cameras to organise themselves to improve the network-wide performance. While dis-

tributed tracking requires extra e↵ort in terms of coordination or a priori knowledge, the

main advantage is the increased number of concurrently tracked objects in the network.

3



CHAPTER 1. INTRODUCTION

Even though every single smart camera has limited processing capabilities, in such a co-

operative ensemble, the entire network can distribute the total workload of the system to

all available cameras.

There is a plethora of behavioural strategies one can employ to distribute and assign

tracking responsibilities. As the diverse approaches give rise to di↵erent, sometimes even

opposing, benefits and/or drawbacks regarding required qualifications, assigning the same

strategy to all cameras might not always be beneficial. This is due to the individual

situation of each camera in the network. An operator, trying to adjust the system to fulfil

all requirements as needed, has essentially three options. First, the operator could assign

strategies homogeneously in the network, where all cameras have the same behaviour.

This might result in cameras using a strategy not optimal in their given situation and

hence achieving less performance than possible. Second, the operator could try to find

a heterogeneous assignment, where at least two cameras behave di↵erently. On the one

hand, this can result in a more beneficial performance of the entire network, since cameras

operate optimally according to their location, orientation and viewing angle. On the other

hand, the operator is required to know about the individual state of each camera. The

third option allows each camera to learn about its own situation. Based on this learned

information, the camera could select the strategy optimal for its individual situation during

runtime. Moreover, this allows each camera to deal with dynamics and changes in the

network as well as object movements.

This thesis concentrates on cooperative ensembles of smart cameras, able to track

objects autonomously in absence of central coordination. Moreover, the system is able to

operate without any a priori knowledge, where cameras do not know anything about the

environment in which they are deployed. Apart from enabling the cameras to organise

themselves in terms of learning about their neighbourhood to optimise local as well as

network wide performance, we additionally enable cameras to reason about their own

behaviour. This allows them to select the best strategy from a repertoire of possible

strategies for their current situation.

1.2 Research Questions

In this thesis the following research questions are addressed:

• How can a distributed smart camera network track an object consistently without a

central control? More precisely, how can the network assign tracking responsibility

to a single camera, instead of tracking the object with all cameras at the same time?

4
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In addition, how can the network ensure to select the camera with the best view in

terms of tracking confidence?

• If the tracking responsibility is assigned by an autonomous software agent on the

camera using information from other cameras, how can this agent select the best

camera without having to gather information from every single camera in the net-

work?

• Even when considering static networks of smart cameras, the state of every cam-

era in the network can change due to various uncertainties, such as changing their

orientation or their location, or simple failure. The question arises: how can the

network cope with such uncertainties and maintain continuous tracking of objects

at the same time? Moreover, if neighbourhood relations have been learned, how can

individual cameras ‘forget’ this information?

• When multiple approaches to assign tracking responsibility are at hand, where each

approach focuses on one out of multiple objectives, how can a single camera decide

which approach fits best for its current situation? Furthermore, how can the au-

tonomous software agent in the camera make sure that the best approach is employed

in a changing environment?

1.3 Contribution

The objective of this thesis is to enable distributed tracking in decentralised smart camera

networks. In order to coordinate tracking responsibilities autonomously within a network,

the cameras are induced with abilities to organise themselves as well as adapt to changed

conditions in their environment. In addition, this allows them to optimise their local per-

formance as well as the performance of the entire network. Moreover, cameras organise

themselves to employ the strategy that fits best for their individual situation. The work

presented in this thesis has been conducted in the EPiCS project (Engineering Proprio-

ception in Computing Systems) and received funding from the European Union Seventh

Framework Programme under grant agreement no 257906. Modelling of concepts has been

done in close collaboration with our project partners at the University of Birmingham and

University of Oslo. The real camera setup has been done in cooperation with the Austrian

Institute of Technology (AIT). One of the trackers used in the real world experiments has

also been supplied by AIT. The key aspects contributing most significantly to the current

state-of-the-art are as follows:
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Distributed Tracking and Autonomous Camera Control. In a network of

smart cameras, either all cameras track all visible objects concurrently or the respon-

sibility of tracking a specific object has to be handed over between cameras. In the

latter case, it has to be decided which camera is best suited to track an object at

a given time. In previous approaches, either central coordination had been used to

assign responsibilities to specific cameras or cameras had predefined knowledge about

the topology of the network, and hence knew which camera would be most suitable

to continue tracking. In Chapter 3, we formulate a market-based approach to assign

tracking responsibilities within a network of smart cameras in the absence of central

coordination. A completely decentralised approach is used, employing auctions with

single sealed bids, to transfer the tracking responsibility to the camera with the best

view of the object at a given time step. This method handles objects that are to

be tracked as goods, which can be traded by cameras. To define a ‘price’ for their

goods, we developed a function that enables cameras to calculate the value of objects

autonomously. The results of this research have been discussed in [31] and elaborated

on in [33].

Self-Organisation of Networks of Autonomous Smart Cameras. Various dis-

tributed applications benefit from organising smart cameras into smaller groups. In

this thesis, smart cameras learn about their immediate neighbourhood across the entire

duration of their service. To achieve this, we introduce artificial pheromones to create

links between cameras based on the trading behaviour of tracked objects. This allows

the cameras to organise themselves within the network and build up the so-called vi-

sion graph in absence of a central coordination. Moreover, this knowledge allows each

currently tracking camera to reduce its communication e↵ort with other cameras in

the network, while keeping the tracking performance of the entire ensemble at a high

level. We describe two auction strategies in Section 3.2 which allow each camera to

advertise objects of interest to other cameras in the network. Furthermore, we present

three communication policies exploiting the private vision graph of each camera, in

order to reduce the number of exchanged messages within the network. Using artifi-

cial ant-pheromones to indicate the spatial relationships between cameras allows the

network to organise itself. Fading pheromone links increase the robustness to changes

in this approach and allow individual cameras to ‘forget’ about previously learnt, but

now changed neighbourhoods. In Section 3.4 we define various uncertainties regarding

the cameras in a network, such as adding, removing and changing the location and ori-

entation of a camera during runtime. Additionally, the section discusses the robustness
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of our socio-economic approach to these uncertainties and compares our method to a

static approach where the neighbourhood is known a priori. The presented approaches

and the resulting outcomes have been discussed in [31–33].

Self-Organisation in Smart Cameras. In the course of this work, various ap-

proaches for distributed camera control are presented. While a network can have a

good overall performance when all cameras use the same approach, assigning het-

erogeneous approaches can increase the performance even further. In Section 3.5 we

exhaustively analyse and compare homogeneously, as well as heterogeneously assigned

strategies and policies, showing the benefits of heterogeneous assignments based on

the unique neighbourhood relationships of each camera. The e�cient heterogeneous

assignment is highly dependent on the given scenario and setup of the cameras. Cre-

ating such a heterogeneous assignment requires knowledge of the environment as well

as the movement patterns of the objects observed in the given area. To overcome

the problem of a priori knowledge regarding orientation, location and neighbourhood

relations of smart cameras, Section 3.5 presents an approach using a multi-arm bandit

problem solver. This allows the cameras to self-organise their available algorithms dur-

ing runtime without any supervision or central control, enabling each camera to select

the strategy that fits its current situation best. The presented work on homogeneously

and heterogeneously assigned approaches to all cameras as well as the work enabling

cameras to learn which strategy fits them best has been published in [53].

Simulations and Real World Deployments. A simulation tool called CamSim

has been developed for the purpose of testing our novel market-based approach. Cam-

Sim simulates an arbitrary number of autonomous smart cameras operating in a net-

work with the goal of tracking objects. The number of simulated objects and cameras

is only limited by the capabilities of the computer running the simulation tool. The

simulation environment has been used to evaluate the presented approaches, policies

and strategies discussed throughout this thesis. CamSim has been released open source

in order to be available to a broader community and allow the prospective developers

to extend and refine the existing simulator. Furthermore, we deployed our methods

in two di↵erent smart camera networks in the real world. The first network consists

of homogeneous smart cameras with and without overlapping fields of view (FOVs).

The second network setup uses heterogeneous smart cameras in laboratory conditions

consisting of four custom built SLR smart cameras1 and two smart cameras built with

1
http://www.slr-engineering.at/
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o↵-the-shelf components. The simulation environment has been used in all publications

related to this thesis in general and elaborated on in [30]. The real world deployment

has been employed and discussed in [33,53].

The presented concepts were developed and modelled in cooperation with partners

from the EPiCS project. The authors genuine contributions are as follows:

• Definition of a function to allow cameras to calculate the value of objects au-

tonomously for both, a simulation environment and a real world application.

• Description of two auction strategies which allow the cameras to exploit their unique

neighbourhood relations with other cameras in the network.

• Presentation of three communication policies exploiting the private vision graph of

each camera to reduce the number of exchanged messages within the network.

• A comparison of the communication policies combined with auction schedules, so-

called strategies, showing the significant reduction in communication while keeping

the utility high for the entire network.

• Implementation of the camera network simulation tool CamSim and the correspond-

ing socio-economic concepts. This custom simulation environment allows for fast

testing and evaluation of the presented approaches and policies.

• A definition of various uncertainties regarding the cameras in a network such as

adding, removing and changing the location and orientation of a camera during

runtime.

• An analysis of the robustness of the presented approaches regarding various uncer-

tainties of cameras such as failure, resets, relocation or orientation changes.

• A comparison of homogeneously as well as heterogeneously assigned strategies and

policies, showing the benefits of heterogeneous assignment of strategies based on the

unique neighbourhood relationships of each camera.

• An outline of how the presented approach allows a network of smart cameras to ini-

tially assign tracking responsibilities for objects to the camera having the best view.

This is done with a minimal number of messages and in a completely distributed

fashion.
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• Deployment of a heterogeneous smart-camera network in lab conditions consisting of

four custom built SLR smart cameras and two smart cameras built with o↵-the-shelf

components.

• Implementation of the application, including some of the employed tracking algo-

rithms and the socio-economic based approach for handover, used in the real world

deployment.

• Design and performance evaluation of all performed experiments in simulation as

well as real world environment deployments except the Wilcoxon rank sum test

which was done by Arjun Chandra at the University of Oslo.

1.4 Thesis Outline

The remaining chapters of this thesis are organised as follows:

Chapter 2 discusses the current state-of-the-art related to this thesis, namely multi-

camera tracking and handover, market-mechanisms for resource allocation as well as het-

erogeneous assignment of algorithms in distributed sensor networks. Chapter 3 defines

distributed tracking and the associated handover problem. Moreover, this chapter intro-

duces the socio-economic approach for smart cameras to enable distributed tracking. This

method allows cameras to act as self-interested agents which are able to host Vickrey auc-

tions. Furthermore, the building of vision graphs based on a camera’s trade behaviour as

well as the exploitation of the learnt neighbourhood is explained. While Vickrey auctions

work very well for the exchange of tracking responsibilities in a network, the presented

market-based approach can also be used to assign initial tracking responsibilities at the

time the system is started up. This idea is outlined in Section 3.3. As camera networks

are prone to uncertainties such as changes and errors, the network has to be able to deal

with such uncertainties during runtime. Furthermore, Chapter 3 presents di↵erent un-

certainties and their impact on the overall performance of the network. Moreover, the

robustness of the presented socio-economic approach is shown as well as its ability to deal

with these changes and errors during runtime. Even though assigning the same algorithm

to advertise objects to all cameras in the network allows the system as a whole to per-

form very well, assigning algorithms heterogeneously to individual cameras results in even

better performance. This heterogeneous assignment, as well as an approach to enable

cameras to learn the best strategy for their given situation, concludes Chapter 3.

In order to evaluate the presented approaches, a 2D simulation environment, called

CamSim, has been used. CamSim is outlined in Chapter 4. This chapter gives an overview
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of the entire simulator, its usage, and the most important components. Additionally, all

scenarios used for evaluation and their corresponding properties are discussed in detail.

Chapter 5 focusses on the evaluation of our approaches under various aspects in sim-

ulation. After establishing the feasibility of our approach, we show its robustness in the

presence of di↵erent uncertainties. Furthermore, we present results of networks where

strategies were assigned heterogeneously and homogeneously, as well as autonomously

learnt during runtime by each individual camera. The chapter concludes with a summary

and discussion of our evaluated approaches and their respective results.

Chapter 6 describes the smart camera networks deployed in our laboratories at Alpen-

Adria Universität Klagenfurt. The employed heterogeneous hardware as well as the general

setup is discussed. Additionally, experiments conducted for evaluating our approaches in

a real setting are discussed. The resulting outcomes of these experiments are presented

at the end of Chapter 6.

A summary of the presented work and the contributions made is given in Chapter 7.

Moreover, the possible strains for future work are outlined.
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CHAPTER 2. RELATED WORK

This chapter discusses the current state of the art in the three main research areas relevant

to this thesis. In Section 2.1 several approaches for multi-camera tracking and handover

are examined and qualitatively analysed. Afterwards, Section 2.2 studies mechanisms to

assign and allocate resources which have taken inspiration in real markets. In the course of

this thesis, various techniques to hand over objects of interest from one camera to another

are presented. Section 2.3 explores the benefits of heterogeneous assignment of di↵erent

algorithms to nodes in networks leading to similar or even better results when compared

to homogeneous assignment. Furthermore, various applications exploiting these benefits

are discussed.

2.1 Multi-camera Tracking & Handover

In multi-camera tracking, a single fundamental decision has to be made: should all cam-

eras try to track the object or person of interest, or should only a single camera with the

best view be responsible for tracking? Using all cameras to track a single object or person

of interest, allows on one hand to neglect otherwise mandatory coordination of the track-

ing responsibility. On the other hand requires fusion of the tracking results of all cameras

at either a central control or at all tracking cameras in the network. Additionally, concur-

rent tracking requires vast amounts of resources, such as memory and processing power

at the individual cameras. Furthermore, while tracking a single object might be feasible,

following multiple objects at the same time within a single camera might overexert the

available resources. Therefore, this thesis focuses on the assignment of tracking responsi-

bility of a given object or person of interest to a single camera. To accomplish this, the

fundamental tasks of single camera object detection and tracking must be expanded by a

coordination mechanism, which is referred to as handover. The task of this handover is

to find the successive camera with the best view on the target object, once it has left the

FOV of the current camera [28]. Various mechanisms have been proposed to track objects

in a multi-camera network. These mechanisms vary in terms of the required assumptions

of the camera network, the distribution of data and processing, as well as the required

resources [55]. We analyse the related work with a focus on the following characteristics:

• Distributed: Is the proposed system capable of performing the handover in a

distributed fashion or is a central component, such as a server or a cluster of standard

computers, required?

• No a priori knowledge: Is any a priori knowledge, which is predefined for all

cameras manually or in a priori learning phase, required in order to allow for dis-
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tributed tracking in the network (e.g., position of each camera or neighbourhood

relations)?

• Non-overlapping FOV: Does the proposed technique operate with cameras having

non-overlapping FOVs as well as with cameras having overlapping FOVs?

• Uncalibrated: Does the approach require calibrated cameras in the network? Even

though calibration could be thought of as a priori knowledge, it is considered as a

separate characteristic due to its significance in various techniques.

• Static cameras: Static cameras are not able to change their pose actively.

• Asynchronous cameras: Synchronized cameras create images from their FOV

exactly at the same time. This allows to infer a precise relation between cameras

based on the occurrence of objects.

• Best view: The network of cameras does not only track the object or person but

tries to have the best view on the object or person. This can either be considered

right after the handover or at any given time.

Considering these categories, networks of active cameras, which are able to change

their FOV either autonomously or based on user input, are a special case. These cameras

can transit from a network with overlapping FOVs to a network with non-overlapping

FOVs and vice versa. Various approaches have concentrated on distributed tracking in

networks of active cameras.

Erdem and Sclaro↵ [28] focus on the movement of objects being tracked in the network

to learn which camera is used next for racking along the object’s path. Song et al. [82] use

a game theoretic approach, where the cameras negotiate with each other to reach a Nash

equilibrium. This requires multiple negotiation cycles to reach the best possible global

utility. The approach allows to track multiple objects but does not enable cameras to

learn neighbourhood relations during runtime. Möller et al. [66] find the re-occurrence

of a tracked object or person within all cameras in the network based on their colour

histogram using a central server. This approach displays only little scalability as well as a

single point of failure. The mechanism presented by Qureshi and Terzopoulos [74] allows

to persistently surveil a simulated environment by assigning the tracking tasks to groups

of cameras. A group is formed based on dedicated group leaders and via inter-camera

negotiation, using an auction mechanism.

One of the first approaches on identifying neighbourhood relationships of static cam-

eras to accomplish distributed tracking is presented by Javed et al. [48]. They use the
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co-occurrence of a person in two overlapping FOVs of cameras to calculate the rough epipo-

lar geometry of the uncalibrated cameras. Black et al. [9] use a set of calibrated cameras

and identify the common ground plain in overlapping FOVs. They employ Kalman fil-

ters in combination with homography mappings to concurrently track objects in multiple

cameras. Ellis et al. [27] are the first ones to propose a completely distributed handover

approach. They observe moving objects in a network of synchronised and calibrated cam-

eras and use the gathered information to learn the topology over time. A similar approach

is taken by Mandel et al. [61] and Kim et al. [50]. Even though neither of their approaches

requires calibrated cameras, Mandel et al. assume only overlapping FOVs, while Kim et

al. induce a priori knowledge about the monitored environment to the camera network.

Makris et al. [60] also exploit temporal correlations in observations of object movements.

They learn the entry and exit areas of every camera’s FOV in the network by using

Expectation-Maximisation from an extended dataset. Additionally, they use a Gaussian

Mixture Model to represent the collection of entry/exit areas. Similarly, Loy et al. [59] pro-

pose a Cross Canonical Correlation Analysis to measure the interrelationships of activities

in di↵erent FOVs. This allows them to infer the topology of the camera network. Cheng

et al. [13] do not track people or objects but use the common background information of

overlapping FOVs to identify neighbouring cameras. An approach presented by Detmold

et al. [20] is based on simple exclusion. This means that if an object is within the FOV of

a camera and not in the FOV of another camera, these two cameras cannot be monitoring

the same space. To overcome the problem of non-overlapping FOVs they introduce tem-

poral padding, which also overcomes clock skews between cameras. An implementation of

a distributed handover on embedded smart cameras is presented by Quaritsch et al. [73].

Their technique does not require a central coordination, but uses predefined areas for

the handover to pre-specified neighbouring cameras. Farrell and Davis [36] introduce a

distributed approach based on sequential Bayesian estimation using a modified multino-

mial distribution in absence of a priori knowledge. While they are able to track objects

within the network of cameras, they cannot ensure the best view of the object or person

of interest. Cichowski et al. [14] track people in networks of calibrated and synchronized

cameras. They segment each FOV in a pre-defined grid, where each cell is considered for

overlap between two or more cameras. A fuzzy automaton based approach to select the

camera for further tracking is presented by Morioka et al. [67]. They are able to determine

the best camera out of all neighbouring cameras based on previously selected cameras.

Li and Bhanu [56] present a game-theoretic framework which is able to select the best

view based on user-provided criteria. Their server-based implementation synchronises the

frames of a network of uncalibrated cameras with and without overlapping FOVs.
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Table 2.1 summarises the related work presented in this section and indicates the

fulfilment of the described properties of the various approaches.
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Erdem & Sclaro↵ [28] � • • • � • •
Song et al. [82] • • • � � • •
Möller et al. [66] � � • • � • •
Qureshi & Terzopoulos [74] • • • • � � •
Javed et al. [48] � • � • • • �
Black et al. [9] • • • � • � �
Ellis et al. [27] • • • � • � �
Makris et al. [60] � • • • • • �
Cheng et al. [13] • • � � • • �
Mandel et al. [61] • • � • • � �
Detmold et al. [20] � • • � • • �
Quaritsch et al. [73] • � • • • • �
Farrell & Davis [36] • • • • • � �
Kim et al. [50] • � • • • • �
Loy et al. [59] � � • • • � �
Cichowski et al. [14] � • � � � � �
Morioka et al. [67] • • � � • • •
Li & Bhanu [56] � • • • • • •
Socio-economic approach • • • • • • •

Table 2.1: Various approaches for multi-camera tracking, clustered by active and static cameras
and ordered by their date of publication. • represents a fulfilment of the described property, •
illustrates a partial compliance of the corresponding feature, and � describes the corresponding
property as not fulfilled.
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2.2 Market-mechanisms for Resource Allocation

Deciding which camera should be responsible to continue tracking can be considered a

resource allocation problem. In object tracking, the known objects have to be allocated

amongst the cameras, depending on their local knowledge, available resources and im-

mediate objectives. Economics has long been an inspiration in allocating resources in

computing systems. This existing family of techniques is known as market-based control,

which applies economic principles to solve the resource allocation problem in distributed

systems [15].

A typical system controlled by market-based mechanisms consists of autonomous soft-

ware agents, which are able to make their own actions and decisions. Through the defined

market mechanisms, these agents are able to interact with each other. On the one hand,

buyer agents attempt to purchase resources from sellers with the objective to maximise

their utility function. This function is based on the tasks or requirements at hand, or the

individual objectives of the agents. On the other hand, seller agents o↵er resources and in

response demand artificial or even real currency as payment. The charged price is usually

dependent on either the agents strategy or the quality and/or quantity of the resource on

o↵er. As in a real market, it is assumed that in a system controlled by market mechanisms,

supply and demand will determine the price of o↵ered goods. While scarce goods will be

valued at higher prices, a low number of buyers might force the seller to lower the price

on o↵ered goods. The fundamental idea is that the competition for the same resources

between the buyer agents leads to an e�cient allocation of these resources. In addition,

the allocation reflects the objectives and preferences of all agents in the system based on

their very local utility function.

The market-based mechanisms and techniques used in these application domains can

be categorised into the following three groups: (i) posted o↵er markets, (ii) bilateral

bargaining and (iii) auctions.

The first group of approaches has been inspired by modern retail markets, where

goods are o↵ered at a certain price, and is hence referred to as posted o↵er or posted

price [49, 71]. These posted o↵ers are set by the seller, are visible to all market players,

and have non-negotiable prices for certain goods. The potential buyers can then purchase

desired quantities from the seller. The main benefit of this approach is the sellers ability to

operate fully distributed without any central control to determine the price for the o↵ered

goods. Drawbacks of this approach are either complex strategies for sellers to adjust the

prices according to demand or a negative impact for the seller when prices for goods do

not change over time [8]. With scarce network bandwidth, Gupta et al. [45] propose to
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price network usage in contrast to limit the bandwidth usage for everyone. This pricing

approach decentralises the resource allocation for the limited bandwidth. However, this

means that bandwidth usage would need to be monitored and billed. They argue that

e�cient resource allocation is key in order to improve overall network performance.

Bilateral bargaining, the second family of approaches on market-based control, does

not provide a certain price for a given good. Instead, both agents, the buyer and the

seller, try to achieve an acceptable price for a certain good by bargaining. Moreover,

this means the price for a good usually changes during the bargaining process. While

bilateral bargaining is working well for distributed resource allocation and can result in

equilibrium between sellers and buyer [17], it still requires bargaining strategies for both

groups of agents. A selling agent may not set their asking price too high in order to

have prospective buyers interested in their goods. But then again the price has to be high

enough to allow the seller to make a profit. Similarly, the buyer agents should not cap their

prices, they are willing to pay, in order to be able to purchase goods. At the same time, a

buyer agent should not spend more money than they have to [17]. This approach has been

realised in various systems such as AVALANCHE [35], and CATNET [4]. In multi-robot

coordination, Dias et al. [21] analyse market-based approaches to allow robots to allocate

resources in order to handle various tasks as a team. They point out the importance of

the trade-o↵ between solution quality and scalability of these coordination mechanisms.

The goal of replicating the dynamics of human markets with complex cognitive agents is

the subject of continuing research (e.g., [12, 42, 57]).

The third group of market-based control mechanisms is the large group of auctions

[26, 51, 62]. In auctions, sales of commodities are managed by an auctioneer. The buyers

submit bids to the auctioneers to express their interest in a good. These bids contain

a valuation for the good in form of some kind of resource. This resource also acts as a

comparative value for the auctioneer to select the winner of an auction. Submitting bids

varies from auction to auction. In sealed bid auctions, participants of the auction do not

know the value of bids submitted by other bidders. The buyers have to value a good on

their own and can only speculate about other buyers valuation of the same commodity.

Whereas in open bid auctions, every participants knows the submitted bids of all other

bidders. Hence, bidders can reason about the valuation of other bidders based on their

submitted bids for a certain good. Additionally, auctions either allow for submission of

only a single or multiple bids by an individual bidder. In contrast to posted o↵er markets,

where the price is selected by the seller, and bilateral bargaining, where the price is decided

upon by the seller and the buyer, in auctions the price is eventually set by the buyers.

Commonly known examples of auctions are
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• English auction: The English auction is the most prominent auction mechanism.

Prospective buyers name their prices publicly and can therefore reason about the

behaviour of other participants. Accepted bids have to overbid the previous bids

value. Therefore, this auction is also called increasing multiple open bid auction.

The good is sold to the buyer making the last and highest bid.

• Dutch auction: While in English auctions the price starts low and is raised by the

buyers, the Dutch auction starts with a high price, which is reduced continuously.

The good is sold to the first bidder agreeing to the asked price. Even though the

valuation of each participant is not directly revealed to other bidders, prospective

buyers can speculate about the behaviour of others and change their own valuation

during the auction process. This type of auction is also known as decreasing single

sealed bid auction.

• First-price sealed-bid auction: In this auction, prospective buyers submit bids

without revealing the o↵ered amount for a certain good to other bidders. The

auctioneer sells the good for the highest bid. In systems, where the true valuation

is required, this strategy should be neglected since a buyer with enough resources

could bid untruthful in order to outbid other participants.

• Vickrey auction: Vickrey auctions are also called second-price sealed-bid auctions.

Similar to first-price sealed-bid auctions, the bids are not revealed to other prospec-

tive buyers. The good is sold to the highest bidder but for the second highest

price. This approach enforces truthful bidding among the participating bidders [88].

Furthermore, this auction method has been generalised to sell internet advertising

keywords [25].

• Unique-bid auction: Unique-bid auctions are single sealed-bid auctions as well.

After all participants have submitted their bids, the good is sold to the highest (or

lowest) bidder with a unique bid. A bid is considered unique, when no other bidder

submitted an equally valued bid. When using unique-bid auctions, it is possible that

the highest unique bid is the lowest submitted bid amongst all.

• Double auction: While in the previous auction mechanisms, the price asked by the

seller did not directly influence the final price, double auctions do incorporate this

factor. Both, the seller and the buyer, submit bids. The bid of the seller contains

the minimum price asked and the bid of the buyer the o↵ered price to be paid. The

price for the good is the mean between asked and o↵ered price. The good is only

sold though, if the o↵ered price exceeds the asked price.
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While the presented auction mechanisms show the presence of a central control in

form of an auctioneer, Cli↵ and Bruten [18] point out that this centralisation dismisses

the core advantages of a market-based system such as its robustness, decentralisation and

scalability. Introducing distributed auction mechanisms tries to mitigate this problem

[34,44,46] by replacing a central auctioneer by a number of local ones, or by selecting an

auctioneer using leader election algorithms. Waldspurger et al. [89] present one of the first

examples of computational economy to allocate computational resources in a distributed

system. In their system, called Spawn, agents o↵ering resources also host second-price,

sealed-bid auctions for other agents to acquire these o↵ered resources. Agents face the

need to decide which auctions they want to participate in and which ones they want to

omit. If they only bid for the resources they need, the agent might be overbid and end

up with too little resources. In case the agent bids for more resources than it needs, it

has to decide what to do if it wins too many auctions. This dilemma has been the focus

of various work such as that by Gerding et al. [40, 41]. However, this is only problematic

if the buyer depends on a specific amount of a limited resource. In case of the presented

problem in this thesis, buyers can continue their work regardless of the number of won

auctions.

In Clearwater et al. [15] various application domains are proposed to be managed by

market-based control, such as regulation of o�ce temperatures [16], resource allocation

in distributed systems [38], or adaptation of network bandwidth for individual agents

[63]. Wellman et al. [90] use market techniques to determine schedules using di↵erent

auction mechanisms. They investigate the existence of equilibria and are able to show that

combinatorial auctions, where a buyer tries to acquire multiple goods with a single bid,

support equilibria whereas single-good auctions do not. A detailed review of these three

groups, including their benefits and drawbacks, is provided by Cli↵ [17] and Lewis [54].

2.3 Heterogeneous Assignment of Behavioural Strategies

Assigning the same behaviour to all components in a distributed system homogeneously,

to accomplish a common task, might result in a satisfactory outcome. Having di↵erent sit-

uations for each component or agent in the system, or in case situations change over time,

a single common behaviour might not be su�cient anymore. Inducing agents with a vari-

ation of di↵erent behaviours can result in increased stability and allows for more e↵ective

self-organisation, and therefore leads to even better local and system-wide outcomes [10].

Dias et al. [21] point out that heterogeneous capabilities are even more important for

multi-robot systems, since complex missions often have di↵erent requirements. Addition-
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ally, it is more practical to design and build an agent for a very specific task. In sensor

networks, heterogeneity can take the form of di↵erent parameters, diversity in behaviour

of each node, or even a variation of hardware and therefore capabilities between nodes. To

find an advantageous, heterogeneous selection of behaviour, hardware, and parameters for

each node to retrieve a high performance at the global level, well designed self-organising

algorithms can be employed. Prasath et al. [72] highlight two key issues when trying to

find beneficial heterogeneous assignment:

1. Whether heterogeneity allows optimisation beyond the level that is possible in the

homogeneous case for a given scenario and corresponding objectives, and

2. what algorithms to use in order to achieve near-optimal heterogeneous networks.

Stone and Veloso [83] point out that heterogeneous multi-agent systems are able to

solve various complex group level tasks, where teams of homogeneous agents may fail.

These benefits are investigated by Campbell et al. [10] using a heterogeneous multi-agent

system for a task allocation problem. They show that a variation of agents creates more

possible organisations (configurations) of the system. Some of these configurations might

enable a collective system to achieve its goal faster and/or with a better outcome. Römer

et al. [80] propose an adaptation of the node’s roles in a sensor network, based on its

location and purpose. This adaptation is done using a predefined set of rules, which are

the same for all nodes in the network. Furthermore, Frank and Römer [37] describe their

idea of a system with generic role assignment as well as an improved version of their rule

based role-assignment algorithm. Their approach relies on repetitively broadcasted mes-

sages of all nodes, containing their property information for rule evaluation. Mottola and

Picco [69] introduce the idea of logical neighbourhoods for wireless sensor networks. They

describe how sensor nodes may not be spatial neighbours, but codependent regarding the

information they need and provide. Nakamura et al. [70] reactively assign roles for data

routing to di↵erent sensor nodes, based on events to save energy during idle periods. Ab-

bas and Egerstedt [2] also indicate that certain nodes in heterogeneous multi-agent system

are more crucial and significant than others. Therefore, they investigate the dependency

between heterogeneous nodes trying to accomplish specific tasks. To improve the perfor-

mance of the network and optimise placement of the nodes, they use graph colouring to

position them within a sensor network topology. Rojković et al. [79] present an agent-

based approach to assign roles in di↵erent nodes of sensor-networks. Additionally, they

use a genetic algorithm to find a near-optimal solution. In smart camera networks, Dieber

et al. [23] adapt the number of cameras in the network, changing their settings and the
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tasks assigned to the cameras. They use a combination of an expectation-maximisation

algorithm and evolutionary algorithm to satisfy predefined constraints.

The importance of dynamic configuration of heterogeneous sensor networks in environ-

ments where there is no a priori information has been pointed out by Salazar et al. [81].

They show how to re-configure a sensor network to environmental changes based on vari-

ous local events by using a collective di↵usion search algorithm. Similarly, Anders et al. [3]

study the e↵ects of heterogeneous agents in self-organising systems in uncertain environ-

ments. They apply two algorithms one based on schooling fish, and the other one based

on honey bees to accomplish dynamic task assignments. While the honey bee algorithm

can lead to oscillations or insu�cient change of the agents contribution, the schooling fish

algorithm is prone to these deviations but needs a high inter-agent variation to achieve

better results. Their simulation results even indicate that there might be a critical amount

of inter-agent heterogeneity which helps the algorithm to find near-optimal solutions.
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CHAPTER 3. DISTRIBUTED TRACKING IN SMART CAMERA NETWORKS

Object tracking in multi-camera networks can be accomplished in two di↵erent ways:

(i) tracking the object in all possible cameras concurrently, also referred to as multi-camera

tracking, or (ii) the object is only tracked by a single camera with the best view at the time,

which we refer to as distributed tracking. Both methods have their benefits and drawbacks.

In multi-camera tracking, each camera tracks the object as soon as it is identified within

its FOV. From a network point of view, this results in a high, accumulated resource

consumption across all cameras due to constant searching for objects and concurrent

tracking in multiple cameras. On the upside this approach can result in high tracking

accuracy. In distributed tracking, the tracking responsibility is limited to a single camera.

On one hand, resources are only consumed by a single camera in the network. On the

other hand, a coordination of tracking responsibilities across all cameras in the network

is required—a trade o↵ between communication and tracking performance arises. We

induce our cameras with self-interested autonomous software agents, trading tracking

responsibilities in order to maximise their own utility. By trading tracking responsibilities,

cameras learn their local neighbourhood during runtime. This allows them to target

marketing and hence further reduce network-wide resource consumption. In pursuing

local objectives, nodes are typically endowed with a common algorithm or behavioural

strategy. However, nodes are often located in di↵erent areas, having di↵erent perceptions

of the world, and are subject to di↵erent experiences. In these cases, nodes may be better

o↵ adopting di↵erent strategies from each other, in order to better achieve their own

local objectives. It has also been shown that such heterogeneity among nodes can lead

to better achievement of system wide objectives [3, 10], especially when nodes can adapt

independently in response to uncertainties and changes in the environment during the

network’s lifetime [81].

The chapter proceeds as follows. In Section 3.1, the problem of distributed handover

and autonomous camera control is formally defined. Section 3.2 describes our novel, dis-

tributed market-based mechanism to assign tracking responsibilities within a network of

autonomous smart cameras in the absence of a central coordination. Moreover, we intro-

duce the usage of artificial pheromones to learn the neighbourhood relationships between

cameras. Additionally, we explain how these relations can be further exploited to reduce

network-wide resource consumption by targeting only a specific subset of cameras when

advertising tracking responsibilities. Subsequently, in Section 3.3, we outline how the pre-

sented market-based approach can also be used to initially assign tracking responsibilities

to cameras at the start of the system.

Uncertainties in the smart camera network can have significant impact on the system

wide tracking performance, especially when the neighbourhood relations are statically
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defined. This problem and the di↵erent associated uncertainties we consider are discussed

in Section 3.4. In this section we also extend the initial handover algorithm to deal

with the arising problems of uncertainties explicitly. Finally, we study the e↵ects of

heterogeneity among nodes in our distributed smart camera networks. After motivating

the problem of homogeneous assignments of algorithms in Section 3.5, We illustrate how

heterogeneous assignment of algorithms to di↵erent nodes to accomplish a common goal

can outperform a single algorithm executed by all nodes in the network concurrently.

Furthermore we discuss how nodes can learn the best strategy on their own and achieve

a network-wide configuration with various algorithms capable of outperforming statically

assigned heterogeneous configurations.

The presented socio-economic approach in this chapter has been introduced by Esterle

et al. [31] and further elaborated on in the articles by Esterle et al. [32, 33]. Assigning

algorithms heterogeneously and learning optimal strategies for each camera has initially

been presented by Lewis et al. [53] and elaborated in Lewis et al. [52].

3.1 Problem Definition

This thesis deals with the problem of tracking up to m distinct objects within the aggre-

gated FOV of a set of fixed cameras C in a network. Moreover, the objects should not

simply be tracked by the network in a distributed fashion, but also the global performance,

balancing tracking performance against communication overhead, should be maximised.

Additionally, the cameras should behave according to their local and current situation in

order to perform best towards a defined goal. Parts of the following problem definition

have also been given in [31,33].

As the resources of the employed cameras are limited but the number of tracked objects

should be maximised, only a single camera is responsible for tracking an object at a time.

This also applies when multiple cameras “see” the object at the same time. Thus, the

network must distribute the tracking responsibility for a maximum of m objects among n

cameras at any time. This tracking responsibility of camera i for object j can be expressed

by j being a member of the set of objects “owned” by i, which we denote as Oi. When

we say that camera i owns object j, we mean that it is responsible for tracking it, has

the right to track it and may sell it to other cameras. However, since our cameras are

controlled by autonomous software agents, they make independent decisions about which

object(s) in Oi they attempt to track. The decision of camera i to attempt to track object

j is expressed as the binary function �i(j).

We assume that a camera can track up to k objects simultaneously. Tracking k objects
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therefore does not exceed a camera’s resource limitations, and furthermore not reduce its

tracking performance. In the presented analysis it is assumed that the number of objects

tracked by a camera is less than k. Thus, a conservative limit on the number of objects

would be m  k. When camera i attempts to track object j (�i(j) = 1), a tracking

module is initialized with a description of that object to initially detect and afterwards

track the object within the FOV of the camera. The tracking performance depends on

various factors, such as object descriptor, distance, orientation, partial occlusion and so

on. In this thesis single camera tracking is simplified and all these factors are subsumed

in a visibility parameter vj , which is determined by the distance and angle of the observed

object to the observing camera. The tracking performance is estimated by a confidence

value cj . Both values, cj and vj , are between 0 and 1 as soon as the observed object is

within the FOV of a camera, otherwise they are 0.

The handover of the tracking responsibility is a local mechanism in a camera network,

i.e. only the (small) set of neighbouring cameras can contribute to the handover decision.

The vision graph (Gv = (C,E)) expresses such neighbourhood relations in the camera

network. Two cameras i and q (both members of the set of cameras C) are connected

in Gv by a directed edge ei,q 2 E, if they have an overlapping FOV. We extend this

basic definition of Gv to non-overlapping cameras as well, by introducing an edge, if a

moving object in camera i can appear in camera q within some time. Weights of the edges

can be used to express the likelihood and rates of the object’s re-appearance (cp. Section

3.2.2). Thus, to reduce communication for deriving the handover decision at camera i,

it is su�cient to exchange information only among i and its adjacent cameras NG(i).

Receiving a request to take over the responsibility of tracking an object is accompanied

with increased resource consumption due to searching the object within the FOV. As

a consequence, the proposed approach not only reduces the communication, but also

the overall resource consumption within the entire network because only a small set of

neighbouring cameras contributes to the handover decision process.

To enable cameras to decide when and to whom to advertise objects, we implement a

set of strategies S. Each strategy s 2 S gives rise to one out of two conflicting objectives: to

maximise the tracking performance or minimising the communication with other cameras

in the network. Initially, we study the performance of assigning the same strategy to

all cameras homogeneously. We compare these results with a heterogeneous assignments,

where at least two cameras in the network behave di↵erently. This results in �n possible

assignments including all homogeneous and heterogeneous combinations, where � denotes

to the number of strategies in the set S and n represents the number of cameras in C

respectively. We also refer to a specific assignment of strategies on the network level as
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configuration. Having this large set of configurations allows a human operator to select

a single configuration for the network. Due to uncertainties in the camera network as

well as object movement, making this selection is almost impossible without knowing the

camera topology and the movement patterns of the objects to be tracked. Therefore,

each camera is required to select its own strategy based on available, local observations.

We show that the proposed distributed learning technique, implemented at each camera

agent, allows the network as a whole to perform better when compared to all homogeneous

configurations and most heterogeneous configurations.

A complete list of all symbols used in this thesis can be found in the appendix.

3.2 Market-based Approach

Recently developed distributed tracking applications apply various control mechanisms to

assign tracking responsibilities. They rely on a priori induced knowledge about the net-

work topology and/or frequent exchange of information among the participating cameras.

Our novel approach overcomes these limitations and is able to achieve robust, flexible

and scalable multi-camera control with low computation and communication overhead.

Each camera in the network tracks objects, transfers these tracking responsibilities to

other cameras, and estimates its own vision graph using a novel socio-economic approach.

The term socio-economic is used since it is inspired by social interaction and economic

principles. To accomplish this, we induce our cameras with autonomous, self-interested

software agents, capable of exchanging responsibilities for tracking objects in a market

mechanism in order to maximise their own utility. Utility is generated by tracking objects

but also used as artificial currency in the market. Whenever such a handover is required,

the camera initiates an auction, containing a description of the corresponding object.

Other cameras receiving this auction initiation try to detect the object within their own

FOV. This also means, cameras will not track or even detect objects for which no auction

has been initiated. In case the object has been detected, this camera can attempt to

receive tracking responsibility by submitting a bid for this object to the auction. Apply-

ing this market-based approach ensures each camera only tracks those objects generating

a high utility. Additionally, resource expensive tasks such as (re-)detection is kept at a

minimum. Monitoring completed handovers allows cameras to learn local neighbourhood

relations and build the vision graph of the network online. We use artificial pheromones,

inspired by the ant foraging process, to grow this vision graph over time. This allows

cameras to forget about previously neighbouring cameras in a changing network topology.

This entire process is illustrated in Figure 3.1.
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c1 c4c2 c3

(a)

Auction Invitation

c1 c2 c3 c4

(b)

Bids

c1 c2 c3 c4

(c)

Tracking Responsibility

c1 c2 c3 c4

(d)

Figure 3.1: Illustration of the market-based handover approach: an object of interest is tracked
by camera c2 in Illustration (a) indicated by the dashed green line representing the FOV. c2
initiates an auction for an object as it is about to leave the FOV in Figure (b). Bids for taking
over tracking responsibility are sent by camera c3 and c4 in Illustration (c) which have the object
within their FOV as indicated by the orange dashed lines representing their FOV. c3 wins the
auction and the tracking responsibility is transferred from c2 to c3 in Illustration (d). A link in
the vision graph is created (indicated as red line between c2 and c3).

Our approach o↵ers several significant benefits: it is fully decentralised, requires only

the exchange of local information, is computationally inexpensive, supports online pro-

cessing and does not require any a priori knowledge about the camera network or objects

of interest. As a result, the system is highly robust and works in dynamic environments

where a camera can be added or removed from the network at any time without a↵ect-

ing any other parts of the network. The approach presented takes inspiration from both

social and economic systems, and is based on two distinct concepts. First, the allocation

of objects to cameras makes use of a market-based approach, similarly to those described

in Section 2.2. Second, a pheromone-based mechanism inspired by social interactions in

ant colonies is used to build the vision graph online, based on the locally observed trad-

ing activity. This is then used to determine communication between cameras. The ant

inspired approach is similar to ant colony optimisation [24], where artificial pheromones

are used to find good (i.e., short) paths in a network. However the novel use of artificial

pheromones to enable targeted marketing is a previously unexplored idea, which enables
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the e�cient management of the trade-o↵ between communication and utility. Addition-

ally, the approach is robust to dynamics and inherently scalable. Therefore, we believe

it has significant potential for a range of decentralised applications, of which distributed

smart cameras are one example. The presented socio-economic algorithm is implemented

locally in each camera and executed by each camera autonomously.

3.2.1 Utility and Market Mechanism

To trade objects or persons of interest as goods in a virtual market, a value has to be

assigned to them. This value of an object to be tracked can be extracted from any

quantifiable criteria. In tracking this could be the number of re-identified features, the

size of the bounding box or the similarity of the colour histograms between the detected

object and the initially selected model.

In this thesis, we assume instantaneous utility of camera i and its set of owned objects

Oi is given by

Ui(Oi, p, r) =
X

j2Oi

ui(j)� p+ r (3.1)

=
X

j2Oi

[cj · vj · �i(j)]� p+ r (3.2)

where �i : Oi ! {0, 1} is 1 if camera i attempts to track object j and 0 otherwise. vj

represents the visibility and cj represents the confidence of the camera on the given object

j respectively, where vj and cj are between 0 and 1. In addition to utility earned by

tracking objects, a camera b may make a payment to another camera s in order to “buy”

the right to track an object from that camera. This requires that the “selling” camera s

already itself owns the object. If an exchange is agreed on, then the object is removed

from Os and added to Ob. p denotes the sum of all payments made in trades in a certain

time step, and r conversely denotes the sum of all payments received.

To facilitate the exchange of objects, we propose the use of Vickrey auctions [88]

hosted by the selling camera. The Vickrey auction, also known as the second price sealed

bid auction is a single sided auction where bidders make one sealed bid for a single item.

The auctioneer awards the item to the highest bidder, but at the price bid by the second

highest bidder. The advantage of the Vickrey auction from an implementation perspective

is that it has a dominant strategy for bidders: to bid one’s truthful valuation, regardless

of the strategies of the other bidders. In contrast with other mechanisms, this removes

the need for cameras to possess adaptive bidding strategies, or be required to learn a

high performing context-dependent strategy. In common with other market-based control
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systems (e.g. [54]), currency is an artificial construct used as a tool for system management;

no real money is used.

In our model each camera, in the absence of any neighbourhood information, broad-

casts information about the objects it is currently tracking in order to solicit bids. Each

camera i, upon observing such a broadcast, determines the likely value in case of receiving

the right to track the object and if this value is positive, subsequently responds privately

to the broadcasting camera with its bid. In order to determine the likely value, each

camera receiving an auction invitation checks whether an object within its current FOV

matches with the received object description.

3.2.2 Pheromone-based Vision Graph Generation

One of the key advantages of our approach is that it does not require the vision graph to

be known a priori, since relative utility of the cameras is used to determine which camera

the object should be handed over to. However, the broadcast method used to support

this decision is ine�cient in terms of communication overhead. For this reason, we use a

pheromone-based method for building the vision graph online, from the trading activity

occurring in the market. Initially, any camera in the network could be the neighbour of

all other cameras. While this is highly unlikely, the possibility has to be considered. As

the cameras learn the vision graph, they may scale down the amount of communication

while still achieving high utility, by announcing their objects only to cameras which are

their neighbours in the vision graph.

This use of artificial pheromones, built from previous trading activity to guide future

marketing activity, is a novel and highly useful method to achieve e�cient outcomes in

the trade-o↵ between communication and performance. Since the pheromones are both

reinforced and evaporate over time, changes in the topology of the underlying vision

graph during runtime can be adapted in a robust manner, and the loss or addition of

individual cameras does not a↵ect the wider system. This will be discussed in more

detail in Section 3.4. Since marketing communication can be concentrated on only a

small number of relevant camera nodes, our socio-economic approach allows significantly

improved scalability.

In the presented approach, vision graph information is generated in a distributed

fashion and only local information is stored in cameras. We therefore define for each

camera i an adjacency list, Ei, the set of all links (or edges) local to that camera. Each

element of Ei is the tuple (x, ⌧ix), where x is another camera in the network and ⌧ix is

the strength of the link from camera i to camera x. Each camera is initialised with an

adjacency list containing tuples from itself to all other cameras in the network, each tuple
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with a strength value ⌧ix = 0 for all x. Subsequently, each time camera i successfully sells

an object to camera x, the corresponding strength value is increased by a value �. In ant

colony optimisation, the value of � is often determined by the properties of the problem.

Although we have not yet investigated the e↵ect of di↵erent � values in our model, we

expect that the properties of the camera network and objects to be tracked will similarly

a↵ect optimal values for �.

However, following the analogy with pheromone evaporation in ant colonies, over time

the strength of the links also decreases, allowing the system to overcome changes in topol-

ogy or fields of view of the cameras over time. The pheromone update rule is shown in

Equation 3.3.

⌧ix =

8
<

:
(1� ⇢) · ⌧ix if no trade occurs on the edge

(1� ⇢) · ⌧ix +� if trade occurs on the edge
(3.3)

As in ant colony optimisation, ⇢ is the evaporation rate parameter, which can be

understood as a forgetting factor; higher values lead the pheromone to evaporate faster,

enabling the system to adapt to changes quicker, but at a penalty of losing more historical

vision graph information. However, our approach here is not ant colony optimisation,

since pheromone information is not used to find optimal routes through the network, but

instead to represent a social environment of cameras with adjacent fields of view.

3.2.3 Exploitation of the Vision Graph

As the vision graph is built up, the initial communication behaviour can be adapted.

Specifically, when advertising an object that other cameras may wish to buy, a camera i

sends a message to camera x with probability P (i, x), otherwise it does not communicate

with camera i at that time. We consider three di↵erent policies of determining these

communication probabilities:

1. broadcast, which communicates with all available cameras in the network. This

approach does not miss any camera but also generates a high overhead since it

includes cameras which are not likely to respond.

2. step, in which an advertisement is sent to a camera if the strength of the link to

that camera is above a certain threshold, otherwise the camera communicates with

the other camera with a very low probability.

3. smooth, in which the probability of communicating with another camera is based

on the ratio between its link strength and that of the strongest link in its graph.
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More formally, when employing a policy, the probability of camera i communicating

with another camera x is given by

Pbroadcast(i, x) = 1 (3.4)

when using the broadcast policy. For step, the probability is given by

Pstep(i, x) =

8
<

:
1 if (⌧ix > ✏) _ (⌧im = 0)

⌘ otherwise
(3.5)

where ✏ = 0.1 and m is the camera with the highest strength value, i.e.,

m = argmax
y

⌧iy, 8y.

For the smooth policy, the communication probability is given by

Psmooth(i, x) =
1 + ⌧ix
1 + ⌧im

(3.6)

where m is again the camera with the highest strength value.

Both of the presented communication policies illustrate a novel use of ant inspired sys-

tems in the computing domain, as a method of managing communication in a distributed

network.

3.2.4 Autonomous Camera Control

Putting together the aspects of the utility function of the camera, decision process,trading

behaviour and vision graph generation, we specify that each camera in the system behaves

according to Algorithm 1.

As indicated in Step 4, the handover algorithm should be repeated at regular intervals

to ensure that objects are handed over as close as possible to the optimal time, but without

spending unreasonable resources identifying objects in the scene purely for the purposes of

determining optimal bids. We define two di↵erent schedules to initiate auctions, active

and passive.

The active auction schedule requires the camera to initiate auctions in very short

intervals. This results in the handover of the object very close to the possible optimum with

respect to the acquired utility. At the same time, the high frequency of initiating auctions

generates a high communication overhead and network-wide resource consumption.
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Algorithm 1 The camera handover algorithm

1. Object trading of camera i

a) Advertise owned objects to each other camera x with probability P (i, x).

b) For each received advertised object j, respond with a bid at value ui(j) if this
is greater than zero.

c) Accept received bids for each object k for which ui(k) is less than the highest
received bid. For each accepted bid:

i. Remove k from Oi.

ii. Respond to the camera making the highest bid, informing it of the required
payment, the value of the second highest received bid.

iii. Increment the utility of the camera by the value of the second highest bid.

d) For each object l for which the bid sent was accepted, add l to Oi and deduct
the payment amount from the utility of the camera.

2. Vision graph update of camera i: Update ⌧ix for all x according to Equation 3.3.

3. Tracking decisions of camera i: Select which objects in Oi to track in order to
maximise Ui(Oi).

4. Repeat at regular intervals.

The second auction initiation schedule is referred to as passive. In this schedule,

the camera only initiates auctions whenever the object is about to leave the FOV of the

camera. While the passive approach has lower communication overhead for an object,

it might not allow to acquire the maximum utility that would have been possible with a

handover of the same object initiated earlier.

Combining these two auction initiation schedules with the three previously discussed

communication policies results in six di↵erent strategies. An operator, trying to balance

the trade-o↵ between communication overhead and tracking performance in the system,

can select one of these six strategies. To start our distributed tracking application, objects

of interest have to be defined. In our system, this basic mechanism is accomplished by a

human operator who has to connect to a remote camera and select the object or person to

be tracked in a user interface. This user interface is only required to initiate the tracking

process and does not act as a central component or is not needed in any way besides

initialisation, to support our approach. An alternative approach on initialisation using

the market-based mechanism to initiate the tracking process is outlined in the following

section.
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3.3 Initialisation of Tracking Responsibility

The socio-economic approach described in this chapter allows distributed tracking of ob-

jects in a network of smart cameras while keeping the communication overhead low. Nev-

ertheless, the described approach assumes initial assignment of the tracking responsibility

for each object to a specific camera. This could be done by a human operator or based on

a predefined set of objects of interest. In case the network of autonomous smart cameras

is deployed in an area, where objects are unknown at deployment and the network should

track all objects visible in the aggregated FOV, manual selection may not be possible.

This section will outline simple adjustments to the original market-based approach and

a possible implementation of the same in a network of autonomous cameras to initially

assign tracking responsibilities without additional bargaining e↵ort.

3.3.1 Outline of the Approach

When a network of smart cameras is deployed in an area where the objects are unknown

at start up, the market-based handover approach can be used to initially assign tracking

responsibilities. To allow this initial assignment in a dedicated initialisation phase, three

simple adjustments have to be made to the original market-based approach:

1. Cameras have to be able to autonomously detect moving objects and extract a

description. Furthermore, they have to identify and label the objects coherently.

2. Multiple concurrent auctions by di↵erent cameras are allowed for the same object. In

contrast to the original approach, initiating an auction does not grant “ownership”

of the object to be tracked to the camera.

3. A camera may decide on its own to participate in an auction or not. It is of utmost

importance, that for each object a camera initiated an auction for, this camera also

has to participate in all received auction invitations for the same object.

Figure 3.2 illustrates the protocol to assign initial ownership among two cameras. In

this illustration, all actions of these two cameras related to the auction initiated by Camera

1 are depicted in red and in blue for the auction initiated by Camera 2 respectively. When

all cameras are switched on, they immediately try to find, identify and label objects to

be tracked in their FOV. For every object j each camera initiates an auction. This might

result in multiple auctions running concurrently on various cameras. In our example,

Camera 1 and 2 have both spotted object j in their FOV and initiate an auction at the

same time. Both cameras receive the invitation of the other camera and therefore assess
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the value of object j. This value is submitted as a bid to the other camera. Both cameras

now concurrently define the winner of the auction. Since bids are based on utility, which

combines visibility and tracking confidence, the object will be assigned to the camera

having the best view of the object among both cameras.

Camera 1 Camera 2

search for objects

ĮŶĚ wiŶŶeƌ�ĨŽƌ�ĂƵĐƟŽŶ�ŽĨ�j

ƌĞƐƵůƚ�ŽĨ�ĂƵĐƟŽŶ�ĨŽƌ�j

geƚ�ŽǁŶ�ǀĂůƵĞ j

ƐĞŶĚ�ďŝĚ�ĨŽƌ�j

ŝŶŝƟĂƚĞ�ĂƵĐƟŽŶ�ĨŽƌ�j

search for 
objects

ĮŶĚ wiŶŶer 
ĨŽƌ�ĂƵĐƟŽŶ�ŽĨ�j

geƚ�ŽǁŶ�ǀĂůƵĞ j

Figure 3.2: The illustration depicts the initialisation process using our socio-economic approach
resulting in the assignment of the object to the camera with the best view. This is accomplished
with only 3 messages per camera per object. Red and blue lines and bars indicate actions and
messages due to the initialisation process of camera 1 and camera 2 respectively.

The proposed approach only needs a low number of exchanged messages among the

participating cameras. For a network of n cameras having a total of m objects within

their FOVs, the total number of messages to assign all objects in the network is given by

#messages = 3 · (n� 1) ·m. (3.7)

This maximum is only reached if all cameras see all objects at the time of initialisation.

3.3.2 Discussion

There are various benefits and drawbacks of the proposed approach for initialisation. The

main benefit of the approach is that all objects are allocated to the camera having the best

view. Only in the highly unlikely event of two cameras having the exact same valuation,

the assignment of tracking responsibility cannot be decided. In this case, the cameras

would need to re-initiate an auction for the object.

35



CHAPTER 3. DISTRIBUTED TRACKING IN SMART CAMERA NETWORKS

It has to be a fundamental rule that all cameras are committed to their submitted bids.

This is important because a camera i winning an auction from another camera q would

mean other cameras did not win the auction initiated by camera i for the same object.

Indeed this would mean that, if this rule is broken, a camera could receive the tracking

responsibility from its own initiated auction and hence without making any payment for

a submitted bid in an auction by another camera for the same object. Therefore, every

camera has to assure payment to other cameras in case auctions are won. Additionally, it

is important that an object is only assigned to a single camera after the initiation phase.

A problem arises when more than two cameras have a view of the same object at

start up. In this case the winning camera would have to pay multiple cameras for the

same tracking responsibility. Indeed a camera would be required to spend multiple times

its actual valuation to receive a tracking responsibility. Since cameras broadcast their

auctions for initial assignment, each camera will receive as many auction invitations for

a specific object as other cameras have this object within their FOV. To overcome the

problem of overspending in case of x cameras, where x > 2, having the same object within

their FOV, all auctioneering cameras may only be allowed to request a certain fraction

of the initial bid b from the winning camera. The actual payment by a camera to all

auctioneers is defined as

pay =
b

x� 1
. (3.8)

While initialisation of tracking systems is a research area of its own, we are able to

accomplish this complex task using our market-based approach with only a minimum of

exchanged messages per object. The required considerations and benefits of this approach

have been outlined but are beyond the focus of this thesis.

3.4 Uncertainties in the Camera Network Topology

When defining the vision graph, and hence the neighbourhood relations, o✏ine, the camera

network is not able to adapt to changes within the network. Not only does each camera

rely on all of their neighbouring cameras to be fully functional at all times, but also every

camera assumes that other cameras in the network do not change their position or angle.

Unfortunately, smart camera networks are prone to uncertainties, changing the topol-

ogy of the network. We consider three main types of uncertainties which have an e↵ect on

the topology of camera networks during runtime: (i) cameras being added to the network,

(ii) cameras failing for a certain, limited time or dropping out entirely, and (iii) cameras

changing their pose. While adding a camera to the network might not be considered a

major problem, since it can only increase the overall utility of the network, removing as
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well as changing positions and viewpoints do a↵ect the network performance directly and

might occur due to external actions, failures or vandalism.

We extend our previously introduced socio-economic handover algorithm and demon-

strate how this improves adaptivity and robustness substantially , when two important

assumptions are relaxed. Specifically: (i) we no longer assume instantaneous handover

and instantaneous communication between cameras, and (ii) we introduce uncertainties

to the network, to better reflect realistic real world situations.

In this context, we show how the network can automatically deal with cameras failing

as well as being added to the network during runtime and still maintain high performance.

Furthermore, we show that the smart camera network can cope well with single cameras

changing their poses during runtime.

3.4.1 Adding Cameras

In case of predefined neighbourhood relationships in a network of smart cameras, adding

a new camera at a random position with a random orientation at an arbitrary time step

required explicit incorporation into the network. Otherwise this new camera might not

be able to gather valuable utility fo the entire network. We show that our market-based

approach is able to incorporate newly added cameras during runtime and therefore in-

crease the overall network utility (i.e., tracking performance of the entire network) when

compared to a static approach, where the neighbourhood relations are defined at the

deployment.

3.4.2 Failing Cameras

Cameras failing during runtime may have a severe impact on the tracking performance of

the network. In such a case, objects might get lost for entire sub-networks. We consider

two di↵erent types of failing cameras: permanent and transient failures. We illustrate,

that the proposed socio-economic algorithm is capable of dealing with both types of failing

cameras and keeping track of objects in separate sub-networks with missing links. This

allows the network a continuous generation of utility in contrast to a static approach,

where the neighbourhood relations are not adapted after deployment.

3.4.3 Changing Cameras

Changing the pose of a camera comprises the orientation as well as the position of the

camera. Changing a camera’s pose might render it irrelevant for its previously known

neighbourhood and more valuable to a completely di↵erent area of the network at the
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same time. This is especially problematic when the old, as well as the new neighbours

are not notified about the occurring changes. We consider four di↵erent types of possible

changes.

• Position: The cameras’ location has changed therefore the camera might observe

a new area of the environment or the previously monitored area from a di↵erent

viewpoint.

• Orientation: The cameras’ orientation has changed and therefore the camera ob-

serves a new area of the environment.

• Range: Range defines how far objects can be from the camera observer while still

being observed. This factor is closely related to zoom.

• Zoom: The camera is now able to observe a wider or more narrow area of its original

FOV.

Essentially, changing the camera’s pose means the observed area changes as well. The

new observed area can be a partially, or even completely, new region or it only becomes a

smaller part of the original observed space.

3.4.4 Non-instantaneous Handover and Bidding Periods

In this section we relax two simplifying assumptions about the behaviour of the camera

network to create a more realistic setup as follows: (i) we no longer assume instantaneous

handover and instantaneous communication, (ii) we consider uncertainties regarding the

cameras in our networks. Due to these relaxations, the camera handover algorithm from

Section 3.2.4 needs to be adapted. Instantaneous communication and handover favours

cameras seeing the auctioneered object first. In contrast, we prefer the camera with the

best view to win the auction. In order to allow multiple cameras, seeing the object within a

very short time span but not at the exact same time, to participate in the auction, a non-

instantaneous auction is required. To implement non-instantaneous handover, we have

introduced Step 1c to our algorithm described in Algorithm 2. The introduced durations

of auctions ta, allows cameras not having the advertised object within their FOV at the

exact same time to still participate in the same auction. Additionally, this facilitates

dealing with non-overlapping FOVs. Algorithm 1 allows the network to deal with the

uncertainties regarding the network topology over time. However, this is based on the

evaporation rate of the artificial pheromones. Consequently, until the link to a changed

camera has not evaporated, the auctioneer will still favour this camera when soliciting

38



3.4. UNCERTAINTIES IN THE CAMERA NETWORK TOPOLOGY

bids. In order to deal with uncertainties in the network topology faster, we introduced

Step 1f to the algorithm. To ensure that bids can be received by the auctioning camera,

tb has to be longer than the duration of an auction ta. In case no bids arrived at the

auctioneering camera and as soon as the timespan tb has elapsed, the object is advertised

to all cameras using broadcast communication.

Algorithm 2 Extended camera handover algorithm

1. Object trading by camera i:

a) Advertise owned objects to each other camera x with probability P (i, x).

b) For each received advertised object j, respond with a bid at value ui(j) if this
is greater than zero.

c) After receiving the first bid, wait for ta time steps to receive more
bids from other cameras.

d) Accept received bids for each object k for which ui(k) is less than the highest
received bid. For each accepted bid:

i. Remove k from Oi.

ii. Respond to the camera making the highest bid, informing it of the required
payment, the value of the second highest received bid.

iii. Increment the camera’s utility by the value of the second highest bid.

e) For each object l for which the bid sent was accepted, add l to Oi and deduct
the payment amount from the camera’s utility.

f) If no bids have been received after tb time steps, advertise owned
objects to every other camera x with probability P (i, x) = 1.

2. Vision graph update: Update ⌧ix for all x according to Equation 3.3.

3. Tracking decisions of camera i: Select which objects in Oi to track in order to
maximise Ui(Oi).

4. Repeat at regular intervals.

Besides our socio-economic inspired communication policies discussed in Section 3.2.3,

for comparison we also implemented a static communication policy, which uses a prede-

fined vision graph. A camera x using the static communication policy only advertises

objects to its known neighbours i with a probability given in Equation 3.9.

Pstatic(i, x) =

8
<

:
1 if ⌧ix > 0

0 otherwise
(3.9)
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The predefined vision graph does not employ our ant-inspired approach and therefore

does not have the concept of changing link strengths.

3.5 Heterogeneous and Learned Strategies for Distributed

Tracking Systems

As discussed in Section 3.2.4, there are six di↵erent behavioural strategies available for

the camera nodes disposal. The strategy determines the level of marketing activity the

node undertakes, given the learnt vision graph and influences the communication overhead

as well as the tracking performance. While communication intensive strategies typically

obtain higher tracking performance; strategies with lower communication obtain the oppo-

site result. The trade-o↵ between the communication overhead and the achieved tracking

performance is highly dependent on the scenario. This is due to varying camera positions

and di↵erent object movements. Additionally, cameras often operate ine�ciently since

the homogeneous deployment of strategies forces a one size fits all approach, despite local

di↵erences in the vicinities of the cameras. In this section we discuss how permitting

heterogeneity between cameras in terms of their strategies, enables the network to obtain

more Pareto e�cient global outcomes. At this stage, we consider the cases where (i) all

cameras need not employ the same strategy at all times (i.e., a camera does not change its

strategy), and (ii) a camera may learn which strategy to use during runtime. We therefore

refer to the strategies employed by the cameras across the network as the configuration

of the network. Based on the variation in the employed strategies across the network, we

may describe two types of configurations:

1. Homogeneous: Refers to a network configuration where all cameras use the same

marketing strategy.

2. Heterogeneous: Refers to a network configuration where at least two cameras use

di↵erent marketing strategies.

Although heterogeneity can improve global e�ciency, given unlimited possibilities for

camera network deployments and accompanying environmental dynamics, identifying by

hand the most appropriate behaviour for each node in a given scenario and at a particular

point in time is not feasible. We have refined Prasath et al’s [72] key issues for engineering

heterogeneity in self-organising systems, to fit the context of market-based distributed

smart camera networks.
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1. Are there heterogeneous configurations which are capable of achieving results more

Pareto e�cient when compared to results achieved by a homogeneous configuration?

2. How can self-interested smart cameras find such a system-wide configuration by

themselves to achieve a more Pareto e�cient outcome, given a particular scenario?

To overcome these problems we propose using online learning algorithms, specifically

multi-armed bandit problem solvers (e.g., [5]). We endow each of our cameras witch a so-

called bandit solver to learn the appropriate strategy for each node during runtime. These

bandit solvers balance exploitation behaviour, where a camera achieves high performance

by using its currently known best strategy, with exploration, where the camera explores

the e↵ect of using other strategies to build up its knowledge. By employing bandit solvers

in each camera, we are able to obtain near Pareto e�cient global outcomes in many cases.

In other cases, the dynamic nature of the online learning algorithms actually extends the

Pareto e�cient frontier, improving upon the best static configurations. While in principle

there are many possible marketing strategies which could be conceived of and used by a

bandit solver, for comparison purposes, we focus on the six strategies previously proposed

in Section 3.2.4.

3.5.1 Pareto E�ciency of Heterogeneous Networks

Despite the six available marketing strategies presented in Section 3.2.4, we assumed, all

cameras in the network use the same strategy, i.e., the networks have a homogeneous

configuration. In this section we consider the case when individual nodes (cameras) in a

network can use di↵erent strategies to govern how they advertise their auctions. Permit-

ting this heterogeneity in the network enables nodes to specialise to their local situation

and hence allows for a wider range of global outcomes when compared to the homogeneous

case. We speculate that optimal heterogeneous assignment of strategies can lead to the

global performance of the network being strictly better in terms of both of the considered

objectives. This would extend the previous Pareto e�cient frontier with respect to the

network-wide observed trade-o↵ between communication overhead and achieved tracking

performance.

However, heterogeneity itself does not necessarily lead to better outcomes. It is also

possible that nodes specialise wrongly, leading to a strictly worse global outcome when

compared to any homogeneous case. Indeed, when considering all possible heterogeneous

configurations for a given network, the number of possible configurations increases greatly

compared to the homogeneous-only case. Having � di↵erent strategies and n cameras in

the network, an operator has to pick one configuration out of �n possible configurations.
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3.5.2 Decentralised Online Learning of Pareto E�cient Configurations

By permitting heterogeneous configurations of camera networks we expect global outcomes

to be obtained which are more Pareto e�cient than in the homogeneous case. However,

it is not clear which particular heterogeneous configuration should be chosen, in order

to achieve an e�cient global outcome, in a particular scenario. We are faced with the

problem of choosing from numerous combinations, out of which only a few are Pareto

e�cient, which configuration the network should adopt.

This could be tackled as a classical o✏ine search problem at deployment of the smart

camera network. However, doing so would assume that we know the characteristics of the

scenario in advance, including camera placement and orientation, expected object move-

ment patterns and runtime failures or additions (e.g., as studied in [32] and discussed in

Section 3.4). Indeed, this lack of a priori scenario knowledge is a key problem characteris-

tic motivating this approach. Therefore, we extend our previous approach, where cameras

used a single strategy for the entire deployment, by enabling individual cameras to learn

behaviours online during run time.

This means, a node can select its marketing strategy autonomously using an online

learning technique. This allows the camera to adapt its strategy during runtime based on

local feedback. This local feedback comprises the auction invitations sent by the node and

the tracking performance measured by the node (as opposed to the equivalent metrics for

the network as a whole).

Learning E�cient Configurations using Bandit Solvers

From the perspective of an individual camera, its task is to select a marketing strategy

from those available, which maximises its expected tracking performance while minimising

its auction overhead over time. We therefore consider that a camera is faced with an

online algorithm selection problem [39]. Our approach is to consider this as a variant of

the multi-armed bandit problem [5]. This problem is analogous to being faced with n slot

machine arms, where each pull of an arm returns a random reward drawn from an unknown

distribution associated with that arm. Given m total arm pulls, the task is to select which

arms to pull such that the total reward obtained is maximised. If the player were to

know the distributions behind each arm, then the player could simply select the best arm

for every pull. However, since the distributions are unknown, the player must sample

from each arm in order to gain some knowledge of each arm’s reward distribution. The

multi-armed bandit problem therefore encapsulates the classic exploration vs. exploitation

dilemma. However, some of the assumptions present in the classic multi-armed bandit
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problem formulation may not be appropriate in this setting. First, the reward distributions

are usually assumed to be static over time, and second it is assumed that the bounds on

the obtainable rewards are also known. It does not appear that either assumption can be

made in our problem.

Nevertheless, the bandit framework is useful, and each marketing strategy can be

considered an arm of a bandit. Each camera node can choose to use one strategy (i.e.,

pull an arm) at each time step, and can receive a resulting reward, derived from its local

metrics. In this way, a camera learns which strategy performs well in its current situation

within the scenario, and exploits that knowledge to maximise its performance. There are

a number of so-called bandit solving algorithms to be found in literature. In this thesis we

consider three well-known bandit solvers: the simple Epsilon-Greedy [87], UCB1, which

is known to perform well in static problems [5], and Softmax [84]. Epsilon-Greedy

requires an ✏ value to determine the amount of exploration. A low ✏ value (✏! 0) results

in random selection of algorithms while a high value (✏ ! 1) selects greedily the best

algorithm, based on the previous rewards. UCB1 requires no parameters. Softmax uses

a temperature value ⌧ to steer the probability of selecting an arm based on the expected

reward. This means, that high temperatures (⌧ ! 1) result in a random selection where

each arm has nearly the same probability while lower temperatures (⌧ ! 0) tend to select

the arm based purely on the expected reward.

In applying bandit solvers to algorithm selection at the local level in a self-organising

system, we must define local reward functions, such that the global system’s objectives are

achieved. Although, we try to achieve these global objectives, we can only rely on multiple

corresponding metrics locally at each node for our reward function. In this chapter, we

use a linear combination of the local metrics:

reward = ↵⇥ utility� (1� ↵)⇥ communication (3.10)

where utility is the utility function given in Section 3.2, which sums obtained tracking

performance over all objects tracked by this camera in the current time step, plus its

balance of payments from all trading activity during this time step. The number of

messages sent by this camera at this time step is denoted by communication. ↵ allows

us to change the node’s preference in favour of either maximising tracking performance

or minimising the communication overhead. Therefore, ↵ may be used to direct local

learning such that outcomes at the global level favour appropriate regions of the Pareto

e�cient frontier.
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3.5.3 Camera Level Normalisation by Distribution

The selected strategy for each camera using bandit solvers is dependent on the camera’s

location, the scenario and the camera’s preferences between the two objectives. The local

preferences can be customized using the ↵ value. By varying the ↵ value, a preference for

the global outcomes on the Pareto e�cient frontier can be set. However, the results based

on the preferences are biased due to the nature of the observed metrics at the camera

level. Ideally, ↵ would be used to weight the two objectives evenly, such that the outcome

position on the Pareto frontier can be determined directly by setting ↵. For example, an

↵ value of 0.25 would lead to an outcome value 25% of the way along the length of the

achieved front. In order to achieve this, we would need to normalise both parameters of

the reward function. Normalising the first parameter is impossible due to the camera’s

lack of knowledge about its maximum possibly achievable utility. Since a camera has this

information only, when it advertises all objects to all other cameras in the network, it does

not obtain this when using a passive schedule nor the step or smooth communication

policy. Using a strategy containing one of these policies or the passive schedule, the

camera will not advertise to all other cameras in the network. Hence, the advertising

camera does not receive bids from some cameras. These other cameras might however

have paid more for the object than actual participating cameras did. The upper bound

on the camera’s utility is therefore not known, and varies significantly with every time

step. Nevertheless, we are able to normalise the second parameter of the reward function,

the number of messages sent by the camera, and therefore alleviate the bias e↵ect a little.

The upper bound on the value for communication also varies, but in this case only with

the number of objects and other cameras currently known to the camera.

We are therefore able to perform some estimated normalisation of the number of sent

messages at the local level. Figure 3.3 shows the frequency distribution with which a

camera sent messages to other cameras over time, in a typical run of a simple scenario

with two cameras and four objects of interest. The results for three more, qualitatively

di↵erent, scenarios using di↵erent bandit solvers are depicted in Figure 3.4, and show

similar distributions. Clearly, cameras are less communicative more often than they are

more communicative. As it turns out, this skew in the distribution appears to have a

large e↵ect on the bias observed in the outcome Pareto front. We are able to account for

this skew e↵ect by introducing a normalisation by distribution process into the auction

invitation component of the local reward.

More specifically, each camera keeps track of the frequency of sent messages for prede-

fined time intervals throughout its lifetime. When a new auction is initiated, the number

of sent out messages is added to those in this time interval. The sum of all messages in this
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Figure 3.3: Histogram showing the frequency distribution of messages sent per time step in
Scenario 1 when cameras use Softmax with a temperature ⌧ = 0.1. Each camera is represented
by one bar per bin. ↵ = 0.5.

interval is ranked within the historical values. This rank is normalised by the maximum

number of messages sent in any time interval. For example, if the number of sent mes-

sages in an interval is greater than the largest observed number of sent messages so far,

its normalised value is 1. Similarly, if the number of sent messages could be categorised

within the middle of previously observed values, it is normalised to the value 0.5.

By normalising in this manner, we expect to obtain a more even spread of outcomes

along the achieved frontier.
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Figure 3.4: A selection of histograms showing the frequency of sent messages. Each camera
is represented using one bar per bin. From top to bottom, the rows show scenario 3, 6 and
9 respectively. From left to right, the columns show results when cameras use epsilon-greedy,
softmax with a temperature ⌧ = 0.1, softmax with a temperature ⌧ = 0.2 and ucb1 respectively.
In all cases ↵ = 0.5. The axes are as in Figure 3.3.
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CHAPTER 4. CAMSIM - SMART CAMERA SIMULATION TOOL

Setting up a network of smart cameras in the real world holds various di�culties. First

of all, deploying the network itself can be challenging. This is especially true if a larger

network of cameras is investigated, as cost can be prohibitive. Furthermore, legal issues

vary from country to country and often do not allow to set up cameras in a public space.

Setting up cameras only in a laboratory environment would drastically limit the number

of used cameras. Finally, cameras and computer vision algorithms are both error-prone.

Moreover, the study of self-adaptation and self-organisation techniques through repeatable

experiments in a real environment can prove quite di�cult to control due to limited

robustness. This hinders reproducibility of experiments. To overcome these problems,

a simple 2D-simulation tool has been developed for analysis, testing and evaluation of

distributed algorithms for self-adaptation and self-organisation of smart camera networks.

This chapter describes the simulation tool and its basic features in more detail. The

next section gives an introduction and a rough overview of the simulation environment.

Afterwards, Section 4.2 explains the user interface, the graphical components as well as the

behaviour of objects in the environment. Section 4.3 elaborates on various uncertainties

that can be induced in simulation runs. Section 4.4 focusses on the induction of errors

which can a↵ect cameras in general (i.e. camera failure) or the computer vision (i.e.

tracking errors). Section 4.5 explains how scenarios can be defined in files for repeatability.

Our simulation environment is also capable of processing results from real video feeds. This

capability is discussed in Section 4.6. An overview on how to use the simulator including

possible startup parameters is given in Section 4.7. Finally, Section 4.5 summarises and

discusses all scenarios used for evaluation in this thesis. The simulation tool was also

presented in [30].

4.1 Overview

The simulation tool, CamSim, which arose from this thesis and is available at https:

//github.com/EPiCS/CamSim, was extensively used in our research [31–33, 52, 53]. This

simulation environment allows the user to set up a network of virtual smart cameras and

infuse them with autonomous software agents. As such, it can be used to test and compare

self-organising camera control techniques. The key benefits of CamSim are:

• Ease of generating test scenarios with an arbitrary number of cameras and objects.

• Implemented camera control algorithm, allowing di↵erent strategies to be assigned

to individual cameras [31–33].
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• Several bandit solvers are implemented to provide meta-management at the camera

level, selecting dynamically between communication strategies at runtime [53].

• Simplified communication using message passing.

• Abstraction of computer vision processing.

• Various object movement patterns.

• Easy adaptation of camera behaviour, including bandit solvers, communication

strategies, pheromone learning and movement behaviours, using reflection mech-

anisms.

To support easy implementation, testing and comparison of distributed algorithms for

self-adaptation and self-organisation of the network, various assumptions to relax the real

operating environment of multi-camera applications were made. Smart camera networks

are usually connected using either Ethernet or Wi-Fi. These communication channels

can be highly reliable, and therefore the assumption of a perfect communication channel

without any communication loss was made in the simulation. The communication is

implemented via synchronous message passing. The controlled environment allows the

analysis of deployed algorithms very easily. Due to the simulator’s use of discrete time

steps, problems and anomalies can easily be identified and debugging is simpler than in

real camera networks. Additionally, the exact position of all objects and the states of

every camera can be extracted at any time step for further analysis. In case intrinsic

and extrinsic camera factors are required, the simulator does not require complicated

calibration techniques for cameras. The uncertainties of computer vision algorithms are

removed from the simulation environment by abstraction. This allows the user to focus

on the development of algorithms, to self-adapt cameras to a certain scenario and to

self-organise the entire network of smart cameras.

4.2 Simulation Environment and User Interface

This section describes the basic features of CamSim. More details are available in the

documentation1 of the simulation environment.

Since CamSim is implemented in Java, it is highly flexible and portable. It is able

to simulate a large number of cameras and objects, limited only by available computer

memory. CamSim can be run with or without a graphical user interface. This allows user

1
https://github.com/EPiCS/CamSim/wiki
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interaction and visual inspection as well as batch running of experiments, for example

on a cluster. Figure 4.1 shows a screen shot running a simple scenario with five cameras

and a single object. The simulation environment has a predefined area for each scenario,

depicted as a thin blue rectangle. All objects, illustrated as black dots, and all cameras,

shown as green dots, have to be placed within this simulation environment. The labels

for cameras and objects can be turned on or o↵ as desired.

The top menu shows various options:

• Select simulation file: Allows to select from three pre-defined scenarios or to select

a new scenario file from the disk.

• Start: Starts the simulation with continuous time steps. Each time step lasts for

100 ms when running the graphical user interface.

• Stop: Stops the previously started simulation.

• Step: Moves the simulation one time step forward in time.

• Randomise: Takes the current number of cameras and objects and places them

randomly on the simulation environment. All parameters are randomly set as well.

• Cams++: Adds a new, random camera to the environment.

• Cams–: Removes a randomly selected camera from the environment.

• Objs++: Adds a random object to the environment.

• Objs–: Removes a randomly selected object from the environment.

• Save Scenario: Allows the user to save the initial state of a randomised scenario.

This can be used to re-run randomly generated scenarios.

4.2.1 Cameras

CamSim depicts every camera as a green dot. Each camera is controlled by a completely

autonomous and self-interested agent. As in the real world, each camera has its own field

of view (FOV) and a unique name for identification. This FOV is a circular segment,

but illustrated as a triangle. This triangle turns from grey to yellow as soon as an object

is within the respective camera’s FOV. The FOV of a camera can have an arbitrary

size and viewing angle. Cameras can communicate with other cameras in the network

by using message passing. Since CamSim simulates smart cameras, each camera in the
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Figure 4.1: Screenshot of the simulation environment CamSim. Green dots represent cameras
while gray triangles represent the corresponding FOV. Yellow triangles illustrate objects within
the FOV of the corresponding camera. Black dots represent objects to be tracked and a green line
connects the camera and the currently tracked object. A thin blue line indicates the border of the
simulation environment.
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network implements its individual behaviour. For the distributed tracking application

three di↵erent communication policies and two auction schedules were implemented as

discussed in Chapter 3. Various events and errors can a↵ect cameras in the simulation.

A complete list of all possible events and errors is given in Section 4.3 and Section 4.4

respectively.

The computer vision algorithms are implemented as part of each camera. A camera

itself can identify objects within its FOV as well as calculate the visibility of this object.

This visibility vi of an object i is given in Equation 4.1. It is calculated using the inverted

Euclidean distance between the object and the camera �i, normalized by the range of this

specific camera, and the angular position  i of the object to the camera, normalised by

the angle of the FOV of the camera.

vi = �i ⇤  i. (4.1)

4.2.2 Objects

Objects to be tracked are depicted as black dots. Every object is identified and distin-

guished among others by its globally unique ID. Furthermore, an object has predefined

attributes, such as a starting point, an initial direction and speed. There are currently

four di↵erent movement patterns implemented in the simulation environment:

• Predefined: The object follows predefined waypoints. Each waypoint is approached

in a straight line with predefined speed. The waypoints will be looped for the entire

duration of the simulation.

• Random: The object moves in a straight line towards the predefined initial direc-

tion. When hitting the boundary of the simulation environment, the object bounces

back in a random direction and again follows this direction in a straight line.

• Brownian Motion: The object moves completely randomly. The next position is

calculated using the Wiener Process and a standard normal distribution starting at

a predefined position [68].

• Directed Brownian Motion: While the Brownian Motion calculates the next

position of the object, the Directed Brownian Motion applies the Wiener Process to

the speed and the direction of the object. For the speed, the normal distribution

with the expected value of µ = 0 and the variance of �2 = 0.1 is used, while the

parameters µ = 0 and �2 = 0.2 are applied for the direction. This results in smooth
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changes of speed as well as direction and allows a more natural movement of the

objects compared to standard Brownian Motion.

To keep the number of objects constant, objects do not leave the simulation environ-

ment but bounce back in a random direction. This is valid for any movement behaviour.

New movement behaviours can be defined and added to the simulator by using reflec-

tion mechanisms. A green line between the object and the camera indicates the object

currently processed by the respective camera.

4.3 Uncertainties

After the deployment of a camera network, various events can alter the network topology.

Since the events themselves as well as their time of occurrence is unknown, we refer to

them as uncertainties as discussed in Section 3.4. In our simulator, various uncertainties

can be predefined to occur at specified time steps in the scenario. This allows a user to

simulate more real-world behaviour. Table 4.1 gives an overview of di↵erent uncertainties,

the a↵ected element in the simulation as well as its e↵ect.

Uncertainty
Affected
element

Effect

Add Camera, Object
Adds an element with random or predefined pa-
rameters to the simulation.

Remove Camera, Object Removes a random element from the simulation.

Change Camera Changes a specified parameter of the camera.
Such as

• Location

• Orientation

• Range

• Viewing angle.

Table 4.1: An overview of the existing events, the elements these events can be applied to and
the respective e↵ect.
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4.4 Errors

Since smart cameras as well as the employed computer vision algorithms are prone to

failure during runtime in real life, CamSim allows to introduce errors to the simulations.

Errors can either occur in cameras or in the underlying, abstracted computer vision. A

camera can fail due to crashed software or failing power supply. In computer vision we fo-

cus on errors related to misidentification and misdetection of objects. Misdetection means

the object is detected even though it is not in the FOV of the camera. Misidentification

refers to an object being wrongly identified as a di↵erent one. The current version of the

simulation environment does not induce errors on the communication layer.

Cameras: An error occurring in the camera means that the camera will not respond

to other cameras or contribute to the network’s tracking performance either temporarily

or permanently. In case the camera only fails for a limited time, which is randomly

chosen between 1 and 100 time steps, the camera can either ‘loose’ or recover previously

learnt knowledge. The probability to fail for the entire duration as well as for recovering

previously learnt knowledge can be set as a parameter on start-up.

Computer Vision: Errors related to computer vision a↵ect the detection and tracking

of objects within the simulation. There are four possibilities which can occur in every

time step to any camera:

• True Positive (TP): An object is detected correctly.

• True Negative (TN): An object is rightly not detected.

• False Positive (FP): An object is detected even though the object is not there.

• False Negative (FN): An object is not detected even though it is within the FOV.

The probabilities for a true positive P (TP ) as well as false positives P (FP ) can be set as a

parameter between 0 and 1 when starting the simulation environment. The probabilities

for false negative P (FN) and for true negatives P (TN) are calculated as P (FN) =

1� P (TP ) and P (TN) = 1� P (FP ) respectively.

4.5 Scenarios

Multiple, qualitatively di↵erent, scenarios are provided with CamSim. All scenarios are

basic XML-files and therefore allow simple creation of new scenarios. The structure of

these files is defined as follows:
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The main elements of an XML-based scenario file are <simulation>, <cameras>,

<objects>, <events>, <visiongraph>, and <graphnode>. <simulation> defines the

size of the simulation environment. <cameras> describes a set of cameras where each

<camera> has specified attributes. <objects> is similar to cameras, describing a set of

objects. <events> describes all events in this simulation. For each event, the attributes

are pre-defined. <visiongraph> and the corresponding <graphnode> element describe the

vision graph. An overview of all elements of the XML-based scenario is given in Table 4.2.

A full example of such a scenario file can be found in the appendix.

4.6 Real Video Data

Besides completely simulated scenarios, the CamSim simulation tool can also process

information extracted from real video feeds. To use the data from real videos, each video

has to be preprocessed using any arbitrary tracking algorithm. The results have to be

stored separately for each video stream. Hence, each file represents a camera and its

corresponding tracking results. Each line holds the information of a single object in a

specific frame. Each object information is separated by a single space. The first value

represents the frame number and the second value indicates the unique ID of the tracked

object. The third value and fourth value represent the x- and y-coordinate of the upper left

corner of the bounding box. Value five and six are the width and height of the bounding

box. The last double value represents the tracking confidence and has to be between 0

and 1, where 1 represents perfect tracking confidence and 0 means the object has not been

detected by the tracking algorithm. The list of entries has to be ordered by the frame

numbers. If two objects are visible in a certain frame, two consecutive lines have the same

frame number with di↵ering object IDs.

The main benefit of the possibility to process real video data is the quick and sim-

ple repeatability of experiments. Additionally, various constraints can be relaxed, such

as transmission times for network messages or limitations of processing power on smart

cameras.

4.7 Startup Parameters

The simulator can be used with or without parameters. Parameters can set various values

for the simulations. The most important parameter is setting a scenario file. As discussed,

scenarios are specified using XML. This is done without any specific qualifier. An overview

of all possible parameters is given in Table 4.3.
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Element Attribute Description

simulation max x Maximum x-value for the simulation environ-
ment.

max y Maximum y-value for the simulation environ-
ment.

min x Minimum x-value for the simulation environment.
min y Minimum y-value for the simulation environment.

camera name The unique name of the camera.
ai algorithm Optional. Defines the algorithm used by the

camera. Default can be defined as parameter.
x, y The location of the camera within the simulation

environment.
heading Optional. Direction the camera is oriented in.

Default is random.
range Optional. Defines how ‘far’ a camera can see.

Default is random.
viewing angle Optional. The width of the FOV of the camera.

Default is random.
comm Optional. Which communication policy should

be used. 0 = broadcasting, 1 = smooth, 2 =
step, 3 = static, 4 = custom policy. Default can
be defined as parameter.

customcom Optional. Needs the fully qualifying name of
the policy.

FP Optional. The probability of a FP. Default is
zero.

TP Optional. The probability of a TP. Default is
1.

failing Optional. The probability of failing for a ran-
dom time. Default is 0.

reset Optional. The probability of a reset and loosing
all previously learnt knowledge.

object features The unique features of each object.
x, y Starting position of the object.

heading Optional. The initial direction of the object at
start. Default is random

speed Optional. The initial speed of the object. Speed
only changes with Directed Brownian movement.
Default is random.

move Optional. Fully qualified name of custom move-
ment pattern. Default is random.
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event time step At what time step the event occurs.
participant What element is a↵ected. camera or object.

name The name or the features of the a↵ected ele-
ment.

event The event type that shall occur. Either add
to add an element, error to remove an ele-
ment or change to change the attributes of a
camera

visiongraph static Defines if vision graph is static or can change
over time.

graphnode name For which camera the list of neighbours de-
scribes the vision graph.

neighbour name The name of the camera which is a neighbour
of the given graphnode.

Table 4.2: An overview of the elements and keywords of the XML-based scenario file.

Even though CamSim was developed with smart camera networks in mind, the sim-

ulation environment can easily be extended to various distributed networks, since many

of the techniques implemented are not specific to smart camera networks. Further de-

tails on the usage of CamSim can be found within the help files and tutorials at https:

//github.com/EPiCS/CamSim.

4.8 Experimental Study in Simulation

Since we are interested in performing repeatable experiments to investigate the perfor-

mance of our approaches, we use our simulation environment CamSim with di↵erent

scripted scenarios replicating smart camera networks. We define 17 qualitatively di↵erent

camera network layouts with a total of 26 scenarios used for evaluation. A layout of a

camera network refers to the complete definition of positions, orientations, and FOVs of

all cameras in this network. An overview of all scenarios is given in Table 4.4 where the

number of the scenario ID corresponds to the layout used for the scenario. We employed

each of these layouts to compare the performance of the six di↵erent variants of the ap-

proach presented. All camera network layouts are depicted in Figure 4.2. Cameras are

represented by green dots with a corresponding grey triangle indicating its FOV. The

blue arrows in the illustrations indicate the movement of the objects in case of predefined

movement paths. If no paths are defined, only random movement patterns have been used.

We tested the presented socio-economic approach with a varying number of objects in dif-
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Parameter Attribute Description

-h Prints the help information.
-t time steps Sets the number of time steps.
-o filename Specifies the output file.

name The name or the features of the a↵ected ele-
ment.

-a auction schedule Specifies an auction schedule (e.g.,
epics.ai.PassiveAINodeMulti) for all
cameras.

-u communication policy Specifies an communication policy (e.g.,
epics.commpolicy.Smooth) for all cameras.

-f filename Creates a summary file for quicker evalua-
tion.

--no-gui Will launch simulator in command line mode.
-e number Probability of camera to fail for a random

time between 0 and 100 time steps.
-r number Probability of a camera to reset after failure.

Table 4.3: An overview of the parameters to be provided to the simulator at start-up.

ferent scenarios covering all depicted layouts. Layouts 15, 16, and 17 (Figure 4.2o, 4.2p,

and 4.2q) have been used to analyse the behaviour of our approach under uncertainties

as discussed in Section 3.4. For these three distinctive layouts we conducted experiments

where we added cameras during runtime, removed cameras from the test environment

and changed the extrinsic parameters of cameras. The numbers in those layouts indicate

camera IDs influenced by uncertainties which occur during simulations. In Table 4.5 an

overview of the conducted experiments with uncertainties is given. Scenarios 1 through 8,

9b, 10, and 11a are used to investigate the e↵ects of heterogeneous strategy assignment as

well as online learning of best fitting behaviour for cameras as discussed in Section 3.5.1.

The number of possible configurations for a given layout are presented in Table 4.6.

In the simulation, the fields of view of the cameras are modelled as segments (however,

visualised as triangles in all depicted scenarios). As already mentioned, the number of

objects is kept constant for the duration of each simulation run. For all tested scenarios,

all objects have the same behaviour. For all experiments reported in this chapter, each

scenario was run for 1000 discrete time steps (each corresponding to one measurement time

window). Due to stochasticity, 30 independent runs were conducted for each evaluation.
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(a) Layout 1 (b) Layout 2 (c) Layout 3 (d) Layout 4

(e) Layout 5 (f) Layout 6 (g) Layout 7 (h) Layout 8

(i) Layout 9 (j) Layout 10 (k) Layout 11

(l) Layout 12 (m) Layout 13 (n) Layout 14
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(o) Layout 15 (p) Layout 16

32
1

4 5

(q) Layout 17

Figure 4.2: Illustrations of all the layouts used for scenarios to test our proposed camera coordi-
nation algorithm. Each camera is represented by a green circle, with its field of view indicated by
the associated triangle. The arrows in Layout 9, 10, 11, 15 and 16 indicate a path alongside objects
traversed during the experimental run. In Layout 15–17, numbers indicate cameras influenced by
uncertainties. Numbers in brackets indicate cameras not being at the given location in the initially
deployed network but were added or moved to the illustrated location dynamically.
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Scenario
ID

No. of
Cameras

No. of
Objects

Object
Movement

Path

1 2 4 Random
2 3 11 Random
3 3 4 Random
4 3 4 Random
5 7 9 Random
6 7 9 Random
7 7 9 Random
8 7 9 Random
9a 5 3 Random
9b 5 3 Predefined
10 9 1 Predefined
11a 16 5 Predefined
11b 16 11 Random
12 9 3 Random
13 4 3 Random
14 5 3 Random
15a 5 4 Predefined
15b 4 4 Predefined
15c 5 4 Predefined
15d 6 4 Predefined
16a 3 4 Predefined
16b 2 4 Predefined
16c 3 4 Predefined
16d 4 4 Predefined
17a 36 31 Random
17b 31 31 Random

Table 4.4: Summary of scenarios used in our study. A random object movement path means
that each object moves in a straight line until it reaches the border of the simulation area and
bounces back with in a random direction A predefined object movement path means that each
object follows a predetermined path through the simulation area. The number of the scenario ID
corresponds to the layout used. All simulations lasted for 1000 time steps.
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Scenario
ID

Layout Uncertainty

15d Layout 15 Add Camera (6)

15b Layout 15 Remove Camera 3

15c Layout 15 Change Position 3 to (7)

16d Layout 16 Add Camera (4)

16b Layout 16 Remove Camera 2

16c Layout 16 Change Orientation of Camera 2 by -55 degree

17b Layout 17 Remove Cameras 1, 2, 3, 4, 5

Table 4.5: Overview of the performed experiments with uncertainties to show the robustness
of our market-based approach. All uncertainties occurred in time step 518 where no object was
visible by the a↵ected camera(s).

Scenario
ID

No. of Possible
Configurations

1 36
2 216
3 216
4 216
5 ⇠ 2.7⇥ 105

6 ⇠ 2.7⇥ 105

7 ⇠ 2.7⇥ 105

8 ⇠ 2.7⇥ 105

9b 7, 776
10 ⇠ 1.0⇥ 107

11a ⇠ 2.8⇥ 1012

Table 4.6: Summary of scenarios used in our study to show the benefits of heterogeneous algo-
rithm assignment illustrating the number of possible configurations.
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CHAPTER 5. EVALUATION

5.1 Evaluation of Socio-economic Approaches

Initially, our two auction schedules active and passive in combination with the broad-

cast communication policy were tested in our simulation environment. In both ap-

proaches, each advertisement message is broadcasted to all other cameras in the network.

In the active approach, each camera advertises every object it owns to the entire network

at each simulation time step. This means that other cameras attempt to gain ownership of

objects as soon as they enter their FOV. On the one hand this results in the best tracking

utility since the camera with the highest utility for an object always has ownership of it.

On the other hand the communication between the cameras is significantly higher when

compared to the passive approach. Contrary to this, the passive approach minimises

the communication by sending advertisement messages only when an object is about to

leave the FOV of its current owner. Furthermore, due to less initiated auctions, cameras

attempt to gain ownership of objects less often and hence have lower resource consump-

tion. Though this reduces communication, it requires that the utility of the camera from

the object is almost zero before handing over, even though another camera might have

had a better view earlier. This means, our active approach refers to auctions being ini-

tiated at regular intervals while our passive approach initiates auctions only on-demand,

dependent on the physical environment.

Figure 5.1 shows the overall system utility (i.e., the tracking performance of the net-

work) and the communication overhead for the active and passive algorithms in a cam-

era network as depicted in Layout 9 (4.2i) with a single object moving from left to right.

The spikes in utility occur when the object moves into the areas of high visibility in front

of each camera. Due to the particular set-up of this scenario, there is little di↵erence in

utility between the two approaches. Only when the object moves into the FOV of the last

camera on the right, the active approach is able to hand over the object sooner, due to

increased visibility. This also results in higher system utility. However, it is clear that the

active approach uses significantly more communication.

Since the active approach yields the highest possible levels of communication and

utility, the subsequently presented results in this thesis are normalised in each case by the

results from the active broadcast approach.

Based on this initial result, one can observe that the market-based approach presented

does not require a vision graph in order to achieve e↵ective object handover. However,

by generating the vision graph during runtime, the camera network is able to achieve

outcomes which balance more e�ciently the trade-o↵ between communication and tracking

performance.
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Figure 5.1: Network-wide utility (above) and communication usage (below) over time, during an
experimental run with a single object in Layout 9. Active and passive broadcast algorithms
are compared.
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Iteration 0 Iteration 100

Iteration 200 Iteration 300

Figure 5.2: The vision graph is built up during runtime through trading interactions. Green
dots represent a camera and grey triangles the corresponding FOV. A yellow triangle indicates a
detected object within this FOV. Red lines indicate links in the vision graph; thickness indicates
strength. Tracked objects are assigned to the respective camera via a dashed line.
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Figure 5.2 illustrates the pheromone-based approach to building the vision graph dur-

ing runtime. The state of the vision graph is shown at four points through the simulation,

from initialisation where no adjacency information is known. As the objects are traded

between cameras, the links (indicated by red lines) are constructed. The thickness of

these lines represent the amount of pheromones deployed between cameras and hence the

strength of the link. Over time, pheromones of unused links evaporate, which corresponds

to reduced link strength. By scheduling the communication intelligently and exploiting

this vision graph, as described in Section 3.2.3 , the cameras might be able to reduce

communication, while minimising the associated performance penalty.

The following experiments illustrate the e↵ect of the multicast approaches smooth

and step, as described in Section 3.2.3 , when applied to both the active and passive

schedules. In all cases, ⇢ = 0.005, � = 1.0 and cj = 1 has been set based on heuristics for

all cameras.

Figures 5.3, 5.4, and 5.5 show the overall performance of each of the six variants of the

approach on all scenarios with one object in the environment, and also a random scenario

- Scenario 17b - with 31 objects in the environment as depicted in Figure 4.2. Due to the

stochastic nature of the trajectory of the object and the communication policies, mean

and standard deviation are shown for each approach, calculated over 30 independent runs.

These results clearly show that the greatest di↵erence between outcomes in the simpler

scenarios is obtained when switching between active and passive approaches. However,

in the more complex scenarios (e.g., Scenario 11b or 12), the di↵erent schedules yield

di↵erent outcomes in the trade-o↵ between communication and tracking performance. A

Pareto front emerges, allowing the operator to select between di↵erent handover algorithms

based on how performance and communication are valued. As one can see, the results for

scenarios with a lower number of cameras make it important to select the right auction

strategy, while scenarios with a higher number of cameras have to consider the correct

communication policy as well.

For example, for a camera network, with a complexity similar to Scenario 11b or

12, where high tracking performance is required and cameras do have a vast amount of

resources, the active broadcast or active smooth approaches might be most suit-

able. However, in a deployment where cameras have limited communication ability, some

tracking performance can be traded o↵ for communication e�ciency by selecting perhaps

passive broadcast or even passive step. In completely random scenarios, though,

switching between active and passive approaches has less impact on the performance

than switching between communication schedules. This is mainly due to the fact that a

high number of objects may create very strong links between certain cameras at an early
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Figure 5.3: Performance (overall utility calculated across 1000 time steps) for Scenario 9a (above)
and 13 (below) using our di↵erent algorithms. Both utility and communication values are nor-
malised by those from the active broadcast algorithm. The trade-o↵ between performance and
communication is apparent. Due to the stochastic nature of the object paths and algorithms, the
mean and standard deviation are shown, calculated over 30 independent runs of the simulation.
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Figure 5.4: Performance (overall utility calculated across 1000 time steps) for Scenario 11b
(above) and 12 (below) using our di↵erent algorithms. Both utility and communication values are
normalised by those from the active broadcast algorithm. The trade-o↵ between performance and
communication is apparent. Due to the stochastic nature of the object paths and algorithms, the
mean and standard deviation are shown, calculated over 30 independent runs of the simulation.
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Figure 5.5: Performance (overall utility calculated across 1000 time steps) for Scenario 14 (above)
and 17b (below) using our di↵erent algorithms. Both utility and communication values are nor-
malised by those from the active broadcast algorithm. The trade-o↵ between performance and
communication is apparent. Due to the stochastic nature of the object paths and algorithms, the
mean and standard deviation are shown, calculated over 30 independent runs of the simulation.
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stage of the simulation. Hence other cameras are not considered anymore as communica-

tion partners at a later stage and therefore utility is lost. Again an operator could switch

from broadcast communication to a less communication intensive policy as soon as the

vision graph is developed.

In simple simulation scenarios, passive approaches achieved a communication reduc-

tion of around 75% for a 20% penalty in tracking performance when compared to the

active broadcast approach. Using our implementation in a real camera network, simi-

lar simple scenarios achieved a communication reduction around 40�45% for only 10�15%

penalty in tracking performance. The more complex the scenarios got, the higher was the

trade-o↵ between active and passive approaches and allowed reductions in communi-

cation by as much as 90%. Interestingly, in completely random scenarios the broadcast

approaches showed superiority over our smooth and step approaches where passive

broadcast had about 65% more overall utility than passive step but only about 25%

more communication e↵ort when compared to the active broadcast approach.

5.2 Evaluation of the E↵ects of Uncertainty

In this section, we show the robustness (i.e., the ability to deal with changes in the

network autonomously) and scalability of a smart camera network when employing our

improved socio-economic handover approach as discussed in Section 3.4. We conduct a

series of experiments where we introduce uncertainties into our scenarios. A summary

of the conducted scenarios and corresponding induced uncertainties is given in Table 4.5.

For the new aspects of our extended camera handover algorithm, we selected ta = 3 and

tb = 6 time steps based on heuristics as the duration for auctions and time-out in case of

broadcast, smooth and step communication policies, respectively.

Besides learning the vision graph online, we also performed each of those experiments

where we define the vision graph a priori. In cases with predefined vision graphs, we

use only the static communication policy, where each camera only communicates with

its own neighbours, to show the robustness of our socio-economic approach. When using

this predefined vision graph and the static communication policy, we do not use the

ant-inspired approach to degrade the link strength or build up new links between cameras

during runtime.

We conducted multiple experiments for the camera network layouts 15, 16, and 17

in Figure 4.2. In each simulation run, the total cumulative tracking performance, as

given in Equation 3.2, was recorded across all cameras (the social welfare) as a measure

of tracking performance. The total number of messages sent between cameras was also
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Figure 5.6: Cumulative sum of the entire network tracking performance over time for a typical
simulation run of Scenario 16d comparing our active socio-economic approaches with a static
handover. The red vertical line indicates the time step when the event occurred. The simulation
ran for 1000 time steps.

measured. We show the robustness of our approach by comparing our results with a

static communication policy based on an a priori known vision graph. For the network

layouts 15 and 16 the a priori vision graphs have only been defined for cameras with an

overlapping FOV but for the camera layout 17 non-overlapping FOVs were also considered

as long as the FOVs of the cameras were adjacent to each other. We focus on highlighting

the key results of our experiments.

The results of Scenario 15d are shown in Figure 5.6 where we added a new camera

during runtime. The occurrence of the event is indicated with a red vertical line at time

step 518. The increased accumulated utility using the active approaches is apparent.

Even though the camera was placed at a location which was already covered by another

camera, we are able to observe a small improvement in tracking performance of the entire

network compared to the static approach. This is due to the better view of the object

when the object passes through the FOV of the new camera for a short period of time

and the dynamic incorporation of this new camera into the network.

Figure 5.7 shows results for Scenario 15c employing our active approach. We changed

the position of a single camera within the environment to show the ability of our approach
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Figure 5.7: Cumulative sum of the entire network utility over time for a typical simulation run
of Scenario 15c and using our passive approaches. The vertical line indicates the time step when
the event occurred. The simulation ran for 1000 time steps. We changed the position of a single
camera within the environment to show the ability of our approach to deal with changes of the
extrinsic parameters of cameras.

to deal with changes of the camera’s pose. The vertical line shows the time at which the

event happened. It is apparent that the static approach is not able to generate as much

tracking performance when compared to our socio-economic approaches. This is due to the

inability of the static communication policy to adapt to changes in the network. While

the static communication policy loses overall utility, the smooth and step policies

are able to keep a high tracking performance after the event, indicating their robustness

to change. Additionally, static does not perform as well as any of the socio-economic

approaches from the beginning due to the initially defined neighbourhood relations.

Figure 5.8 illustrates the results of Scenario 16b with a camera failure event, when

passive approaches were used. The camera fails for the remaining duration of the simu-

lation run. Here the drop of the accumulated tracking performance is noticeable for the

static approach, while the socio-economic approaches are able to relearn the vision graph

online. This allows the network to continue tracking the object and hence achieve higher

network-wide tracking performance.

To compare the adaptivity and robustness of the di↵erent variants of the socio-economic
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Figure 5.8: Cumulative sum of the entire network tracking performance over time for a typical
simulation run of an experiment with Layout 16 with an error event (Scenario 16b) and using our
active approaches. The red vertical line indicates the time step when the event occurred. The
simulation lasted for 1000 time steps.

approach with the static one, we accumulated the total social welfare not only for each

single step but also for the entire simulation run. We plotted the results of the accumu-

lated social welfare against the total accumulated number of exchanged messages for each

experiment. The upper plot in Figure 5.9 shows the performance of the di↵erent commu-

nication strategies in a camera network with a topology as depicted in Layout 15 without

any events. The lower illustration plots the results of the same experimental setup but

this time having a change event after 518 time steps (Scenario 15c). In an experiment

without any changes, the active static approach performs almost as well as the pas-

sive broadcast approach. In contrast, in experiments with uncertainties, the drop in

performance when using the static policy is apparent; the static approaches are not as

robust.

In Figure 5.10 we compare the performance of the di↵erent approaches when adding or

removing cameras from the network during runtime. All three illustrations show results

of a camera network with a topology as Layout 16. The top figure shows the results for an

experiment where no events occur (Scenario 16a), while the middle figure shows the results

where a camera has been added to the network during runtime (Scenario 16d). Even in
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Figure 5.9: Overall utility of experiments with a network topology as depicted in Layout 15
calculated over 1000 time steps. Mean and standard deviation have been calculated over 30 runs.
The upper graph shows the results for an experiment with no events while the lower graph shows
the result for an experiment where the position of a camera was changed after 518 time steps.
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the presence of a very simple uncertainty such as this, the decrease in performance of the

static policy are about 10% while all the dynamic socio-economic approaches maintain

their high performance after the events. The bottom plot in Figure 5.10 illustrates the

performance when a camera is removed from the network during runtime (Scenario 16b).

While the utility drops for the static communication policy by about 20%, the socio-

economic approaches are able to maintain a high overall cumulative tracking performance,

due to their ability to relearn the changed vision graph online.

Figure 5.11 shows the performance of a scenario where we used Layout 17. In the upper

graph no events occur (Scenario 17a) but the lower figure illustrates an experiment with

the same layout when multiple cameras fail after 518 time steps (Scenario 17b). In this

scenario, the socio-economic approaches generally achieve a substantially higher tracking

performance than the static approaches, though they also require more communication.

Due to the randomness of the scenarios, the drop in performance when using the static

policy is rather low, indicating that the robustness of the approaches varies with the

scenario’s properties.

5.3 Evaluation of Heterogeneous Assignment

In the previous section we showed the applicability of our novel socio-economic approach

for distributed tracking where all cameras use the same strategy. In this section, we will

consider to assign di↵erent strategies to the employed cameras in the network in order to

improve the overall performance and reduce the communication overhead. After showing

the benefits of heterogeneous configurations, we also discuss online learning techniques to

allow each camera to identify the best fitting strategy autonomously. For our evaluation of

heterogeneous assigned strategies as well as dynamically learnt strategies during runtime

we considered the Scenarios 1–8, 9a, 10, and 11a.

We first consider Scenario 1, a baseline scenario with two cameras and four objects.

Figure 5.12 shows the mean global performance, calculated over 30 independent runs.

Each point represents the global outcome from one configuration over 1000 time steps, in

terms of both metrics: its total tracking performance and the communication overhead

within the entire network. Again, the achieved results are normalised by the outcomes

obtained when using the active broadcast approach.

By enforcing homogeneous configurations in the entire network, we have six possible

deployment options. The outcomes from these homogeneous configurations are depicted

as squares in Figure 5.12. In this scenario, despite the six possible homogeneous con-

figurations, there are only two extreme observed outcomes in the objective space, one
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Figure 5.10: From top to bottom: overall utility of Scenario 16a, 16d, and 16b calculated
over 1000 time steps. Communication and utility are shown on the x and y axes respectively,
normalised by the maximum obtained values; active broadcast always obtains a utility of 1
with a communication overhead of 1. Mean and standard deviation are shown, calculated over 30
runs. The upper graph shows the results for an experiment without any events. The middle graph
shows the result for an experiment where a camera has been added to the scenario after 518 time
steps. The lower plot shows the result for an experiment where a camera was removed after 518
time steps.
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Figure 5.11: Overall tracking performance of Scenario 3 calculated over 1000 time steps. Mean
and standard deviation have been calculated over 30 runs. The upper graph shows the results for
an experiment with no events while the lower graph shows the result for a Experiment 7 where
multiple cameras were removed after 518 time steps.
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Figure 5.12: Results for a baseline scenario (Scenario 1) with two overlapping cameras. The
original Pareto frontier when homogeneity is enforced is depicted by the dashed line. The solid
line indicates the newly extended Pareto frontier when heterogeneous configurations are permitted.

favouring each objective. This is due to the very simplicity of the scenario, where some

strategies give rise to the same communication behaviour as others; homogeneity does not

permit any more balanced outcomes in this case. However, allowing the cameras to adopt

di↵erent strategies from each other introduces new possibilities. When heterogeneous

configurations are included, there are 36 possible deployment options. The heterogeneous

configuration outcomes are depicted as crosses.

Outcomes a and b in Figure 5.12 clearly extend the Pareto e�cient frontier, indicating

new e�cient configurations for tracking objects within the network. Additionally, both of

these points lie on the newly extended Pareto frontier, since for each, no other outcome

is better on both objectives. It is therefore clear from this example that heterogeneous

configurations can lead to additional e�cient outcomes. As we are interested in these

extensions of the Pareto front, we focus on the achieved results and do not plot the entire

objective space for these figures.

Furthermore, we consider more complex scenarios, consisting of larger numbers of
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Figure 5.13: Performance for Scenario 4 showing homogeneous and heterogeneous assignment of
strategies. The results have been normalised by the maximum value of the active broadcast
strategy and are averages over 30 runs with 1000 time steps each.

cameras in a range of layouts. The number of possible configurations depends on the

number of cameras in a given scenario. If � is the number of available strategies and n is the

number of available cameras, there are �n possible network configurations. We currently

consider � = 6 di↵erent strategies. We evaluated all six homogeneous configurations in

all scenarios, and all possible heterogeneous configurations in Scenario 1� 8 and 9b. An

exhaustive evaluation of all heterogeneous configurations for scenarios with more than 7

cameras is computationally infeasible.
Figures 5.13 and 5.14 compare outcomes from heterogeneous and homogeneous con-

figurations in Scenario 4 and 9b, respectively. In these more complex scenarios, heteroge-

neous configurations led to many more outcomes in the objective space. In each case, the

extension of the Pareto e�cient frontier caused by heterogeneous configurations is also

apparent. However, it is also clear that the outcomes of many heterogeneous configura-

tions are dominated, and many are strictly worse than the original outcomes from the

homogeneous cases. Indeed, in all evaluated scenarios, when heterogeneous configurations

of cameras are allowed, we observed system wide outcomes which both dominate and

are dominated by outcomes from homogeneous configurations. In all cases, heterogeneity
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Figure 5.14: Performance for Scenario 9b showing homogeneous and heterogeneous assignment
of strategies. The results have been normalised by the maximum value of the active broadcast
strategy and are averages over 30 runs with 1000 time steps each.

extended the Pareto e�cient frontier.

5.4 Evaluation of Decentralised Online Learnt

Configurations

While heterogeneous configurations can have a beneficial e↵ect on the network wide results,

an operator is not able to select the appropriate configurations without extensive study

of the deployment area and the deployed camera setup. In Section 3.5.2, we proposed

to employ multi-armed bandit problem solvers to learn the best strategy for each camera

locally.

Figure 5.15 shows the results of Scenario 1, when configurations learnt using bandit

solvers are compared with static homogeneous and heterogeneous configurations. For

Epsilon-Greedy, ✏ values of 0.1, 0.01 and 0.001 were investigated. In all scenarios, with

1000 time steps, ✏ = 0.1 obtained the most Pareto e�cient outcomes and is therefore

used in all results in this chapter. Outcomes are shown for Epsilon-Greedy, UCB1,
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Figure 5.15: Performance for Scenario 1 showing homogeneous and heterogeneous assignment of
strategies as well as assignments done by bandit solvers. The results have been normalised by the
maximum value of the active broadcast strategy and are averages over 30 runs with 1000 time
steps each.

and Softmax, the latter with temperature values 0.1 and 0.2. For each bandit solver,

results are shown when ↵ is varied between 0 and 1 in intervals of size 0.05 for the reward

function given in Equation 3.10.

The results in Figure 5.15 clearly show that bandit solvers allow configurations to

achieve a better performance when compared to the results of static homogeneous and het-

erogeneous configurations. Furthermore, the majority of these outcomes are highly Pareto

e�cient. Even though we presented the static heterogeneous configuration outcomes ex-

haustively, using bandit solvers enables the network to obtain system wide outcomes which

extend the Pareto e�cient frontier originally obtained in the static heterogeneous case.

Still, these results have not been normalised and are biased by their local observations.

Therefore, we apply a normalisation by distribution on the camera level to the parameters

of the reward function as presented in Section 3.5.3. Figure 5.16 shows the e↵ects of this

normalisation by distribution for Scenario 1, and can be compared with Figure 5.15. A

less pronounced bias is still present with Epsilon-Greedy and UCB1. This skewed
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Figure 5.16: Performance for Scenario 1 showing static homogeneous and heterogeneous assign-
ment of strategies as well as assignments done by bandit solvers. The results have been normalised
by the maximum value of the active broadcast strategy and are averages over 30 runs with
1000 time steps each. The bandit solvers’ reward functions normalised the number of auction
invitations by distribution at runtime.

distribution pervades all scenarios we evaluated, therefore we adopt this normalisation

method in all subsequent experiments.

Figures 5.17, 5.18 and 5.19 show results for the more complex Scenarios 3, 5 and 11a

respectively. In each of these more complex scenarios, bandit solvers were able to obtain

outcomes which extend the Pareto e�cient frontier of the evaluated static configurations.

This is particularly true for Softmax (with both temperature values) and UCB1, all of

which obtain a range of highly Pareto e�cient outcomes. The spread of outcomes can

be observed to vary depending on the particular scenario and the choice of bandit solver

employed. The bias associated with Epsilon-Greedy, and to a lesser extent UCB1

remains; outcomes from the other bandit solvers are evenly spread as ↵ varies. Of all the

bandit solvers, Softmax typically obtains the best spread across the frontier.

Additionally, it can be observed that bandit solvers never reach either extreme of the

objective space, but rather tend towards the middle of the frontier. This behaviour is due
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Figure 5.17: Performance for Scenario 3 showing homogeneous and heterogeneous assignment of
strategies as well as assignments done by bandit solvers. The results have been normalised by the
maximum value of the active broadcast strategy and are averages over 30 runs with 1000 time
steps each. The bandit solvers’ reward functions normalised the number of auction invitations by
distribution at runtime.

to the selection of the ↵ value of the reward function. While the ↵ value allows to define a

preference between tracking performance and communication overhead, the selected values

do not prefer either extreme. Van Mo↵aert et al. [86] present an approach on learning

weights in multiple simulation runs to cover both extremes as well as achieving an even

spread along the Pareto frontier.

To compare Pareto e�cient frontiers, achieved by our di↵erent configurations, we

compute the hypervolume [91] under each frontier, given a reference point. Calculating

the hypervolume in a two-dimensional objective space comes down to computing the area

under the frontier. The reference point can be specified as the vector of worst case values.

Thus, a tracking confidence value of 0.0, and a number of auction invitations value of 1.0

specifies our reference point. The greater the hypervolume of a Pareto frontier, the more

e�cient it is.

If there is a new result a which is not dominated by a single outcome defining the

current frontier, a extends the existing frontier and becomes part of a new frontier. This
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Figure 5.18: Performance for Scenario 5 showing homogeneous and heterogeneous assignment of
strategies as well as assignments done by bandit solvers. The results have been normalised by the
maximum value of the active broadcast strategy and are averages over 30 runs with 1000 time
steps each. The bandit solvers’ reward functions normalised the number of auction invitations by
distribution at runtime.

new front has then a larger hypervolume than the previous front. We exemplify such

an extension of the frontier in Figure 5.12. If we strictly consider only outcomes from

the static homogeneous configurations, we call the Pareto e�cient frontier h. The Pareto

e�cient frontier considering all the outcomes from both static homogeneous and static

heterogeneous configurations gives us a di↵erent frontier we call h-he. Outcomes based on

the results of bandit solver and in combination with static homogeneous configurations are

entitled h-eg, h-sm, or h-ucb, depending on the considered bandit solver being Epsilon-

Greedy, Softmax, or UCB1 respectively. Similarly we call the frontiers h-he-eg, h-

he-sm, or h-he-ucb when combining results from bandit solvers with static homogeneous

configuration outcomes and static heterogeneous configuration outcomes. Table 5.1 shows

the medians (across 30 independent runs) of the hypervolumes of the aforementioned

frontiers for the scenarios considered in this section. We performed a Wilcoxon rank sum

test [92] with a 95% confidence level to asses the statistical significance. This significance

test allows a pairwise comparison of approaches and shows that one approach has a larger
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Figure 5.19: Performance for Scenario 11a showing homogeneous of strategies as well as assign-
ments done by bandit solvers. The results have been normalised by the maximum value of the
active broadcast strategy and are averages over 30 runs with 1000 time steps each. The bandit
solvers’ reward functions normalised the number of auction invitations by distribution at runtime.

area underneath the resulting Pareto front than another approach in at least 95% of the

results. In the table, this is denoted in the extensions with respect to h and h-he. “⇤”
indicates a significant increase with respect to the static front h. “†” denotes a significant

increase with respect to the static front h-he. “�” denotes tests that were not performed

due to computational infeasibility of evaluating all heterogeneous configurations.

It is evident that heterogeneity of marketing strategies, which results in outcomes con-

tained in the frontiers h-he, extend the homogeneous frontiers h in any given scenario.

The frontiers h-eg, h-sm, and h-ucb, which contain outcomes from bandit solvers, often

extend the frontier arising from static homogeneous configuration outcomes h significantly.

Moreover, the frontiers h-he-eg, h-he-sm, and h-he-ucb, apart from extending the frontier

h, sometimes further extend the frontier that includes both static homogeneous and static

heterogeneous configuration outcomes h-he. Thus, decentralised online learning, based on

bandit solvers, leads to self-organisation of the network, allowing achievements of global

outcomes that are more Pareto e�cient than those from static configurations. Exten-
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sions of the Pareto e�cient frontier tell us that dynamic configurations induced by online

learning allow the network to reach favourable parts of the objective space, which are

inaccessible in the static case. Furthermore, we analysed the network-wide performance

of autonomously learnt configurations and its e�ciency compared to statically assigned

approaches in a real world setting using Scenario R13. The results of this real world sce-

nario are discussed in Section 6.3. The e�ciency of this real world scenario is also given

in the Table 5.1.
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5.5. FURTHER DISCUSSION

5.5 Further Discussion

In this chapter, we presented the results of our socio-economic approach to identify spatial

relations among FOVs in smart camera networks. We were able to show that the di↵erent

presented strategies prefer one out of two opposing metrics, maximising tracking perfor-

mance or minimising communication overhead. This leads to di↵erent outcomes on the

Pareto front. In multiple experiments we have explored this trade-o↵ between commu-

nication e↵ort and tracking performance. Hence, a network operator can choose among

di↵erent performance/communication settings.

Additionally, we demonstrated the adaptivity and robustness in networks of distributed

smart cameras, when cameras employ an improved version of our socio-economic algo-

rithm. Our approach is able to keep a high tracking performance of objects in the camera

network in the presence of uncertainties when compared to a static approach using a vi-

sion graph that does not change over time. Furthermore, it improves the adaptivity by

enabling the network to take advantage of new cameras, which may be added during run-

time. Similarly, it improves the robustness by enabling the network to relearn the vision

graph in case of failing cameras. We showed that di↵erent variants of our approach are

able to retain or even increase their utility after events occur. For example, when compar-

ing cumulative network performance with overall communication overhead, the technique

maintains a steady performance despite the presence of uncertainties. Conversely, the util-

ity in all scenarios using a static communication policy dropped by 10-20% depending

on the event.

As the presented approach allows a network operator to chose one option for all cameras

among a selection of settings, we have also studied heterogeneous assignment of approaches

as well as the self-organising behaviour of our smart camera networks. We showed that

applying heterogeneous configurations of marketing strategies in the network can outper-

form homogeneous configurations in terms of network-wide tracking performance as well

as the communication overhead, which is also a proxy for processing overhead. We pre-

sented an increase of the Pareto e�ciency in a range of heterogeneous configured scenarios

compared to the homogeneous equivalents. Since scenarios are not known in advance, and

the performance of configurations varies significantly between scenarios, the exact config-

urations which lead to Pareto e�ciency in a given deployment will also not be known in

advance. Therefore, we showed that online learning techniques, in the form of multi-armed

bandit solving algorithms, on the individual camera level are able to find well performing

heterogeneous configurations.

These outcomes extended the system-wide Pareto e�cient frontier when compared to
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the homogeneous case. Furthermore, in many cases, the dynamic behaviour resulting from

online learning led to outcomes which extended the Pareto frontier even when compared

to the best possible outcomes from static heterogeneous configurations.

The results in this chapter show the complexity of trading behaviour, vision graph

learning and bandit solvers and the impact of those complexities on local reward functions

to achieve more Pareto e�cient global outcomes. Nevertheless, the presented results are

highly encouraging.

Although this work is based on camera networks, the principles behind both heteroge-

neous configuration and decentralised online learning are not limited to camera networks.

Indeed, the benefits observed due to increased configuration possibilities in the heteroge-

neous case should be applicable to other networked systems. Similarly, the technique used

for decentralised online learning of configurations should also be more widely applicable.

Evaluation of these principles in other systems is an area for future work.
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CHAPTER 6. EVALUATION IN REAL-WORLD SCENARIOS

To evaluate our approach under realistic conditions, we used two di↵erent approaches.

First, we implemented our novel multi-camera tracking approach in a network of five

distributed and autonomous smart cameras. Second, we pre-processed real world video

data and extracted location and tracking confidence of all objects of interest. Using this

information in our simulator allows us, on one hand to process information from real world

video feeds as well as the errors induced by the tracking algorithms, on the other hand, to

replicate experiments quickly and reliably. In this real world study, feature-based trackers

are responsible for tracking the object of interest within the FOV of the camera. Each

camera runs the autonomous camera control algorithm, as discussed in Chapter 3, to

acquire and hand over tracking responsibilities as well as update the locally stored vision

graph information.

The rest of this chapter is structured as follows: In the next section, implementation

details of the real world deployment as well as the employed tracking algorithms are given.

Afterwards, in Section 6.2, the utilised hardware is described. Section 6.3 explores the

di↵erent scenarios used for evaluation. Finally, Section 6.4 discusses the results found and

concludes this chapter. The results presented in this chapter have also been published

in [1], [33], [52], and [53].

6.1 Implementation Details

There are a number of di↵erences between the simulation environment and the real cam-

era system. This requires some refinements to the used approach, when implementing

the techniques designed on the simulation platform in the real network. These implemen-

tation details are concerned with (i) the tracking algorithm and the computation of the

confidence, (ii) the required time for deriving the handover decision and (iii) the triggering

of a handover for the passive algorithm. We describe these implementation aspects in the

following paragraphs.

We use various frame-to-frame feature-based matching techniques as single camera

tracking algorithms which exploit either SIFT [58] or SURF [7] features, or colour his-

tograms combined with background subtraction [19]. While this thesis does focus on

tracking algorithms, any computer vision algorithm can be used which is capable of re-

identifying objects in di↵erent images. We selected the feature- and colour histogram-

based implementations due to their availability. To perform tracking in a single camera,

the object must first be detected in an single frame using either the SIFT, SURF or

colour feature model respectively, and then if successful, be re-identified on a frame-by-

frame basis. Thus, to advertise an object to a neighbouring camera (cp. step 1(a)) in
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6.1. IMPLEMENTATION DETAILS

Algorithm 1, we need to transfer the object model. One should note, that we do not

use the SIFT, SURF or colour features to build our vision graph. We rather use these

features to track and re-identify objects or individuals in other cameras and therefore, do

not require overlapping FOVs.

In our implementations using the SIFT or SURF features, we define the matching rate

of the corresponding features as confidence for object detection and tracking. The model

of object j is given by the set of features Fmj of a specified region of interest1. To identify

an object within the FOV, the features of the current frame img are compared to Fmj ,

using the feature matching algorithm. Thus, we define the confidence cj of detecting or

tracking object j by

cj =
|Fmj |

|Match(Fimg, Fmj )|
(6.1)

where Match(Fimg, Fmj ) represents the set of matched features. Note that in the current

implementation, we set the visibility parameter of an object j as vj = 1. Thus, currently

we do not consider distance and orientation information for the utility. When using colour

histograms as the preferred tracking method, the Bhattacharyya coe�cient was used to

calculate the similarity between the histogram of the model and the histogram found

within the current FOV of the camera. The colour histogram tracker was implemented

by our partner in the EPiCS project, the Austrian Institute of Technology (AIT).

Due to communication delays in the network, the object advertisement, and the sub-

sequent object detection procedure at neighbouring cameras, the handover process is no

longer instantaneous. For example, the SIFT- or SURF-based models of an object typically

have a size of around 100 kB. Thus, the transfer of such a model, from the advertisement

until re-detection, requires approximately 300 ms. To allow every camera enough time to

participate in an auction, auctions have a certain duration ta. This so called auction win-

dow starts with the arrival of the first bid. As soon as the time of the auction window has

elapsed, the winner of the auction is determined and newly arriving bids are discarded.

For the update of the vision graph, we defined the “sampling time” as 100 ms. Thus,

the strength ⌧i of each edge is decreased by the amount ⇢ every 100 ms. As defined in

Equation 3.3 a link strength ⌧ix is increased by � only if a trade between the two cameras

has occurred. In our implementation, we set � = 1 and ⇢ = 0.005.

For the passive approach, we defined a boundary margin in the FOV to trigger the

advertisement of an object (cp. Figure 6.3). Thus, when an object is detected for three

consecutive time steps within the margin we consider the object to be about to leave the

1
Currently, this region of interest is defined by the user.
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Figure 6.1: The SLR smart camera platform. A custom-built camera running Linux on a 1.6GHz
Intel Atom processor with 2 GB memory and 100 MBit Ethernet interface. The image sensor is a
CCD colour image sensor with a native resolution of 1280⇥ 1024 pixels.

FOV of the camera and start with the handover process.

6.2 Camera Platforms

Our camera networks are composed of two di↵erent types of camera platforms. The two

camera platforms are (i) custom-built smart cameras from SLR Engineering and (ii) Pand-

aBoard based platforms in combination with o↵-the-shelf web cams. The custom-built

SLR cameras are equipped with an Intel Atom processor, running at 1.6 GHz and an

100 MBit Ethernet interface (cp. Figure 6.1). These smart cameras include a CCD colour

image sensor with a native resolution of 1280⇥1024 pixels. The processor runs a standard

Linux distribution that provides flexible integration of additional hardware modules and

external software libraries. In contrast, the PandaBoard platforms are equipped with Log-

itech HD Pro C920 web cams. The PandaBoard platforms are based on Texas Instruments

OMAP 4430 system-on-a-chip, which features a dual core ARM Cortex-A9 CPU running

at 1.0 GHz and uses a 802.11 b/g/n wireless connection to the network. The connected

Logitech C920 web cam operates with a native resolution of 3MP (cp. Figure 6.2). While

the SLR Engineering cameras communicate via Ethernet, the PandaBoard based plat-

forms facilitate a wireless network connection. We used this network to record multiple

scenes for evaluation. Details on recorded video data and related scenarios can be found

in the following section.
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Figure 6.2: The PandaBoard based smart camera platform running Linux on a 1.0 GHz ARM
processor with 802.11 b/g/n wireless connection interface. A Logitech C920 is used to acquire
images with a native resolution of 3MP.

6.3 Evaluated Scenarios

For evaluation purposes we used two di↵erent settings. The first setting consists of two

scenarios similar to Layout 9 and Layout 13 in Section 4.5, shown in Figure 4.2, using

SLR cameras only. We refer to these scenarios as Scenario R1 and Scenario R2. In these

experiments we performed tracking of a single person within a network of five cameras. To

achieve reproducible results, we recorded videos of two di↵erent scenarios on each camera.

To allow for reproducibility in our evaluation process, we used the recorded videos as

input for the cameras and did not use the live video feed. Scenario R1 was recorded with

overlapping cameras and lasts about 70 seconds. Hence, the person was visible by at least

one camera during the entire test sequence. Scenario R2 represents a non-overlapping

camera setup. Here the person followed a di↵erent path; as a result, the person was not

visible by any camera for a certain period. Scenario R2 lasts about 130 seconds. The

evaluation and generation of the vision graph of Scenario R1 and Scenario R2 was done

during runtime. For tracking purposes of these two scenarios, a frame-to-frame SIFT

feature matching algorithm was used. Figure 6.3 shows selected captured images of all

five cameras at di↵erent points in time for scenario R1.

The camera network for the second setting is installed at the Universität Klagenfurt

and employs six cameras. Figure 6.4 shows a rough floorplan with the location and fields

of view of the di↵erent cameras (blue lines). In this setting, we employ both of the camera

systems discussed in the previous section. This introduces heterogeneous hardware as well

as two di↵erent communication channels. In Figure 6.4 the cameras 1-4 are SLR cameras,
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Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Figure 6.3: Captured images of test Scenario R1. Each column corresponds to one camera, and
each row corresponds to a specific time point. The time di↵erence between individual rows is about
15 seconds. The blue box represents the currently tracked object, and the orange box represents
the boundary margin of the FOV of the camera.
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6 5

4

1

3

2

Building entrance

Figure 6.4: Floorplan including the location and orientation of the cameras within the network.
Green squares depict standard height working tables. Doorways are marked yellow. Orange squares
are cabinets.

while cameras 5 and 6 are PandaBoard based smart-cameras. For the evaluation of our

work, we recorded various video sequences using these available cameras with di↵erent

orientations. We recorded ten di↵erent scenarios to conduct our experiments. In seven

scenarios (R3 – R9), only a subset of three cameras was used (camera 1 to 3). For the

remaining three scenarios, all cameras have been used to record video sequence. This

results in an overall of 39 video sequences. The cameras were not time synchronised.

Figure 6.5 gives a rough overview over the scenarios we have recorded for evaluation. We

refer to these scenarios as Scenarios R3 – R12 respectively. The blue lines show the FOV

of the di↵erent cameras. The green rectangles show tables which might occlude the object

partially. Orange blocks represent obstacles and dark squares depict pillars; both can

occlude the person completely. The yellow box and the red circle segment represent the

doorway and the opening area of the door respectively. The approximate movement paths

and direction of the object being tracked are illustrated as black arrows. Figure 6.6 shows

snapshots of the recorded data. For Scenarios R3 – R12, we employed a colour histogram

based tracker, combined with background subtraction, to process the video feeds o✏ine

and used them as input for our simulation environment.

Similarly, an extended version of the video data of Scenario R2 was also used as input

for our simulation tool to evaluate heterogeneous assignment in real camera networks
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(a) Scenario R3

1834 frames

(b) Scenario R4

1859 frames

(c) Scenario R5

1816 frames

(d) Scenario R6

1953 frames

(e) Scenario R7

1987 frames

(f) Scenario R8

1986 frames

(g) Scenario R9

2307 frames

6 5

4

1

3

2

Building entrance

(h) Scenario R10

114 seconds

6 5

4

3

2

Building entrance

(i) Scenario R11

161 seconds

6 5

4

1

3

2

Building entrance

(j) Scenario R12

195 seconds

Figure 6.5: The scenarios tested with our simulation tool CamSim and their corresponding
duration. Floorplan including the location and orientation of the cameras within the network.
Green squares depict standard height working tables. Doorways are marked yellow. Orange
squares are cabinets. The black lines represent the movement pattern of the person.

98



6.4. RESULTS

(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Camera 5 (f) Camera 6

Figure 6.6: Snapshots of recorded video sequences for evaluation of all 6 cameras.

as well as autonomous learning of the best strategy for each camera. We refer to this

special case as Scenario R13. The extension was achieved by looping the video feed. For

Scenario R13, the video has been pre-processed using a frame-to-frame SIFT-based feature

matching algorithm.

An overview of all real world based scenarios, the number of employed cameras, the

duration as well as the implemented tracking algorithms is given in Table 6.1

6.4 Results

6.4.1 Auction Windows and Handover Times

When implementing the proposed algorithm on a real camera system, the significant e↵ect

of two key di↵erences become apparent. Firstly, the simulator operates instantaneously

using discrete time, with one auction corresponding to one time-step, while the real system

is not synchronised and introduces time delays. Since the tracker is not able to process

every single frame in real time due to the computationally limited smart cameras, the

utility can neither be acquired from every captured frame. The deviation for the acquired

utility is propagated and emerges with every handover between the cameras. Again, we

ran our scenarios 30 times and, similar to our simulation, we calculated the average of the

accumulated utility over all cameras in every second. We studied the cases while using no
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Scenario # Cameras # Objects Tracker Duration

R1 5 1 SURF 1,750 frames
R2 5 1 SURF 3,250 frames
R3 3 1 CH 1,834 frames
R4 3 1 CH 1,859 frames
R5 3 1 CH 1,815 frames
R6 3 1 CH 1,950 frames
R7 3 1 CH 1,986 frames
R8 3 1 CH 1,984 frames
R9 3 1 CH 2,301 frames
R10 6 3 CH 2,850 frames
R11 5 3 CH 4,025 frames
R12 6 6 CH 4,875 frames
R13 5 1 SIFT 7,120 frames

Table 6.1: Overview of the real world scenarios used for evaluation. SURF refers to a SURF-
based feature tracker and SIFT to a SIFT-based feature tracker respectively. CH refers to the
Colour Histogram based tracking approach, employed to extract the model of the object of interest.

Auction Duration

Scenario 0 ms 500 ms 1000 ms

Scenario R1 - passive 4 4 4
Scenario R1 - active 9 6 6
Scenario R2 - passive 8 9 7
Scenario R2 - active 18 14 14

Table 6.2: Comparison of handovers using di↵erent auction windows within the active and passive
approach in Scenario R1 and Scenario R2.

auction window as well as when the auction window was 500 milliseconds and one second

for both our active and our passive approaches; Figure 6.7 shows the results of this for

Scenario R1 and Scenario R2. Table 6.2 compares the number of handovers for di↵erent

scenarios using our active and passive approaches with di↵erent auction windows.

As described in Step 4 of Algorithm 1, our algorithm has to be repeated at a regular

interval. We found that the choice of the interval to repeat our algorithm as well as the

choice of the auction window a↵ects the utility obtained by each camera, and hence the

underlying tracking performance of the network. Altering the auction window has the
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same e↵ect as altering the interval at which the algorithm is repeated, since the cameras

do not re-advertise objects while waiting for existing bids to arrive. This is also due to the

fact that handing over tracking responsibility from one camera to another does not work

seamlessly. As soon as the auction ends and the winning camera has been determined, the

tracker at the selling camera is stopped and the tracking responsibility is handed over to

the winning camera. During this short time no utility is gathered, and hence utility is lost.

In case the tracker gains only little utility by switching to another camera, this lost utility

is not compensated. The illustrations in Figure 6.7 show this e↵ect in certain situations

(e.g., Scenario R2 with 500 ms auction window), where the active approach does not

constantly perform as well as the passive approach. Figure 6.8 clearly shows the deviation

in overall performance for small auction windows, where our active approach without an

auction window does not lie on the Pareto front. To overcome this problem, one could

think of employing suitable learning techniques in each camera locally, to reason about

appropriate timings for auction invitations and auction durations, but this goes beyond

the focus of this thesis.

The second key di↵erence when executing our proposed algorithm in smart cameras

is the processing power which is available to the employed trackers. Such resources can

quickly become consumed when too many trackers are operating concurrently, for example

due to a large number of objects being tracked, or the need to respond to a large number of

auction calls. In case multiple trackers run concurrently, every single tracker will process

fewer frames per second. This enhances the e↵ect of creating less utility for a certain

camera and the respective trackers within a discrete time window.

As in our simulation environment, we generated the vision graph during runtime.

Figure 6.9 illustrates the generation of the vision graph during runtime for Scenario R2

using the broadcast communication policy. Figure 6.10 illustrates the same e↵ect in

Scenario R12 for a larger network. For both scenarios one can see how the vision graph is

built up over time, and how it evaporates due to a lack of handovers between the cameras

on the left.

6.4.2 Performance Analysis

Figure 6.11 shows the overall performance of our active and passive approaches using

broadcast, smooth and step communication policies, for Scenario R2, with one object

in the environment. Again, there is a clear trade-o↵ between the achieved utility and

communication. It is also apparent that the results of the deployed system are very

similar to the equivalent scenario studied in the simulation environment (cp. Figure 5.3).
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(c) Scenario R1 - 500 ms
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(d) Scenario R2 - 500 ms
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(e) Scenario R1 - 0 ms
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(f) Scenario R2 - 0 ms

Figure 6.7: Illustrations of the accumulated utility over time, utilising the 1 second auction
window for auctions used in the active and passive approach in Scenario R1 as well as for
Scenario R2 (top row), the 500 millisecond auction window for auctions used in active and
passive approach in the first and second scenario (middle row) and both approaches without an
auction window (bottom row).
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Figure 6.8: Direct comparison of the di↵erent durations of auctions in our active approach
versus the di↵erent auction windows in our passive approach. Again, Active - A, Active - B, and
Active - C represent the active approach initiating an auction every third processed frame, with
timing windows of 1 second, 500 ms, and no timing window respectively. It is apparent that the
selection of an appropriate auction window has a high impact on the overall performance.

(a) 0 Second (b) 40 Second

(c) 80 Second (d) 120 Second

Figure 6.9: The vision graph is built up during runtime through trading interactions for scenario
R2 in our real camera network using the active broadcast strategy. Dots indicate cameras, lines
indicate links in the vision graph. The thickness of the line indicates strength of the corresponding
link.
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(a) 500 time steps (b) 1000 time steps

(c) 1500 time steps (d) 2000 time steps

(e) 2500 time steps (f) 3000 time steps

Figure 6.10: Snapshots of the generated vision graph using our market-based approach for
Scenario R12 at various time steps. Thickness of the red lines indicate the strength of the link in
the vision graph.

Furthermore, we utilised recorded video data from Scenario R3 – R12 using our second

camera setting. This data was pre-processed using a background weighing algorithm, and

afterwards colour histograms to identify and assign labels to the tracked objects. Fig-

ures 6.12, 6.13, and 6.14 show a selection of results for our tested scenarios. In general, as

with our simulated scenarios, the drop in communication when using the di↵erent auction

schedules on the cameras is apparent. Based on our previous experience, the drop in

confidence is less significant then expected for this real world scenarios when compared to

simulated scenarios. All scenarios were normalized by the active broadcast approach,

which gives us the best tracking confidence possible, but also has the highest communica-

tion overhead. For each frame the confidence is given by the tracker. The communication
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Figure 6.11: Performance (overall utility calculated over duration of scenarios) of each of the
six marked-based algorithms in the real world deployment of Scenario R2. Both, utility and
communication values, are normalised by those of the active broadcast. The trade-o↵ between
the two approaches in a real system is apparent.

overhead represents the sent out messages at the local and processing overhead at remote

camera at the same time.

Figure 6.12 shows the result for Scenario R5, depicted in Figure 6.5c. In this particular

scenario, we had the highest drop in utility over the whole duration of the run. However,

we were still able to achieve between 88% and 82% of the utility, while requiring only 33%

to 16% of the communication when using our passive approaches in comparison to the

active broadcast approach. For the active approaches, we had a drop of only 1% in

utility but compared to active broadcast reduced the number of initiated auctions by

19% and 24% for smooth and step respectively.

Figure 6.13 shows a similar result for Scenario R6, where a clear Pareto front is created

by our di↵erent approaches, in which no approach dominates any other approach. We were

able to reduce the number of sent out messages by up to 68%, while keeping up to 86%

of the possible utility when compared to the active broadcast approach.

In our last exemplary results, shown in Figure 6.14, for Scenario R7, it becomes ap-

parent that the smooth communication strategy dominates the corresponding broad-
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Figure 6.12: Performance (overall utility calculated over duration of scenarios) of our six marked-
based algorithms in the real world deployment of Scenario R5. Both, utility and communication
values, are normalised by those of the active broadcast. Experiments have been repeated 30
times; standard deviation is given.

cast communication policy for the passive and active approach respectively. Active

smooth can furthermore reduce its communication e↵ort by 14% compared to active

broadcast, and passive smooth was able to reduce its communication e↵ort by 8%

compared to passive broadcast. passive step was even able to reduce communication

by more than 55%, while only reducing its own confidence by 7% of the overall possible

gathered utility given by the active broadcast approach.

Even though the results are similar in two di↵erent experiments using the same camera

setting, it becomes apparent that the movement patterns of objects and persons of interest

do have an impact on the network-wide performance.

6.4.3 Performance of Autonomous and Static Heterogeneous

Configurations in Real Networks

To analyse static heterogeneous assignments and online learnt configurations for camera

networks in more realistic settings, we used scenario R13 and employed a SIFT-based

106



6.4. RESULTS

Active Broadcast

Active SMOOTH

Active STEP

Passive BroadcastPassive SMOOTH

Passive STEP

0

0.2

0.4

0.6

0.8

1

1.2
U

til
ity

0.2 0.4 0.6 0.8 1 1.20
Communication

Figure 6.13: Performance (overall utility calculated over duration of scenarios) of our six marked-
based algorithms in the real world deployment of Scenario R6. Both, utility and communication
values, are normalised by those of the active broadcast. Experiments have been repeated 30
times; standard deviation is given.

tracking approach [6] to detect and track a person within the network of cameras. Each

camera captured 1780 frames. We repeated the video feed four times to create a total of

7120 frames for a longer evaluation video.

Figure 6.15 focusses again on the results obtained from all homogeneous and hetero-

geneous configurations as well as those obtained employing decentralised online learning.

As with the results in Section 3.5.1, heterogeneous configurations lead to system wide

outcomes, which are more Pareto e�cient then those possible in the homogeneous case.

Furthermore, as with the results in Section 3.5.2, the use of decentralised online learning

of marketing strategies also extended the Pareto e�cient frontier when compared to the

homogeneous case. However, in this case, learning was not able to generate outcomes

dominating the most Pareto e�cient heterogeneous cases. We speculate that this is due

to the presence of already highly Pareto e�cient outcomes from static heterogeneous con-

figurations, which would be di�cult to find while still exploring the space su�ciently. It is

likely that dynamic configurations in more complex real world scenarios will yield similarly
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Figure 6.14: Performance (overall utility calculated over duration of scenarios) of our six marked-
based algorithms in the real world deployment of Scenario R7. Both, utility and communication
values, are normalised by those of the active broadcast. Experiments have been repeated 30
times; standard deviation is given.

interesting results like those described in Section 3.5.2, but this remains an area for future

research. However, as shown in Table 5.1, the learnt configuration is e�cient compared to

statically homogeneous assigned strategies. Identifying the best heterogeneous configura-

tion requires knowledge of the camera network topology as well as the movement patterns

of the objects of interest. Moreover, it is highly time consuming and computationally

expensive.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

This thesis has presented a solution for distributed tracking of objects in networks of

autonomous smart cameras. In contrast to multi-camera tracking, distributed tracking

assigns tracking responsibility of an object only to a single camera at a time. This requires

the network to decide on its own which camera is responsible for tracking an object at

what time.

In typical handover approaches, either a centralised control is utilised, where a pri-

ori knowledge for each camera about its environment and neighbourhood relationships is

provided, or the employed cameras are calibrated. In contrast, we do not rely on any a

priori knowledge at all and assume uncertainty regarding location and orientation of the

cameras as well as the movement patterns of the objects of interest. Inspired by market-

mechanism, we implemented a single-sealed bid auction mechanism on each camera and

enabled them to trade tracking responsibilities for objects of interest. Getting to know

their trading partners, each camera is further induced with the capability of learning its

local neighbourhood, the so-called vision graph. This allowed each camera in the system to

reduce its own communication overhead, and hence the communication e↵ort of the entire

system. Making use of biology-inspired foraging mechanisms, we have implemented arti-

ficial pheromones to build up the vision graph, and simultaneously enabling the cameras

to forget about neighbours, wherever the response rate to advertised auctions diminishes

over time.

To advertise auctions in the network of smart cameras to prospective buyers, we have

described six di↵erent strategies exploiting the vision graph. Each of these strategies at-

tempts to realise one of two objectives: (i) minimising network-wide communication or;

(ii) maximising system-wide tracking performance. The selection of an appropriate con-

figuration using a variety of strategies in the smart camera network turned out to require

knowledge of the camera setup, the environment, and the movement patterns of the ob-

jects of interest. To neglect a priori knowledge of these parameters, we have implemented

multi-armed bandit problem solvers in every camera of the network. This enables the

cameras to learn on their own which strategy fits them best, given a priority on either

minimising communication or maximising tracking performance. Indeed, we were able

to show that cameras are able to improve their network-wide performance when learn-

ing their own strategy during runtime compared to obstinately assigning homogeneous

strategies.

7.1 Summary of Contributions

More specifically, this thesis provides the following contributions:
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• Formulation of a market-based approach to assign tracking responsibilities within

a network of smart cameras without central coordination. The presented approach

enables a camera to transfer the tracking responsibility to a neighbouring camera

‘seeing’ an object best, at a given time step.

• Introduction of artificial pheromones to create links between cameras based on the

trading behaviour of tracked objects. This allows the cameras to organise them-

selves in the network and build up the so-called vision graph without any central

server. Additionally, evaporating pheromones let cameras forget about changing

environmental situations or movement behaviour of objects.

• Description of two auction strategies which allow the cameras to identify their unique

neighbourhood relations with other cameras in the network. Furthermore, presen-

tation of three communication policies exploiting the private vision graph of each

camera in order to reduce the number of exchanged messages within the network.

Additionally, we compared all possible combinations of auction strategies and com-

munication policies and evaluated their trade-o↵s regarding network-wide commu-

nication overhead and tracking performance.

• A definition of various uncertainties regarding the cameras in a network, such as

adding, removing and changing the location and orientation of a camera during

runtime. Additionally, an analysis of the robustness of the presented approaches

regarding these uncertainties in camera networks was presented.

• A comparison of homogeneous as well as heterogeneous assigned strategies and poli-

cies, showing the benefits of heterogeneous assignment of approaches based on the

unique neighbourhood relationships of each camera. To overcome the problem of

a priori knowledge regarding the orientation, location and neighbourhood relations

of smart cameras to assign the appropriate strategy to each camera, this thesis also

presents an approach using multi-arm bandit problem solver to allow the cameras

to self-organise their available algorithms during runtime without any supervised

learning or central control.

• Development of a custom simulation environment, called CamSim, to allow fast

testing and evaluation of the presented approaches, policies and strategies.

• Deployment of a heterogeneous smart-camera network in lab conditions consisting

of four custom built smart cameras by the company SLR and two smart cameras

built with o↵-the-shelf components.
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7.2 Future Work

There are numerous directions for future work. In this thesis, we considered a rather

naive resource model, disregarding the actual cost of tracking multiple objects within a

single camera. A camera, having the responsibility of tracking multiple objects at the

same time, might want to consider remaining resources when submitting a bid for a new

object. Having cameras bidding for an object but not being able to deliver appropriate

tracking performance afterwards, impairs the network-wide quality. Hence, integrating

resource information of a camera in the local valuation function might prove beneficial for

the system-wide outcome. Furthermore, this information would allow for adaptation of ↵

in the reward function of the bandit solvers. This would enable each camera to select an

appropriate strategy according to locally available resources.

Another strain of future research could induce cameras with the ability to learn about

the movement patterns of the objects of interest. This might have multiple benefits.

First, each camera could adapt the amount of pheromones to strengthen a link � when

trading objects and the evaporation rate of pheromones ⇢ depending on the amount and

frequency of objects passing through the respective FOV. Second, cameras could weigh

the expected utility of an advertised object by currently owned objects. In case a new

object is advertised but the camera is not able to bid for it, the camera has to make a

decision on selling currently owned objects or refrain from bidding for new object. This

might be beneficial when the new object is expected to result in better performance than

any of the remaining objects. Third, having an idea about the movement patterns as

well as movement speed of objects could allow the cameras to adapt their time of auction

initiation. This means that a camera could decide per object when to initiate an auction,

and hence try to hand over the object to another camera. A similar direction of future

research could allow the cameras to explore di↵erent durations for auctions on their own.

This is advantageous, since auction timings are highly dependent on the location of other

cameras in the network.

Finally, in our presented approach, objects are o↵ered either to all cameras in the

network or a certain subset. Indeed, there is no discrimination between the location of

cameras. In case an object leaves the FOV on the right side of a camera, all neighbouring

cameras, regardless whether they are on the left or the right side of the selling camera, will

receive the auction invitation. Hence, clustering the vision graph based on the location of

sold objects could allow the selling camera to further discriminate the local vision graph,

and therefore reduce its personal communication overhead even more.
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[66] B. Möller, T. Plötz, and G. A. Fink. Calibration-free Camera Hand-Over for Fast and
Reliable Person Tracking in Multi-Camera Setups. In Proceedings of the 19th Interna-
tional Conference on Pattern Recognition (ICPR 2008), pages 1–4. IEEE Computer
Society Press, 2008.

[67] K. Morioka, S. Kovacs, J.-H. Lee, and P. Korondi. A Cooperative Object Track-
ing System with Fuzzy-Based Adaptive Camera Selection. International Journal on
Smart Sensing and Intelligent Control, 3(3):338–358, 2010.

120



BIBLIOGRAPHY

[68] P. Mörters and Y. Peres. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, 2010.

[69] L. Mottola and G. Picco. Logical Neighborhoods: A Programming Abstraction for
Wireless Sensor Networks. In Distributed Computing in Sensor Systems, volume 4026
of Lecture Notes in Computer Science, pages 150–168. Springer Berlin Heidelberg,
2006.

[70] E. F. Nakamura, H. S. Ramos, L. A. Villas, H. A. de Oliveira, A. L. de Aquino,
and A. A. Loureiro. A Reactive Role Assignment for Data Routing in Event-based
Wireless Sensor Networks. Computer Networks, 53(12):1980–1996, 2009.

[71] C. R. Plott and V. L. Smith. An Experimental Examination of Two Exchange Insti-
tutions. The Review of Economic Studies, pages 133–153, 1978.

[72] A. Prasath, A. Venuturumilli, A. Ranganathan, and A. A. Minai. Self-Organization
of Sensor Networks with Heterogeneous Connectivity. In G. Ferrari, editor, Sensor
Networks: Where Theory Meets Practice, pages 39–59. Springer, 2009.

[73] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and B. Strobl. Autonomous
Multicamera Tracking on Embedded Smart Cameras. EURASIP Journal on Embed-
ded Systems Volume 2007, 2007(1):35–45, 2007.

[74] F. Qureshi and D. Terzopoulos. Multi-camera Control through Constraint Satisfac-
tion for Persistent Surveillance. In Proceedings of the IEEE Conference on Vision
and Signal-based Surveillance, pages 211–218. IEEE Computer Society Press, 2008.

[75] M. Reisslein, B. Rinner, and A. Roy-Chowdhury. Smart Camera Networks (Guest
Editors’ Introduction). Computer, 47(5), 2014.

[76] B. Rinner, B. Dieber, L. Esterle, P. R. Lewis, and X. Yao. Resource-aware Con-
figuration in Smart Camera Networks. In Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Workshops (CVPRW
2012), pages 58–65. IEEE Computer Society Press, 2012.

[77] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W. Wolf. The evolution
from single to pervasive smart cameras. In Proceedings of the Second ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC 2008), pages 1–10.
IEEE Computer Society Press, 2008.

[78] B. Rinner and W. Wolf. Introduction to Distributed Smart Cameras. Proceedings of
the IEEE, 96(10):1565–1575, 2008.
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Kameras. Süddeutsche Zeitung GmbH http://www.sueddeutsche.de/bayern/

videoueberwachung-in-bayern-spaeh-angriff-mit-kameras-1.1610655, 2013-
02-27. Accessed: 2013-10-02.

[86] K. Van Mo↵aert, T. Brys, A. Chandra, L. Esterle, P. R. Lewis, and A. Nowé. A Novel
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APPENDIX

A full example of an XML-base CamSim scenario file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<root>

<simulation max_x="30.0" max_y="30.0" min_x="-30.0"

min_y="00.0">

<cameras>

<camera ai_algorithm="epics.ai.PassiveAINodeMulti"

heading="-180.0" name="Cam_01" range="30.0"

viewing_angle="50.0" x="-18.0" y="30.0" comm="0"

FP="60.0" TP="80.0"

bandit="epics.bandits.UCB1"/>

<camera ai_algorithm="epics.ai.ActiveAINodeMulti"

heading="-180.0" name="Cam_02" range="30.0"

viewing_angle="50.0" x="10.0" y="30.0"

failing="30.0" comm="0"/>

</cameras>

<objects>

<object features="1.0" heading="90.0" speed="1.0"

x="-30.0" y="2.0"

move="epics.movement.Brownian"/>

</objects>

<events>

<event timestep="0" participant="object" name="1.0"

event="error"/>

<event timestep="0" participant="camera" name="2.0"

event="change" x="5.0" y="20.0"/>

<event timestep="0" participant="object" name="3.0"

event="add" heading="90.0" speed="1.5" x="-30.0"

y="2.0"/>

</events>

<visiongraph static="false">

<graphnode name="Cam_01">

<neighbour name="Cam_02" />

</graphnode>

<graphnode name="Cam_02">

<neighbour name="Cam_01" />

</graphnode>

</visiongraph>

</simulation>

</root>
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SYMBOLS

Symbols

Element Meaning

C Set of cameras
O Set of objects
m Amount of objects
n Number of cameras
k Number of objects per camera
i, q Cameras 2 C
j Object 2 O
Oi Objects owned by camera i

! i responsible for tracking objects in Oi

cj Confidence of object j
vj Visibility of object j
�i(j) Decision of camera i on attempt to track object j

Gv(C,E) Vision graph network wide
E Set of edges / links between cameras
ei,q Edge between camera i and p
⌧ix Weight between i and x
NG(i) Local neighbourhood graph for camera i
� Amount of pheromone put on a link after

exchanging tracking responsibilities
⇢ Evaporation rate.

S Set of strategies.
s Strategy 2 S.
↵ Regularisation factor for reward function.
� Number of strategies.
↵ Weight for reward function of bandit solvers
✏ Degree of randomness for bandit solver Epsilon-Greedy
⌧ Temperature defining randomness in Softmax

� Inverted Euclidean distance between an object and a camera.
 Normalised angular position of an object to a camera.
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