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Abstract

Decision making by means of distributed consensus algorithms can be used in
systems where centralized control is difficult or impossible. Algorithms that
perform such a coordination in a fixed period of time — wait-free algorithms —
can be beneficial in real-life distributed systems. These algorithms should be
efficient and robust towards various disturbances, since the distributed con-
sensus problem becomes non-trivial in real-life networked systems, restricted
in connectivity and time.

Solutions that can solve consensus problem in such systems often decrease
efficiency with stochastic disturbances. At the same time, some other algo-
rithms can increase performance with disturbances. Employment of stochastic
disturbances to promote efficiency and robustness of consensus is called ran-
domization. Randomization has limited application to wait-free algorithms,
due to the stochasticity it employs.

In this thesis we focus on wait-free algorithms for binary majority consen-
sus with stochastic elements. First, in Chapter 4 we show that two standard
algorithms, Gacs-Kurdyumov-Levin (GKL) and Simple Majority (SM) con-
sensus, converge more often if randomized by noise and message loss in ordered
and topologically random networks.

Next, in Chapter 5 we propose a Random Neighbor Majority (RNM) con-
sensus with embedded randomization by neighbor selection. We show that
with additional randomization by noise and errors RNM can outperform the
GKL and SM in asynchronous environments.

Chapter 6 investigates the impact of the faulty nodes on consensus. We
investigate faulty nodes with random, full, and persistent failure with different
layout over the network. We show that faulty nodes with persistent failure are
more adverse for binary majority consensus than faulty nodes with random
and full failure. We show that randomization can promote robustness towards
faulty nodes, and that RNM is more robust towards faulty nodes than GKL
and SM.

Chapter 7 concludes the thesis with summary of results. We explain open
issues and discuss further research directions.
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CHAPTER :
Introduction

The term consensus means “agreement” and is widely used in the literature and
everyday life. Its etymology roots down to two Latin words: con and sentio which
mean “together” and “feel”. The consensus problem therefore is an agreement
problem. It emerges in systems, where a set of communicating entities is expected
to agree on some opinion, based on their initial suggestions. Every entity in such
a system can make decisions on what the negotiated value is and exchange this
value with other entities. The phenomenon of emerging agreement among multiple
entities can be widely seen in the everyday life of human society. This is why

consensus problems were initially studied in a framework of social studies [TF83,
RGHT77, FD88, KFN92|.

However, with growth of information networks consensus problems came into
focus of computer science. From a perspective of computer science, a consensus
problem is generally considered as a problem of distributed network management.
An algorithm that can steer all agents to a required state can be beneficial in a dis-
tributed network of communicating agents. Such distributed consensus algorithms
can be used in systems where centralized decision-making is difficult or impossible.
Such tasks can arise, for example, in sensor fusion [OSS05], object tracking [GC96],
localization [SKB10], or distributed mission planning [AH06]. Technical studies
generally consider consensus problems in weakly connected distributed networks
with additional restrictions, such as limited time and, sometimes, random distur-
bances. These limitations can yield non-linear dynamics similar to that of natural
complex systems.

Simple consensus algorithms operating in such distributed systems with lim-
ited connectivity can produce global coordination [MMDAO4]. The complex be-
havior, emerging out of simple rules in weakly connected networked systems is
often referred to as one of the features of self-organization [HMBO08, Gac01]. Self-
organization is a property often attributed to various real-world complex sys-
tems [HMSKCO06]. Research on self-organization can provide insightful results and
lead to development of efficient bio-inspired networked algorithms such as, e.g.,
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firefly synchronization [MS90, HMSKC06, KKBT12, FH02]. It is a subject of a
broad interest to physicists, complex systems researchers and computer scientists.

In a similar way, studies on consensus problems can provide insightful results
in the area of complex systems. If a distributed consensus problem is solved, it
can result in a class of distributed agreement protocols for information networks.

Depending on a research perspective, a general consensus problem can be sub-
divided into several sub-areas, each of them having their own limitations and a
rather diverse behavior. Scholars distinguish average and binary, deterministic
and randomized, waiting and wait-free consensus.

Real-life networked systems, such as wireless sensor networks or networks of un-
manned flying vehicles seldom operate in a disturbance-free manner. Studies show
that stochastic disturbances can promote simple consensus algorithms [MMDAO04].
In this thesis we investigate whether a randomization by stochastic disturbances
can promote wait-free binary majority consensus.

1.1 Binary Majority Consensus

Studies on a general consensus problem consider systems that are expected to
agree on a certain value. Binary consensus is a subset of the general consensus
problem, where a network of communicating agents with initial binary states is
expected to agree on one of those states. In a centralized system, or if each agent
can communicate to all other agents, this problem can degrade to trivial. Binary
consensus becomes non-trivial in distributed, weakly connected networks with
restricted time frames and possible disturbances. Studies on binary consensus
problem can reveal certain aspects of complex system dynamics but have limited
applicability to the real-life networks. However, the binary majority consensus
can be applied in real-life networks for, e.g., the tasks of distributed estimation or
decision making. A binary majority consensus problem emerges when a network
of communicating nodes is expected to agree on a single binary value that cor-
responds to the initial majority of the given values. Algorithms that tackle such
problems are called binary majority consensus algorithms. In real-life networked
systems algorithms with deterministic execution time can be beneficial. Such al-
gorithms, providing distributed agreement in a fixed period of time, are called
wait-free consensus algorithms. Therefore, a wait-free binary majority consensus
system can be defined as a network of communicating nodes that are expected
to agree on a single binary value that corresponds to the initial majority of the
given values, in a given time. There are algorithms that solve a general binary
consensus problem, even with presence of faulty-behaving nodes [BO83, CT96].
However, there is no full wait-free solution for binary majority consensus problem
with aforementioned restrictions.
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1.2 Efficiency and Robustness of Consensus
Algorithms

A combination of all initial states of the networked nodes forms an initial system
configuration. Due to the restrictions in time and connectivity it is difficult to
guarantee an agreement for all possible initial configurations. Therefore, the ef-
ficiency of algorithms for binary majority consensus is generally evaluated with
their convergence rate, R — a fraction of initial network configurations that results
in a successful agreement. Clearly, an ideal algorithm that guarantees convergence
should provide a convergence rate of 100%.

Binary majority consensus has been intensively studied since 1978, when Gacs et
al. [GKL78] introduced a Gacs-Kurdyumov-Levin (GKL) algorithm that converges
on ~ 82% of initial configurations in a 6-connected ring of 149 nodes. In the
following decades scholars proposed several algorithms with R up to 86% in the
same conditions. Land and Belew [LB95] showed that deterministic algorithms
cannot reach convergence rate of 100%. However, this restriction does not apply
to randomized algorithms. Randomized algorithms are algorithms that employ
stochastic elements to increase both convergence rate and fault tolerance.

Robustness towards various disturbances is another vital issue for consensus
algorithms that operate in real-life networked systems. Studies on robustness of
consensus consider various disturbances, e.g., noise [KM07, Men11] or topological
changes [SZ93, KB06| as threats that inhibit consensus. Other scholars consider
stochastic disturbances as a beneficial intrusion that can promote consensus, e.g.,
in terms of fault-tolerance [Asp03]. The first approach appears in research for
both simple and complex consensus algorithms, while the second one can mainly
be traced in fault-tolerance studies of complex algorithms.

Simple binary majority consensus, however, can exhibit both positive and neg-
ative response to randomization. Some algorithms, such as GKL, show high effi-
ciency in noiseless and error-free ordered networks but can significantly degrade
if disturbed by topology or communication errors [MMDAO4]. At the same time,
other algorithms, e.g., Simple Majority (SM), can increase the convergence rate in
random networks with errors [MMDAO04] (which can be explained by the aforemen-
tioned randomization [SSW91, Fat13]). A challenging task, therefore, is to design
an algorithm that is efficient and robust both in disturbed and disturbance-free
environments. Several decades of research on distributed consensus show that
for resource-constrained systems this task is difficult. However, it was recently
shown that a relatively simple self-organizing algorithm, accompanied by stochas-
tic disturbances can guarantee synchronization in a wide range of distributed
systems [KKBT12]. These latest advances motivated our research.

In this thesis we focus on a wait-free binary majority consensus with stochastic
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disturbances. First, we study standard consensus algorithms in random networks
with noise and random message loss, showing that these stochastic disturbances
can promote consensus and hinder impact of faulty nodes in the system. Next, we
propose a Random Neighbor Majority (RNM) — a simple randomized consensus
algorithm that is more efficient and robust in both disturbed and undisturbed
environments. Finally, we test the aforementioned algorithms for the robustness
towards faulty node behavior.

1.3 Outline and Contributions

The remainder of this thesis is composed of six chapters. Chapter 2 defines the
binary majority consensus problem in the scope of the general consensus problem.
Chapter 3 motivates and explains system modeling. Original contributions are
presented in Chapters 4-6. Conclusions are drawn in Chapter 7.

Chapter 2: Binary Majority Consensus

This chapter defines and explains the important differences between general con-
sensus and wait-free binary majority consensus. It describes more strict termina-
tion conditions of the latter and explains their implications. An overview of the
related work with different approaches and solutions to the binary majority con-
sensus problem is given. Then we provide an outlook on the best solutions for the
wait-free binary majority consensus problem and discuss studies that investigate
consensus with disturbances and faulty nodes. We explain different approaches to
randomizing disturbances, discuss origins of important modeling limitations, and
introduce main concepts of efficiency and robustness.

Chapter 3: System Modeling

This chapter gives an overview of the models used for simulations of consensus
algorithms. It explains the motivation behind the simulation engine and describes
its features. Detailed explanations of network models, graph and node attributes,
and updating functions are provided. Generation of initial configurations is ex-
plained and computation of the efficiency metrics is described. Then we provide
characteristics of the network simulator with different settings and explain mech-
anisms of randomizing disturbances. Finally, we provide and explain pseudo code
for selected simulator features.
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Chapter 4: Performance of Standard Algorithms

This chapter investigates SM and GKL consensus in ring lattices, Watts-Strogatz
and Waxman networks. It studies algorithms in networks of different size, with
different node degree and scope of randomization. We compare the performance
of algorithms under different randomizing disturbances, showing that an optimal
combination of additive noise, message loss and topology randomization can in-
crease their efficiency. We show that aforementioned randomizing disturbances
do not critically decrease the convergence time of the algorithms. We explain the
low-level mechanisms behind this and suggest how to embed them in a consensus
algorithm without significant increase in complexity.

Chapter 5: Randomized Consensus

In this chapter we introduce the Random Neighbor Majority (RNM) consensus
inspired by results presented in Chapter 4. We investigate two random neighbor
selection schemes and two additional types of randomization — by noise and
errors, showing that such a randomization can increase the efficiency of RNM up to
100%. RNM is studied in ring lattices, Watts-Strogatz and Waxman networks with
different disturbances, to show that gains in efficiency are robust towards noise and
topology randomization. The mechanisms behind these gains are explained and
an optimal randomization scheme depending on system conditions is suggested.

Chapter 6: Consensus with Faulty Nodes

This chapter addresses the impact of the faulty nodes on SM, GKL, and RNM
in ring lattices and random networks. We show that randomization can promote
robustness towards faulty node behavior, and that RNM is more robust towards
faulty nodes than SM and GKL. We show that faulty nodes with persistent failure
always inhibit consensus, while commonly used Byzantine-like nodes with random
failure and faulty nodes with full or “crash” failure have lower impact. Finally,
we show that in some cases faulty nodes with random failure can promote binary
majority consensus.

Chapter 7: Conclusions

This chapter concludes the thesis. We provide the motivation for our research and
give the summary of results, explaining our contribution and drawing common
conclusions. Finally, we show further research directions and describe remaining
challenging issues.
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CHAPTER ———
Distributed Consensus

Algorithms

2.1 Introduction and Motivation

Binary majority consensus can be used in systems where centralized decision mak-
ing is difficult or impossible. Such conditions may arise in various systems, ranging
from purely technical [BG84] to social and natural networks [TInY*13, BTV11].
In this thesis we focus on consensus algorithms from a perspective of networked
and distributed technical systems. In such systems consensus algorithms and,
in particular, majority consensus found first applications in distributed database
management [Tho79, BG84, Kum91, MMS81]. Later, consensus methods were
developed in pattern recognition and detection [LS97, LEWV10], image analy-
sis [FB81], bootstrapping [Wil96], and object tracking [GC96].

The rapid development of the computing technologies has offered new areas
for the distributed decision making, such as DNA and gene analysis [GWR™06,
YWWO07], data clustering [GFO08], neural network classification [LMO05], medical
analysis [NBD'09] and vehicular networks [Ren07].

In our work we investigate consensus algorithms from a perspective of dis-
tributed and wireless sensor networking. This particular interest is related to
the author’s background in distributed wireless networks and interest in phe-
nomena of emerging complex behavior, such as self-organization [GKPS11]. In
wireless sensor and mobile and cognitive networks consensus algorithms found
broad use [OSS05, BDG12, SKB10] for various tasks, ranging from spectrum sens-
ing [AMM11] to mission planning [AHO6].
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2.2 General Consensus and Binary Majority
Consensus

Consensus algorithms are a class of algorithms for decision making. Such algo-
rithms, deployed in a networked system, aim to steer a system to a common state
for all networked nodes. Distributed consensus systems are often restricted by
network connectivity, so that each node can only access information from a lim-
ited number of its neighboring nodes. This assures distributed execution similar
to that of real-life systems and leads to emerging complex dynamics. Additional
restrictions, such as communication noise, lack of synchrony, or random link fail-
ure, can further exaggerate the execution dynamics. Such restrictions make it
difficult to predict, whether the system will reach an agreement or not.

All consensus algorithms, whether it is average or binary consensus, share cer-
tain concepts and have to satisfy the following conditions [Asp03]:

1. Agreement. All nodes choose the same value.
2. Termination. All non-faulty nodes eventually decide.
3. Validity. The common output value is an input value of some node.

One can see that these conditions do not necessarily require that the agreed value
corresponds to the initial majority of values, nor it requires a time boundary for
the agreement process.

2.2.1 Wait-Free Consensus Algorithms

Consensus algorithms with bounded execution time are called wait-free consensus
algorithms. Wait-free consensus algorithms are a sub-class of consensus algorithms
that have specific termination condition. These algorithms are terminated after a
predefined time 7', whether an agreement was reached or not. Wait-free consensus
algorithms can be beneficial in real-life networked systems where termination time
is important. Bounded execution time, however, can lead to lower performance
and higher sensitivity to disturbances [GKL78, MMDAO04, SZ93].

2.2.2 Binary Consensus Algorithms

Binary consensus is yet another sub-class of consensus algorithms with a specific
agreement condition. Binary consensus algorithms are used to steer a system to
an agreement on a state or a value, selected out of limited set of binary states,
generally defined as {0,1} or {—1,1}.
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2.2.3 Wait-Free Binary Majority Consensus

Binary majority consensus is also known as density classification or majority sort-
ing consensus. This is a further specification of the agreement condition of the
wait-free binary consensus. Such a consensus assumes that a network converges to
a binary state, corresponding to the initial majority of all states in the network.

Therefore, in a wait-free binary majority consensus system of N nodes, with
initial binary states 0;[0] € {—1, 1}, agreement is reached if there exists a time t. €
{0,T'}, so that Y o4t.] = =N for >, 0;[0] <0 or >, o4[t.] = N for ). 0;[0] > 0.
Here, a time boundary T is equal to 2N [GKL78|. At a time ¢t = T" an algorithm
is terminated whether an agreement was reached or not.

2.3 Basic Terminology and Performance Metrics

Let us briefly specify some of the basic concepts and terms we use in this work.
We study undirected networks consisting of N nodes, each having 2K neighbors.
Nodes j,i € {0,...,N} are called neighbors if they are connected with a link.
State of the node i at the time ¢ is denoted as o;[t]. Initial state 0;]0], or oq is
a state, randomly assigned to each node at the time ¢ = 0. The set of N states
0;[0] is called initial configuration, and denoted as I;. The sum of all states in the
initial configuration Y/=) 0;[0] is called initial density and denoted as p[0] or po.
Similarly, the density at each time step t € {0,...,T} of the system evolution is
denoted as p[t]. We refer to connectivity as an average number of neighbors per
node in the system. Therefore, a network with “lower” or “weaker” connectivity
has on average less neighbors per node than the one it is compared with. The
term interconnectivity refers to an average link span in the system. Therefore, a
“system with higher interconnectivity” means that such a system has more “long”
links than the one it is compared with. The term link span which is also referred
to as a link length, depends on network type: (a) in Watts-Strogatz networks
link length is an absolute difference between indices |i — j|, and (b) in Waxman
networks it is as an actual Euclidean distance between nodes ¢ and j. We explain
and motivate these metrics in more detail in Section 3.2.

Here and in the following chapters we refer to a consensus as a process of
negotiation. The term agreement is referred to as a final stage of consensus process,
when all networked nodes have reached the common state. We employ the term
convergence rate denoted as R, as a fraction of initial configurations that result
in a successful agreement. We refer to the efficiency or performance of consensus
algorithms as convergence rate. Convergence speed is denoted as F' and defined
as a fraction F' = %, where t. is the time step when the agreement was reached,
and T is a consensus cycle duration, 7" = 2N [GKLT7S].
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We employ the term fault tolerance as defined by Laprie in [Lap95] and later
specified by Avizienis et al. [ALRLO04]: “...fault tolerance is a means to maintain
system function in the presence of faults ...”. We use the term robustness as
defined in [DMS09]: “...robustness ...is the ability of the system to sustain a
satisfactory level of the function under system perturbations including partial fail-
ure ...”7. We distinguish these terms here because in our work they often overlap,
e.g., some types of faulty node behavior include full or “crash” failure, which can
be interpreted as a partial system failure. Hence, we relate “fault tolerance” to the
ability of the system to tolerate the faulty node behavior and the term “robust-
ness” to the ability of the system to overcome a wider range of disturbances.

General consensus can be also characterized with other metrics, such as, e.g.,
convergence time or convergence assurance. First one is defined as the time that an
algorithm takes to reach an agreement, and is not suitable to wait-free consensus as
it generally requires the relaxed time limitations. The second metric is defined as
a probability of successful consensus termination, and is not directly applicable to
binary majority consensus as due to the imposed restrictions the 100% convergence
cannot be guaranteed [LB95].

2.4 State of the Art

2.4.1 Consensus with Disturbances

In this thesis we study the performance of binary majority consensus randomized
by topology, noise, message loss, and faulty nodes. During last several decades
some of these aspects were addressed by other scholars.

It was shown that noise and errors can decrease the convergence rate of
consensus algorithms in general, and wait-free consensus in particular [GKL7S,
MMDAO4].  Similar effects registered in systems with disruption of syn-
chrony [DDS87], presence of faulty nodes [PSL80, FLP85|, or randomized topol-
ogy [Bea05, KB06]. Let us briefly describe the studies on the impact of various
disturbances on consensus.

2.4.2 Impact of System Synchrony

System-wide synchrony is a substantial factor for the convergence rate of con-
sensus algorithms. A synchrony level in a consensus system is generally defined
through a difference in nodes mutual decision moments. Such a scheme, however,
assumes that all networked nodes have equal decision periods (or decision fre-
quency), i.e., asynchrony is imposed via the “phase-shift”, and not the “frequency
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drift”. Generally, the following approaches to modeling of synchrony levels can be
distinguished in a consensus system:

e full synchrony; when all networked nodes decide simultaneously [GKLT7S,
MMDA04, MHC93],

e full asynchrony; when nodes take decisions independently from each other
and previous states of the system [BO83],

e conditional asynchrony or partial synchrony; when nodes decide indepen-
dently from each other, but the update order (sequence) is predefined to a
certain extent [MMDAO4].

The first approach is recognized as a rather artificial one [MMDAO04] for two
reasons: fully synchronous distributed real-life systems are rare, and, in sys-
tems that can reach full synchrony, binary consensus problem can become triv-
ial [LDCH10, RBAO5].

The second approach is close to real life, but the consensus problem becomes
significantly more difficult to tackle. To make consensus possible with full asyn-
chrony, scholars relax other restrictions, e.g., allowing full, or nearly full, network
connectivity or guaranteed message delivery [BOS83].

The third approach presents a trade-off between the two previous ones. It
was shown [KKBT12] that partial synchrony can be achieved in a distributed
system. This makes the partial synchrony a more realistic restriction than, e.g.,
full connectivity. In this thesis we consider all three approaches.

Influence of synchrony on consensus algorithms has been previously studied
in multiple works, including contributions by Bracha and Tueg [BT85], Dolev et
al. [DDS87] and Dwork et al. [DLS88]. Latter works studied the boarder cases,
investigating the minimum required synchrony and influence of partial synchrony
on consensus, respectively.

Studies generally show that lack of system-wide synchrony strongly inhibits
consensus. However, real-life distributed systems seldom work in a synchronous
manner [FGEM11] and asynchronous consensus problem has been further tack-
led with randomized consensus algorithms. Comprehensive overview by Asp-
nes [Asp03] gives detailed explanation and description of existing approaches;
papers [CIL94, BHKPS06, Asp02] offer new solutions, while the paper by At-
tiya and Censor [ACO07] sets bounds for asynchronous and randomized consensus
algorithms. A randomized consensus algorithm that guarantees convergence in
asynchronous networks was proposed by Ben-Or [BOS83].

2.4.3 Impact of Noise and Errors

Impact of noise and errors on a consensus is a subject of a broad interest among
scientists for obvious reasons — real-life systems rarely operate in an undisturbed

11
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manner. Two general (and often overlapping) paradigms can be distinguished
in consensus studies: the first one considers noise and errors as a threatening
disturbance, while the second one counts them as beneficial ones. This can be
rooted to the level of refinement of the investigated algorithms. If an algorithm
is refined to perform in certain conditions, stochastic disturbances can decrease
its efficiency [GKL78, MMDAO4, RMO08|. On the other hand, if the algorithm is
simple and does not indicate competitive performance in refined environments,
disturbances can be beneficial [Asp03, MMDAO4]. Influence of noise on consensus
algorithms has been previously widely covered in [Asp00, Asp02, CFF+07, FSO08,
HMO07b, HM07a, KM07, MMDAO04, RW11, TN09, WE10]. These works generally
consider noise as a negative disturbance that inhibits performance. However, some
studies on noisy consensus, e.g., [MMDAO4, BT85|, show that noise can have
positive influence. Latter works served as main motivation for research presented
in this thesis.

2.4.4 Impact of Topology Randomness

Studies on topology influence on consensus generally consider two aspects: im-
pact of decreasing or increasing connectivity [TK12a, TK12b], and the impact
of randomly switching topologies [Bea05, KB06]. While a decrease in connec-
tivity generally inhibits consensus, randomly switching topologies can produce a
twofold influence. In some cases topological randomization decreases the perfor-
mance (e.g., if an algorithm is specifically designed to perform in certain topolo-
gies) [GKL78, MMDAO4]. Other cases show the increase in performance under
topology randomization. This can be sometimes contributed to the increase of the
efficient interconnectivity of the network, as, e.g., in Watts-Strogatz randomiza-
tion [MMDAO4, 1]. Topology randomization in weakly connected WS networks
explicitly increases the average link length in the graph, thus increasing the inter-
connectivity. It also changes the network by adding random links that can counter
the network clustering process [BR99]. A different case of topology randomization
is illustrated in Figures 2.1, 2.2 and 2.3 where the network topology is left intact
but nodes can randomly access state information from available neighbors. They
represent a situation of, e.g., random link failure or message loss, when a node
can access C' out of 2K available neighbors. Thus, Figure 2.1 presents a node (n3)
connected to all of its 2K = 6 neighbors. Figure 2.2 presents a node connected
to C' = 4 neighbors randomly selected at each time step. Figure 2.3 presents a
node, connected to C' = 2 neighbors randomly selected at each time step only
from the left side. Such a randomization yields a twofold impact: it can decrease
the information exchange (if C' < K), but at the same time it counters topolog-
ical clustering [BR99]. This inspired the random neighbor selection schemes for
Random Neighbor Majority (RNM) consensus in Chapter 5.

12
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Figure 2.1: A networked node ngz connected to its 2K neighbors. K = 3.
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Figure 2.2: A node n3 connected to C' randomly selected neighbors. K = 3,C = 4.

2.4.5 Impact of Faulty Node Behavior

The faulty node behavior is often considered as one of the main impedi-
ments to consensus. A faulty node is generally defined as a Byzantine faulty
node [PSL80, FLP85], i.e., a node with any kind of failure except full failure. It
actively takes part in the consensus process but can supply its neighbors with
wrong information. Initial studies by Pease et al. [PSL80] show that in a syn-
chronous system of N nodes, M of them being faulty, agreement is possible if
M < % This condition was later strengthened by Fischer, Lynch, and Pat-
terson [FLP85, FLMS85], who showed that in asynchronous systems even a single
faulty node can prevent consensus. Latter restriction became known as FLP-
impossibility, named after the scholars names. FLP-impossibility was tackled
multiple times (e.g., [GY89]) but was not disproved.

13
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Figure 2.3: A node n3 connected to its C' random neighbors from the left. K =
3,C =2.

Later studies compare the impact of Byzantine faulty nodes with dormant faulty
nodes [MP91] and crash-failing faulty nodes [AFJ06], showing that consensus can
stabilize and overcome the impact of such non-Byzantine nodes.

The issue of fault tolerance is generally addressed with increasing synchrony,
failure detection [CT96, CHT96, ACT98] and randomization [Asp03]. Random-
ized consensus algorithm show higher robustness towards faulty node behav-
ior [MNC10] than deterministic solutions. Some randomized algorithms can guar-
antee the agreement in systems with M < N/2 faulty nodes in the system [BO83].
We address the impact of faulty nodes on consensus in Chapter 6 of this thesis.

2.4.6 Overview of Algorithms

Binary majority consensus has more strict termination conditions than a general
consensus. Together with low connectivity and time limitations it leads to a
weaker convergence assurance. It has, however, raised significant interest since
Gacs et al. [GKL78] proposed an algorithm that converges on ~ 82% of initial
configurations. Since then scholars offered several more efficient solutions to the
problem using the same setup — a synchronized and disturbance-free 6-connected
ring of 149 nodes. We summarize these solutions in Table 2.1.

Let us briefly describe some of the main achievements in the area. The best
(to that moment) solution for density classification was obtained with the genetic
programming by Andre et al. [ABK96]. Right after this, Fuks [Fuk97] offered a
combination of two deterministic rules that converges in networks with pg, close
to 0.5 with R ~ 100%. This solution, however, does not scale into lower or higher
densities. Indeed, just two years prior to that, Land and Belew [LB95] show that

14
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Table 2.1: Efficiency of wait-free algorithms for binary majority consensus. N =
149, K = 3.

Rule Year Design Ref. R, % po  Number
of test
samples
GKL 1978 human-designed [GKLT78] 81.6 Gaussian 10
Davis 1995 human-designed [ABK96] 81.8 Gaussian 10
Das 1995 human-designed [DCMH95]  82.2 Gaussian 10*
Koza 1996  genetic [ABKO96] 82.3 Gaussian 10*
programming
Juille and 1998  co-evolution [JPIg] 86.0 Gaussian 10
Pollack
Fuks 1997 combination [Fuk97] 100.0 0.5 10
of rules
Simple 2004 human-designed, [MMDAO0O4] 85.0 Gaussian 10°
Majority randomized
Traffic 2013 human-designed, [Fat13] 90.0 Biased 10
Majority randomized

no deterministic rule can guarantee 100% convergence rate in a reference setup.
However, this restriction does not apply to the randomized algorithms. Moreira
et al. [MMDAO4] show that a Simple Majority rule can reach a convergence rate
of 85% if randomized by topology and errors (although authors themselves do
not mention the term “randomization”, the described effects match that of the
randomized consensus).

Later, Fates [Fat13] offered the randomized Traffic Majority rule that solves the
task in a reference setup with R = 90%. This efficiency is achieved over test sets
with biased initial density which can contribute to higher efficiency, but this does
not decrease the significance of the result.

Note that the convergence rate of the algorithm can significantly vary depending
on the simulation parameters, such as N, K, and the distribution of density in
the initial configurations. Due to this scholars register the efficiency of algorithms
in a “reference setup”, introduced in [GKL78]: an 6-connected ring of 149 nodes,
synchronized and disturbance-free.

Simple Majority Consensus

In this work we study two of the aforementioned standard algorithms for binary
majority consensus. Let us briefly define and explain them. First one is the
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Simple Majority SM [MM81, MMDAO04| consensus. SM consensus is arguably
the simplest algorithm for solving the binary majority consensus. In a networked
system of N nodes, each node ¢ € {0,..., N} driven by a SM consensus calculates
its new state on the basis of information about its current state and states of its
2K closest neighbors. I.e.:

j=i—K

Here, o0; ;[t] denotes the state of node j, received by the node ¢ at the time ¢. The
update function G(z) is defined as [MMDAOA4]:

—1 forx <0,
Gle) = { +1  for xz > 0. (2:2)

Simplicity of the SM consensus can result in low convergence rate. In a refer-
ence setup (for more details, see Section 4.3.1) with a flip-coin generated sets of
initial configurations (see Section 3.7) it shows R ~ 1%. However, Moreira et
al. [MMDAO04] show that with randomization by errors and topology in Watts-
Strogatz networks SM can increase R and outperform GKL.

Gacs-Kurdyumov-Levin Consensus

The Gacs-Kurdyumov-Levin (GKL) consensus, proposed in [GKLT78], is essentially
a modification of the SM with a built-in state-dependent direction bias. According
to GKL, each node calculates its new state based on the information of its own
current state and states of its closest neighbors.

G 04 [t] + Ui,i—i-l[t] + 04i+3 [t] fOI" Oiyi[t] < 0,
oilt +1] = (2.3)
G Oi [t] + Ji,i—l[t] + Oi,i—S[t] for O'w;[t] > 0.

In GKL, each node can select from which side of the lattice it will receive messages.
Selection is based on its own current state: if o;; < 0, it receives messages from
the nodes on its “left” side, otherwise it receives messages from the noses on the
“right” side.

This state-direction bias enables GKL to wash out clusters of nodes that have
the same states. GKL is known among best algorithms for binary majority con-
sensus and is often used as a benchmark for the newly developed algorithms. As
we mention above, the network model from [GKL78] (a 2K = 6-connected ring
of N = 149 nodes) has been also adopted as a “reference setup” to measure the
efficiency of algorithms.
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Here we define consensus algorithms for ordered networks on the example of
ring lattices. Such algorithms have to be adjusted to perform in random networks.
These adjustments are described in detail in Section 4.2.1.

Impact of Initial Configuration

Initial system configuration I is defined as a set of random binary states, initially
assigned to all nodes in the system. Recall that a system is expected to agree
on a state that corresponds to the initial majority of the states in the initial
configuration.

Ideally, binary majority consensus algorithm should converge on all possible
combinations of initial configurations, but a simulation over 2V combinations is
not feasible for the large N. Nevertheless, simulations should be performed over
the sufficient number of initial configurations to ensure stable R. Our simulations
show that if the simulations are performed over tests set with fewer than 10* initial
configurations the resulting convergence rate may vary within the range of several
percent. The most intuitive and simple way to obtain initial states for each node
in the network is flip-coin trial, returning 1 and —1 with equal probabilities.

Our simulations also show that test sets obtained by a flip-coin procedure gen-
erally result in lower R for both GKL and SM compared to test sets with uniform
p distribution, used by some scholars [MHC93]. This can be due to the fact that
test sets, generated with a flip coin-trial, result in py normally distributed around
N/2, and initial configurations with densities close to N/2 are the most difficult
for wait-free binary majority consensus [MHC93, Fuk97]. In our simulations we
mainly use test sets generated with a flip-coin approach as it is the simplest and
the most intuitive one. We compare the convergence rate obtained from test sets
generated with both flip-coin and uniform pgy distribution in Section 4.3.1.

Solutions Obtained by Evolutionary and Genetic Programming

The binary majority consensus problem has been in the focus of complex sys-
tems scholars for several decades. Apart from studies offering deterministic and
randomized human-designed solutions, we would like to distinguish studies that
approach the problem with genetic and evolutionary programming, for they have
achieved some of the best results of their time. Evolutionary and genetic pro-
gramming use a “black box” approach when a system is evolved by means of
state transitions and permutations to satisfy a given fitness function. It case of
consensus, a system is expected to evolve rules that can provide a distributed
agreement. In such a case the scholar defines the fitness function, transitions and
permutations, but does not know the output of the algorithm from the beginning
of the simulation.
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Using this method, in the early 90’s Das and Mitchell [DMC94, DCMH95,
MHC93, MCH94] have tackled the distributed consensus, offering some of the
most comprehensive papers on the problem. Later, Juille and Pollack [JP9S]
approached the density classification with slightly more complex tools, offering
yet again the best solution to a date. However, later development of randomized
algorithms resulted in algorithms with even higher efficiency.

2.5 Randomized Consensus Algorithms

Randomization is a technique that utilizes random disturbances to increase the
convergence rate and the fault tolerance of consensus algorithms [Asp03]. The
controlled randomizing intrusions were initially offered as a tool to overcome the
impact of Byzantine faulty nodes in relatively complex multi-step consensus al-
gorithms. Randomization can be beneficial due to its relative simplicity and be-
cause it does not require relaxed system restrictions. Additionally, stochastic
disturbances are intrinsic for various real-life distributed systems and can be eas-
ily utilized. Intensive studies on randomized consensus can be traced back for
more than thirty years to an algorithm proposed by Michael Ben-Or [BO83] that
solves consensus with faulty nodes in a fully asynchronous system. Since then sev-
eral randomized algorithms were proposed [Asp03, BR92, Cha96, FZ08, CUBS02,
FB81, SSW91, MNC10]. These works study consensus with various types of ran-
domization and restrictions, showing increase in convergence rate and fault toler-
ance, but most of the proposed algorithms are complex or require relaxed system
restrictions.

Simple algorithms have low fault-tolerance, do not guarantee the convergence,
and the best ones can strongly deteriorate with disturbances [GKL78, MMDAO4].
This is why the impact of randomization on simple consensus algorithms and,
in particular, on wait-free binary majority consensus was not extensively studied:
Moreira et al. studied the impact of random errors and topology on GKL and SM,
and Fatés [Fat13] considered Traffic Majority consensus with random switching.
In this work we focus on simple algorithms that can exhibit efficient system-wide
coordination in restricted distributed systems with noise, message loss, errors, and
random topology.

Principles
There are two common approaches to introduce randomization in the system.

First approach assumes randomization of the environment, e.g., by noise [HM07a],
random delays [BHKPS06] or randomly switching topologies [KBO06]. Second ap-
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proach assumes randomization within the algorithm, e.g., noisy scheduling, ini-
tially offered by [BT85] and later developed by [Asp02].

Benefits

Randomized consensus can overcome the “phase-lock” or “clustered” states of the
system due to random disturbances that can destabilize such states. In terms of
complex systems theory, a “phase-lock” or a “clustered state” is a stable attrac-
tor of the dynamic system. Such a state is undesirable but stable and is often
reached by the system. In a binary majority consensus system such state can be
represented by a network of nodes where there exist clusters of nodes that have
the same values. In such clusters nodes do not change their states, except for the
nodes at the borders of the cluster that may switch back and forth between states
of the bordering clusters. Figure 2.4 shows examples of such systems. Figure 2.4a

Node, ¢ Node, ¢ Node, ¢
0 50 100 0 50 100 0 50 100
0 01 - 0 o m——T
- 90 - 90 - 90
Gé 100+ Gé 100 - Ggﬂ 100 ;4%
= = =
{ , { {
150 150 - 150
200 200 200
a) Synchronous GKL, b) Synchronous SM, ¢) Asynchronous SM,
system converges to the network evolves to stable  clusters disturbed by
majority state clusters noise, system converges

Figure 2.4: State evolution in ring lattices. N =99, K = 3.

presents a synchronous GKL that successfully solves the consensus by converg-
ing to the state that corresponds to initial majority. Figure 2.4b shows how SM
consensus clusterizes the system into stable regions (clusters) of nodes having the
same state, so that the system does not agree. Figure 2.4c shows SM consensus
randomized by noise: noise dithers the clusters and promotes consensus.
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Limitations

Randomization adds stochastic intrusions to the system and affects the conver-
gence process. In particular, agreement itself becomes probabilistic [Asp03]. In a
randomized consensus system, agreement can be guaranteed, even with presence
of faulty nodes [BO83, AT12], but the exact moment of agreement cannot be pre-
dicted. This condition can complicate the applicability of randomization to the
wait-free consensus algorithms. There have been proposed randomized wait-free
consensus algorithms [Cha96, BR92] but these solutions are complex and only a
few address the binary majority consensus problem. In this thesis we do not relax
the connectivity and time restrictions of the wait-free systems. We focus on the
simple algorithms for binary majority consensus because, despite the simplicity,
they were shown to perform global coordination in restricted distributed systems.

2.6 Contributions and State of the Art

Let us briefly summarize how the contributions of our work complement preceding
research. We have already mentioned that the binary majority consensus is a sub-
class of general consensus problem which is often investigated with restrictions
in connectivity and execution time. Tables 2.2 and 2.3 show how our work com-
plements the previous studies on binary majority consensus with disturbances.

Table 2.2: Binary majority consensus in various conditions.

Rule  System Size Connectivity Synchrony pg Ref.
GKL N > 149 K =3 full Gaussian, [MHC93]
Uniform
SM N > 149 K>3 partial Gaussian  [MMDAO04]
GKL N =149 K =3 partial Gaussian  [MMDAO4]
™ N =149 K = full 0.9 [Fat13]
Fuk§ N =149 K=3 full 0.5 [Fuk97]
GKL, N <149 K<3 none, full, Gaussian, Chapter 4
SM partial, Uniform

Table 2.2 summarizes the studies on standard algorithms for binary majority
consensus in different conditions, including varied system size N, number of neigh-
bors K, synchrony level and distribution of initial density py. It shows that in our
investigations we address the influence of conditions that were not covered previ-
ously, such as the influence of weak connectivity, small system size and noise. This
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is motivated by a distributed decision making in noisy wireless sensor networks.
Such systems are weakly connected and rarely exceed a few hundred nodes in
size. The impact of additive noise on simple consensus algorithms was not widely
studied due to the their initially low efficiency and robustness that can further
deteriorate with noise.

Table 2.3: Binary majority consensus with disturbances.
Disturbed by

Rule Noise FErrors Mess. Loss Topology Faulty nodes Ref.

GKL, — v — Global, — [MMDA04]

SM WS

GKL VvV — — — — [GKLT78]

GKL, Vv — v Global, Persistent, Chapters 4

SM WS, Byzantine and 6
Waxman

RNM Vv v v WS, Persistent, Chapters 5
Waxman, Byzantine and 6
localized

Table 2.3 classifies research on randomizing impact of various disturbances,
such as noise, errors, random topology and faulty nodes. It indicates that in our
research we investigate the previously not covered impact of noise, errors and
topology randomization. For the first time we extend this by studying the impact
of random message loss and faulty nodes of different type, with a focus on their
positive impact. Let us describe the disturbances considered in this work in more
detail.

2.7 Randomization Schemes Considered in This
Work

In this thesis we investigate the impact of randomization on binary majority con-
sensus. We focus on randomization by topology and random neighbor selection,
and disturbance by errors, noise, message loss. Let us briefly describe these tech-
niques.

Randomization by Topology

Previous works [MMDAO04, Bea05, KB06] mainly consider global topology ran-
domization by the underlying network topology. In our work we also consider
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this type of randomization, where the implementation of the algorithm itself is
adjusted to perform in both ordered and randomized networks, without “actual
knowledge” of the underlying topology. Along with this scheme we implement
a new local-scope topology randomization scheme by random neighbor selection,
described in Section 2.4.4. In this scheme each node can randomly select C' out
of 2K neighbors provided by the network, without altering the underlying net-
work topology and keeping the connectivity within the boundaries of the reference
setup.

Randomization by Neighbor Selection

Let us briefly elaborate on topology randomization by neighbor selection. Ran-
domization by neighbor selection is implemented in a way that leaves the under-
lying network topology intact and allows for logical topology changes at each time
step that can inhibit network clustering. The network is generated once in the
beginning of the simulation, and each node on the network is connected to its
neighboring nodes with bidirectional links; these nodes form a list of its neighbors
S. At each time step ¢t € {0, ..., T} nodes can randomly select neighbors from the
list S,||S|| = 2K to receive messages from. We introduce two random neighbor
selection procedures:

e update-biased neighbor selection;
e uniform or “balanced” neighbor selection.

The motivation behind these schemes grounds in changing network topology that
can influence the synchrony level. In the networks where a partial synchrony or
an update sequence can be established, the first scheme can be used. The second
one can be beneficial in random topologies, where the synchrony or the update
sequence are disrupted. We explain these schemes in detail in Chapters 5 and 6.
We then investigate the impact of random neighbor selection as a sole source of
randomization and in combination with additional randomization by noise and
errors.

Randomization by Noise

In this work we consider additive noise of two types, Additive White Gaussian
Noise and Additive White Uniform Noise. We study influence of additive noise
on SM, GKL, and RNM in Chapters 4, 5 and 6.

Randomization by Errors

Positive impact of randomization by errors was previously reported by Moreira et
al. [MMDAO4]. We investigate the impact of low levels of errors in addition to
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random neighbor selection in Chapter 5. This allows

Randomization by Message Loss

For the first time we simulate systems with stochastic message loss in Chapters 4, 5
and 6. We apply message loss independently and jointly with noise and errors to
compare their sole impacts with the combined influence.

Noise, errors and message loss are present in most of the real-life networks, but
are generally considered as a negative influence. Our studies can exhibit whether
networked nodes in a consensus system can utilize the beneficial impact of these
disturbances rather than allocate the scarce resources to eliminate it.

Randomization by Faulty nodes

A Byzantine faulty node with arbitrary failure can act as a noise generator. Mor-
eira et al. [MMDAO4] show that binary errors can promote consensus. For the
first time we implement faulty nodes with a reduced state space which act as er-
ror generators, switching between possible states o € {—1,1} and 0 € {-1,0,1}.
The positive and negative impact of faulty nodes is investigated in Chapter 6.

23






CHAPTER
System Modeling

3.1 Introduction and Motivation

Due to the distributed execution manner and restrictions in connectivity and time,
wait-free consensus algorithms are difficult for analytic investigations. For this rea-
son binary majority consensus is widely studied with use of computer simulations.
Simulations are used to model a wide range of networked interactions but often
suffer from incomplete modeling or missing assumptions [KCC05, PJJJS02].

There exist simulation engines and software libraries that are proven to be cor-
rect, and many can be found in open access. However, consensus simulations
require numerous runs and the use of third-party non-optimized simulator engines
can be time exhausting. Our simulation experience shows that an optimized self-
made simulation engine, built in C'++, can significantly reduce the simulation run
time, compared with commonly used (e.g., Python) graph libraries. Apart from
the low simulation performance third-party libraries still require significant devel-
opment effort for particular experiments. Such a development has to account for
predefined simulator features so that new features often are implemented in a non-
optimal way. These restrictions motivated us to implement our own simulation
engine.

In this chapter we explain modeling assumptions and the choice of software.
We describe the networking model, messaging system, and updating functions.
We elaborate on the system adjustments, implemented to accommodate both
the system-wide and localized randomizing disturbances, such as noise, message
loss, and asynchronous update. We illustrate the selected procedures and struc-
tures with pseudo-code listings. Our simulation engine is built using boost li-
braries (www.boost.org) after respective features of Python Networkx graph li-
brary (networkx.lanl.gov).
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3.2 Modeling Assumptions

To exhibit various aspects of the behavior of consensus algorithms we simulate
them in various conditions. In our simulations we reflect networks that can repre-
sent abstractions of real-life systems. The use of consensus algorithms is reported
in multiple diverse areas, such as distributed database management [BG84], mis-
sion planning [AH06] and other computational problems [Bea05], which are de-
scribed by different networking architectures. In addition to this, the development
of the algorithms requires comparison to the “reference” network topology, initially
introduced in [GKL78]. To study consensus algorithms in different networks we
classify them into three subclasses:

e Ordered or regular networks, such grids and lattices;

e Random networks of social and natural origin, such as fully random or Small-
World networks;

e Human-designed random networks, such as internet or wireless sensor net-
works.

We focus on simple self-organized consensus algorithms. Such algorithms account
for communication between directly neighboring networked nodes, i.e., one-hop
communications. This makes it possible to neglect the long-range network order
in favor of a close-range and reduce the first class of networks to simplest lattice
models.

Random networks of natural origin can have globally spanning links and exhibit
scale-free properties. Such networks are often modeled with Small-World graphs
that incorporate both of these features. To model such networks we use the
Watts-Strogatz (WS) [WS98] network model that can produce networks, ranging
from ring lattices to Small-World networks and fully random graphs. To describe
the scale-free phenomenon and clustering levels, latter models are often charac-
terized with a “path length” between two nodes that is combined of multi-hop
connections. As mentioned above, simple consensus algorithms only account for
single-hop communications, so we employ the term “link length/span”, described
in Section 2.3, to characterize the network structure.

Human-designed random networks such as internet or wireless sensor networks
can also have random links, but the probability of such a link strongly depends
on a distance between nodes. Intuitively it is clear that if the links in, e.g., a
wireless sensor network can span between most distant nodes, the network can
easily become fully connected. Fully connected distributed networks can pose
their own challenges that are out of scope of our research. In our paradigm
fully connected networks are seldom due to the power and communication range
constraints. To model not fully connected human-designed random networks we
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use Waxman [Wax88] networks which we define and describe in the following
sections.

Randomizing disturbances that can be utlized as a source of beneficial random-
ization can be introduced in two ways [Asp03]. First way assumes that random-
ization is provided by a networked environment (e.g., communication noise), the
second way assumes that randomization is implemented as a part of an algorithm
itself (e.g., embedded random state switching). In our simulations we implement
both approaches with independent superposition of noise, errors, and message
loss. We describe this implementation in detail in Section 3.4.

3.3 Network Modeling

Let us start with network modeling. In our simulations we implement three types
of networks:

1. 2K-connected regular ring lattice;
2. 2K-connected Watts-Strogatz graph;
3. 2K-connected Waxman graph.

We use ring lattice network as an example of ordered networks and for comparison
with reference performance figures.

To study the efficiency of consensus algorithms in abstractions of the real-world
networks, such as natural [TInY"13] and technical systems [MMO09], we employ
two commonly used network topologies: Watts-Strogatz graphs [WS98| and Wax-
man graphs [Wax88], respectively. We model undirected networks that consist
of N networked nodes. In such networks nodes are connected with bi-directional
links. Nodes that share a link are called “neighbors”.

Nodes’ Neighbors and Degree

Let us elaborate on definition of nodes’ attributes and neighborhood. We define
the link (or a connection) length of the node i to the node j as an absolute part
of the difference between indices ¢ and j. Considering, e.g., that a WS network is
initially modeled as a ring lattice we refer to a maximum link span as N/2. For
Waxman networks, however, link span is an actual Euclidean distance d € (0, 1],
randomly assigned in the beginning of simulation. We model 2K-connected ring
lattices, WS, and Waxman networks to ensure that the average degree of the node
in each of the networks is close to that of initial reference setup (see Section 3.3.1).
Here and in the following we refer to a “node degree” as an average number of
neighbors per node in the system. After initial network configuration neighbors
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of the each node compose three lists of neighbors. Let us describe them for ring
lattices. All neighbors of the node 7 form the list of neighbors S, ||S|| = 2K, S =
{i — K,...,i—1,i+1,...,i+ K}. Neighbors j € {S},j < K form the list of
left-side neighbors S, ||.S;|| = K, while neighbors j € {S},j > K form the list of
right-side neighbors S, ||S;|| = K. These lists are further used by algorithms to
access the state information of node’s neighbors.

Node Attributes

Each node in the network shares a set of properties with assigned values. Let us
illustrate it with a reduced set of attributes of the non-faulty node ¢« = 1 at the
time ¢ = 0, in a ring lattice:

e node number =1

e is faulty = false

e has random failure = false

e has full random failure = false
e current state = —1

e new state =0

e neighbors list = {98,99,0,2,3,4}
e left neighbors list = {98,99,0}
e right neighbors list = {2,3,4}

e messages received from = {}

e received state messages = {}.

These attributes are used to implement the node’s behavior (e.g., a faulty node
with a random failure) in accordance with a given network model. Let us describe
the network modeling and implementation in full detail.

3.3.1 Ring Lattice

To study the efficiency of the algorithms in a reference setup we implement a
2K-connected ring lattice illustrated by Figure 3.1. Ring lattice of N = 149
nodes, each with 2K = 6 neighbors represents a reference setup for performance
comparison.

Such a lattice is initially modeled as a one-dimensional cellular automaton of N
nodes, where each node is connected to its K following nodes. This lattice is then
closed in a ring to avoid boundary effects. Such a setup was initially offered by
Gacs et al. [GKLT78|, and later was adopted by multiple scholars for performance
comparison of binary majority consensus algorithms.
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Figure 3.1: Ring lattice of N = 15 nodes with K = 3 neighbors on each side.

3.3.2 Watts-Strogatz Graph

A Watts-Strogatz (WS) graph can produce networks that incorporate the small-
world phenomenon and the properties of scale-free topologies [BR99, WS98,
Wol02]. It can be employed to represent social and natural networks [WS98,
Yan01, MN04, NMO05]. Investigation in such networks can exhibit the behavior
of consensus algorithms in abstraction of natural random networks. It can also
show whether stochastic topologies, intrinsic to such networks can be beneficial
for distributed decision making.

Initially, the WS network is created as a 2K -connected ring lattice, and at this
point the network matches the reference setup. Next, every link of the node 7 to
the node j is rewired with rewiring probability P, i.e., deleted and reassigned to
a random node z ¢ {i — K,...,i+ K}. Varying P from 0 to 1 results in the
transition from a regular ring lattice to a random graph: at P = 0, the network
is a regular 2K-connected ring lattice. At P = 0.5, it can be represented as a
Small-World network, where ~ 50 % of links are random. At P = 1, all links are
random and the network is a pure random graph.

Rewiring

We implement pairwise rewiring procedure as follows. For a node n; a regular link
to a node ny is rewired to random nodes on the network j,z ¢ {i — K,...,i+ K}
in a following manner:

1. node’s ny entry nsy is substituted with 7j;
2. node’s ny entry ny is substituted with z.

This pairwise rewiring procedure is illustrated by figure 3.2 Such a rewiring proce-
dure increases the number of links that span for more than K indices, but preserves
the average network connectivity. Dynamics of the link span in WS network with
increasing rewiring probability P is shown in Figure 3.3.
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Figure 3.3 shows that with growth of P the average link span (link length)

increases from < K to ~ % Thus, growth of P leads to increase of system

interconnectivity, when more nodes have links spanning through the whole system.
This transition is illustrated in Figure 3.4. Interconnectivity of the network is an
important property for the distributed consensus, as globally spanning links can
significantly increase the efficiency of consensus algorithms.

WS graph generation in our simulator is provided by the procedure
GenerateConnectedW S(), illustrated by the following code. This procedure is
implemented after the [WS98| and the respective graph generator from Networkx
libraries.

void GenerateConnectedWS
(int nodes_number, int neighbors, float rewiring, int tries){
int tries_counter =0;
bool graphDone=false
cout<<”WS_started”’<<”\n" ;
while (tries_counter<tries && !graphDone){
nodes_list . Clear ();
//Fill in the links, as a ring lattice
for (int i=0;i<nodes_number;i++){
for (int k=1;k<=neighbors;k++){
PutEdge(i,(i+k)%nodes_list.size ());

}

//Rewiring
for (int i=0;i<nodes_list.size ();i++){
for (int k=0;k<nodes_list[i].neighbors_list.size ();k++){
if (CheckEdge(i,nodes_list[i].neighbors_list[k])){
RewireEdges (i ,nodes_list [i].neighbors_list [k],rewiring);
}
}
}
//Neighbors’ lists fill in
for (int i=0;i<nodes_list.size ();i++){
SortNeighbors (i, neighbors);
}
tries_counter-++;
graphDone=CheckNeighbors (neighbors);

if (graphDone){
cout<<"WS_.done”<<endl ;

}

else {
cout<<"WS_NOT._done , _tries _exceeded”’<<endl;

}

AverageDegree ();
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a) Regular links b) Rewired links

Figure 3.2: Pairwise rewiring of the nodes n; and ns.
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Figure 3.3: Average link span in WS networks with growing P. Networks of
different size with different number of neighbors.
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Figure 3.4: WS network with growing P, N = 15, K = 2.
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3.3.3 Waxman Graph

Graphs proposed by Bernard Waxman [Wax88] can be used to model human-
designed random networks, such as the Internet [Van0l]. Simulations in such
networks can exhibit the differences in behavior of consensus algorithms between
natural random networks and human-designed random networks and provide in-
sights on design of distributed decision-making algorithms.

Unlike the WS model that can produce networks, ranging from a ring lattice to
a fully random graph, Waxman graph is an initially random network where the
probability of a link depends on a distance between nodes. A graph is built as
follows. First, for each pair of nodes i,j € {1,2,...,N},i # j, the distance d is
randomly uniformly chosen from the interval (0, 1]. Next, the nodes are linked

with probability
d
aexp | —= | , 3.1
(-5) .

with parameters a, 8 € (0, 1]. Parameters o and /3 influence the network as follows.
An increasing « yields an increasing link probability, thus increasing the average
node degree. An increasing [ increases the number of the long links compared
to the short links, thus increasing the average link length in the network. For

comparison purposes we model sparsely connected Waxman graphs with fixed
a = 0.05 and § € [0.01,0.4].

b)a=1,5=05

Figure 3.5: Waxman graph of N = 15 nodes with «, 5 € {0.5,1}

Within the given parameter range of o and 3, we artificially limit the average
node degree and average link length to match that of the WS model (see Fig-
ure 3.3). Dynamics of the node degree in a Waxman network of N = 99 nodes,
depending on § with fixed o = 0.05, is shown in the Figure 3.6

The Waxman network is generated by procedure GenerateConnected Wazxman(),
which is illustrated by the following pseudo code.
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Figure 3.6: Nodes connections in Waxman networks of different size with growing
B, a=0.1

bool graph:: GenerateConnectedWaxman
(int nodes_list , float alpha_val, float beta_val, int tries){
int tries_counter=0;
bool IsConnected=false ;
while (! IsConnected && tries_counter<tries){
nodes_list . Clear ();
distance_matrix=FillDistances ();
for (int i=0;i<nodes_list.size ();i++){
for (int k=0;k<nodes_list.size ();k++){

if(il=k){
ConnectNodes(i,k, alpha_val, beta_val);
¥

¥

}

IsConnected=LimitNodeDegreeToWS ();
tries_counter-++;

if (! IsConnected){cout<<”WM_.Not._Done”’<<endl;}
else{cout<<™M._Done, .”<<” Tries="<<tries <<endl;}
WaxNbSort () ;

WaxAvDegree () ;

return IsConnected;

This procedure returns a Waxman graph of the second type, where the distance
between each pair of nodes {7,;j} is randomly chosen between 0 and 1. It is
implemented after the [Wax88] and the respective graph generator from Networkx
libraries.
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Our simulations show that with starting conditions o = 0.05 and § = 0.04,
Waxman networks of, e.g., N = 99 nodes are not guaranteed to be connected. In
this case, node’s i sets of neighbors S; and S, can be empty. These conditions
make Waxman graphs difficult for consensus algorithms like GKL. State-direction
bias of GKL requires that a network structure is known, and “left” and “right”
directions are predefined. If this condition is not met, GKL efficiency can degrade
from ~ 82% to ~ 1%.

3.3.4 Synchrony and Update Modes

As we explain in Section 2.4.2, the synchrony level in consensus studies generally
accounts for “phase shifts” between nodes, but assumes that the decision frequen-
cies (or the period between consequent decisions for each node) are equal for all
nodes. Under this assumption, in our simulations we implement three types of
update modes:

e synchronous;
e asynchronous sequential;
e fully asynchronous.

In the synchronous mode all nodes calculate the newState and then simultane-
ously update their currentState. In the sequential asynchronous update mode
nodes are updated according to their indices, e.g., 0 — N or N — 0. Update
sequence is generated once in the beginning of the simulation run. In the fully
asynchronous mode nodes are updated randomly, independent from each other
and the update sequence is also generated once in the beginning of simulation.
Updates are implemented at a node level via the Update() function illustrated by
the following pseudo-code:

void node:: Update (){

if (! faulty){
//If the node is not faulty

if (newState <0) {currentState=—1;}
else if(newState>0) {currentState=1;}

else
if (randomFailure && !randomExtended){
//Two—state faulty node changes its Stateue randomly in{—1,1}
currentState= 2x(rand ()%2) — 1;

else if(randomFailure && randomExtended){

//Three—state faulty mnode
currentState= (rand()%3) — 1;

}

J/If faulty persistently — do not update, keep faulty state
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receivedOld=receivedStates;
receivedFromOld=receivedFrom
receivedStates.clear ();

}

One can see how the nodes attributes alter behavior of the update function. These
alterations implement faulty node behavior, in accordance to the respective failure
model (for further details see Section 3.5). In this thesis we present simulation re-
sults for fully synchronous and asynchronous sequential updates, unless mentioned
otherwise.

3.4 Message Exchange and Randomization

In our model a node 7 can access state information of node j via state information
message 0; ;. Message exchange is organized via procedure GetState(). This pro-
cedure takes the current state of the sender Node (node j), changes it according
to the level of system noise, errors, or probability of message loss and puts it into
a receiving buffer received of the receiver Node (node i). Procedure is illustrated
by the following pseudo-code:

void graph:: GetState(node receverNode, node senderNode){
float ReceivedState;

float MesslossSample=(float )rand () /RANDMAX;

float ErrorSample=(float)rand ()/RANDMAX;

float NoiseSample=(float)rand ()/RANDMAX;

//Message is lost?
if (MesslossSample<MessageLossProbability ){return;}
else{

//If message is mot lost
ReceivedState=SenderNode. currentState;

//Erroneous State Message
if (ErrorSample<ErrorProbaility ){
ReceivedState=—SenderNode. currentState ;

else
ReceivedState= SenderNode.currentState ;

}

if (NoiseSample<NoiseProbability){
//Additive White Uniform Noise
if (UniformNoise){
ReceivedState = SenderNode.currentState +
UniformFloat (NoiseAmplitude );

}
//Additive White Gaussian Noise

35



3. SYSTEM MODELING

if (GaussianNoise){
ReceivedState = SenderNode.currentState +
NormalFloat (NoiseAmplitude );

}

//Zero noise — receive correct state
ReceiverNode.receivedState . push_back (ReceivedState );
ReceiverNode.receivedFrom . push_back (SenderNode ) ;

}
}

This listing shows that with randomization by noise, message loss and errors, a
received state message o, ; can be corrupted. In a disturbance-free case, correct
message is received. In a similar way the node i own state o;; can be corrupted.
Such a scheme allows us to investigate whether explicit stochastic disturbances,
intrinsic to natural networked systems can positively influence the simple consen-
sus algorithms. In our simulations we focus on noise, errors, and message loss to
investigate whether such disturbances could trigger an increase in convergence.

3.4.1 Randomization by Additive Noise

In the reference system [GKL78, MMDAO4] node i receives state information from
the node j via the state information message o; ;[t]. Procedure GetState() imple-
ments noise added to a received state information by the following transformation:

055 [t] — 055 [t] + qbi,j . (32)

Here, the random value ¢; ; is a sample of noise. We implement two types of noise:
Additive White Gaussian Noise (AWGN) where ¢;; ~ N(0, (5)?), and Additive
White Uniform Noise (AWUN) where ¢;; ~ U( — A, A), with the magnitude
A € [0,4]. The range for the noise amplitude is selected empirically to account
for both positive and negative influences.

Previous studies mostly consider AWGN as the most common noise type in real
networks [KMO07, CFFT07], and AWUN is generally used to model response of
filters and amplifiers [VDO02].

3.4.2 Randomization by Message Loss

To model message loss we employ a simple probabilistic model where a state
information is lost with the probability £ € [0,1), i.e.:

0, [t], with probability (1 — &)

oijlt] — { 0, with probability £ (3:3)
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3.4.3 Randomization by Errors

Positive impact of randomization by errors was reported by Moreira et
al. [MMDAO04]. We consider errors as additional source of randomization in Chap-
ter 5. Errors are modeled as a probability of receiving the wrong state information:

0, j[t] with probability (1 —n)

—0; ;[t] with probability 7 (3.4)

oi[t] = {
In Chapter 5, we empirically select a narrow interval n € [0.05,0.08] that provides
an optimal level of randomization for the investigated randomized consensus.

3.4.4 Scope of the Randomization

We apply randomizing disturbances in two schemes where the node’s own state
information is: (a) disturbed by noise and message loss or (b) free of randomizing
disturbances. In the first scheme o; is influenced by noise, errors, and message loss,
i.e., 0; # 0;,. This case corresponds to the scenario of distributed detection where
the network is expected to agree on a binary state (e.g., whether the detected event
took place or not), while each node has noisy inputs from unreliable sensors.
In such a scenario, the sensing subsystem is “decoupled” from decision-making
subsystem of the networked node.

In the second scheme, o;; is free of randomizing disturbances. In this scenario
noise and message loss present node-to-node communication disturbances that do
not affect the node’s ¢ own state.

To allow for multiple combinations of influences we apply noise, errors and
message loss independently from each other. In such a model, a node can loose
a meaningful state message, but still receive a noise sample, or receive an erro-
neous message additionally affected by noise. Independent influence is a crucial
requirement for investigating the combined influence of randomizing disturbances.

3.5 Faulty Nodes

To investigate the robustness and fault tolerance of the consensus algorithms we
implement faulty nodes as a special type of nodes that counter the consensus.
At a starting time t = 0, M nodes are added to N non-faulty nodes, to avoid
bias of the initial configuration. Network topology is then created for all N + M
nodes. After adding M faulty nodes to the system, they are labeled as faulty.
These nodes counter consensus according to their failure model. Let us describe
the faulty node attributes for, e.g., a faulty node with persistent failure model in
a network with py > 0:
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e is faulty = true (updates independently from received state messages);
e randomly failing = false (no random failure, oy ¢ {—1,1});

e cxtended random failure = false (no random and no full failure, o), ¢
{-1,0,1}).
e current state = —1 (opposite to the py)

These attributes alter the node’s Update() function behavior, as we describe in
the following sections.

Research on the fault tolerance generally considers faulty nodes with Byzantine
failure model. Byzantine faulty node is a node that can have arbitrary failures,
except full or crash failures [Asp03]. We consider two failure models for faulty
nodes: (a) faulty nodes with random failure and (b) faulty nodes with persistent
failure. In the two following sections we describe their modeling and corresponding
adjustments to the system.

3.5.1 Faulty Nodes with Random Failure

Faulty nodes with random failure ( “non-persistent faulty nodes”) are implemented
after Byzantine random failure with a reduced state space. Such nodes change
their broadcasted state randomly, independently from the state information re-
ceived from their neighbors.

In this thesis we investigate two types of randomly failing faulty nodes:
e two-state faulty nodes with random failure states o), € {—1,1};
e three-state faulty nodes with random failure states oy € {—1,0,1}.

First case presents a faulty node that broadcasts correct and erroneous state in-
formation with equal probabilities. Second case additionally implements a state
of sending no information, i.e., full or crash failure.

3.5.2 Faulty Nodes with Persistent Failure

Faulty nodes with persistent failure (“persistent faulty nodes”) are modeled as
follows. After M nodes are added to the system and labeled as faulty, they
are assigned with a faulty value oy, opposite to the initial majority. Ie., if
SN0 < 0,00 = 1 and if 32=) 03[0] > 0,00 = —1. During consensus
process such faulty nodes broadcast their state but do not update it. Unlike faulty
nodes with random failure, faulty nodes with persistent failure provide enduring
inhibition for consensus.

38



3.6 CONSENSUS TERMINATION

a) Clustered faulty nodes b) Distributed faulty nodes

Figure 3.7: WS network with clustered and distributed faulty nodes.

3.5.3 Layout of Faulty Nodes Over the Network

We implement two schemes of faulty node layout over the network, illustrated in
Figure 3.7: clustered and distributed. With the clustered layout all faulty nodes
are located next to each other, and the location of the cluster is randomly chosen
at each simulation run. With a distributed layout all faulty nodes are randomly
placed over the network independently from each other. We investigate consensus
excluding faulty nodes, where only N non-faulty nodes are expected to reach an
agreement.

3.6 Consensus Termination

We consider a network to reach an agreement if all N non-faulty nodes have agreed
on the same state within a certain time period T, and this final state corresponds
to the initial majority of values [GKL78]. In other words, the system converges
if (a) > ,0:[0] < 0 and there exists t, < T so that o;[t] = —1,V ¢, or if (b)
Y. 0:[0] > 0 and there exists t. < T so that o;[t.] = 1,V 4. If this condition is
met, the algorithm is terminated. Algorithms are always terminated after time
T whether agreement has been reached or not (“wait-free” consensus). Time is
divided into steps of equal size A. Without loss of generality, we assume that
the duration of one time step A equals to one unit of time. The time steps are
indexed by t = {0,1,2,...,T} for simplicity of notation. We use T = 2N as
initially proposed by Gacs et al. [GKL78]. The termination condition is verified
with a function CheckConvergence() illustrated by the following pseudo-code:

39



3. SYSTEM MODELING

bool CheckConvergence (){
bool Converged=false;
step_density =0;

for (int i=0;i<nodes_list.size ();i++){
if( !nodes_list[i].faulty){
step_density += nodes_list [i].currentState;
active_nodes_list++;

}
}
}
if ((step_density =— active_nodes) && (Initial_density >0)){
Converged=true;
}
else if ((step-density = —active_nodes) && (Initial_density <0)){

Converged=true;

else if ((active_nodes — step_density)!=0){
Converged=false;

else{
Converged=false ;

}

return Converged;

}

3.7 Initial Configurations

At the beginning of each simulation run, every node i € {1,..., N} is assigned
with binary state o;[0] € {—1,1}. A set of 0;[0] is called initial configuration, and
denoted as I. The sum of all initial states 3..—s 0;[0] is called the initial density
and is denoted as py. Each state oy in the initial configuration is acquired by a
coin-flip trial, returning —1 and 1 with equal probability.

Some algorithms can be sensitive to initial configurations with the same density
but different permutations. Due to this fact, some scholars argue that sufficient
diversity of initial configurations is more important than the po distribution among
them. They simulate test sets combined of initial configurations with uniform
density distribution [MHC93]. We implement such test sets as well, for comparison
purposes.

Test sets are generated preliminary to the simulation and stored in separate
files, each containing 10.000 initial configurations. This simple division enables to
run parallel threads to reduce the simulation time. Test sets of I with uniform dis-
tribution of py are obtained with the Python Numpy function numpy.random.uni-
form(). Test sets generated by a coin-flip procedure are obtained with Python
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function random.randint(). In the following chapters we present performance
figures registered over test sets obtained by a flip-coin trial, unless mentioned
otherwise.

3.8 Summary

Due to the distributed execution manner and restrictions in connectivity, syn-
chrony, and time consensus algorithms are difficult for analytic investigations and
often are studied be means of computer simulations. Computer simulations of
consensus algorithms can be time-exhausting. The use of third-party simulation
libraries and engines can save the development effort, but later it can result in
a longer simulation time. Moreover, such third-party simulation engines often
have limited available features and require a significant effort to extend the func-
tionality. For these reasons we develop our own simulation engine. It is built in
C++ using Boost libraries (www.boost.org) after the original models presented
in [GKLT78, Wax88, WS98, Wat99]. The simulation engine is tested with the re-
spective features and graph generators of Networkx library (networkx.lanl.gov).

In this chapter we explain motivation for the network modeling and the choice
of software. We explain the important network features, attributes of the net-
worked nodes, and messaging system. We describe and explain the character of
randomizing disturbances and faulty nodes. Finally we illustrate the implemen-
tation process for the selected simulator features.
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CHAPTER
Standard Algorithms

with Randomization

4.1 Introduction and Motivation

Consensus algorithms can be used in distributed systems where centralized de-
cision making is difficult or impossible. Such conditions can arise in distributed
detection and tracking [GC96], database management [BG84, Kum91, Tho79], or
mission planning [AHO6].

Algorithms that perform such coordination in real-life networked systems should
be efficient and robust towards different types of faults. In the last decades several
new algorithms have expanded boundaries of consensus performance. We describe
these algorithms and the approaches that can increase the performance of the
consensus in detail in Section 2.4.6. Randomization is one of the approaches
that utilizes random disturbances to improve both performance and robustness of
consensus algorithms. Randomization is mainly used to increase the robustness
towards faulty node behavior. It is generally embedded in relatively complex
multi-step algorithms [Asp03]. The beneficial impact of randomization on simple
consensus algorithms has only been studied recently [MMDAO4, Fat13].

Binary majority consensus, described in Section 2.2, is a subclass of simple
consensus algorithms that steer a system with initial random binary states to a
common state that corresponds to the initial majority of state distribution. It has
more strict termination conditions than general binary consensus and thus can be
more sensitive to disturbances.

In Section 2.4 we describe recent studies on binary majority consensus with
random disturbances that increase the efficiency of algorithms. In particular,
Moreira et al. [MMDAO4] study binary majority consensus in Watts-Strogatz
(WS) networks with errors. They show that with randomization by errors in
WS networks Simple Majority (SM) consensus achieves efficiency of > 85%, while
Gacks-Kurdyumov-Levin (GKL) consensus (known among the best algorithms)
generally degrades. A recent paper by Fates [Fat13] shows that another binary
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majority consensus algorithm, namely Traffic Majority (TM) can achieve an effi-
ciency of 90% with randomization.

SM, TM and GKL are wait-free consensus algorithms, i.e., they are terminated
after a certain time 7', whether agreement was reached or not. Such algorithms,
capable of steering a distributed system to a required state in a fixed period of
time, can be beneficial in networked control systems.

These results motivated us to investigate binary majority consensus with a wider
set of disturbances to determine how randomization affects their efficiency. In this
chapter we study SM and GKL in WS and Waxman networks with randomization
by noise, message loss, and topology. Main contributions of this chapter can be
summarized as follows:

e Randomizing disturbances by noise, message loss and topology can provide
different types of cluster-breaking influence, beneficial for simple consensus
algorithms;

e These disturbances indicate a cumulative beneficial effect if applied jointly;

e An optimal combination of such disturbances can significantly promote SM
consensus, even in asynchronous networks.

We show that these new effects are evident in ring lattices and random and asyn-
chronous Watts-Strogatz and Waxman networks. Next, we illustrate them with
examples of system evolution and explain the underlying mechanisms. Some of
the results presented in this chapter were published in [1, 5].

4.2 System Model

In this chapter we study SM and GKL in ordered and topologically randomized
networks with additive noise and message loss. The efficiency of an algorithm for
the binary majority consensus is generally measured in a “reference” setup that
we describe in Chapter 3.

To measure the efficiency of the algorithms in randomized environments with
disturbances, we adjust the reference networking model. In the following we briefly
describe the implemented adjustments.

We study consensus algorithms in the following types of networks:
e Ring lattices as an example of ordered networks;
e Watts-Strogatz random networks;
e Waxman random networks.

Ordered networks are implemented as a one-dimensional ring lattice (refer-
ence setup), described in Section 3.3.2. Watts-Strogatz ([WS98]) and Waxman
([Wax88]) graphs are described in detail in Sections 3.3.2 and 3.3.3, respectively.
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4.2.1 Algorithm Modification for Random Networks

The transition from a ring lattice to a random network should not affect the
algorithm implementation. Let us consider a transition from a ring lattice to,
e.g., a WS random network. Recall that the WS model can produce networks
ranging from a ring lattice to a random graph with rewiring probability P € [0, 1].
Figure 4.1 illustrates a network of N = 15 nodes, each with 2K = 4 neighbors,
with different rewiring probabilities P.

b) P = 0.5,
Small-World

Figure 4.1: WS network of N = 15 nodes with K = 2 neighbors on each side.

a) P =0, ring lattice ¢) P =1, random graph

We implement the transition from a ring lattice to the random network by the
following transformation. Instead of referencing the closest neighbors of a node
by their indices (i.e., i—1 or i+1 as allowed in ring lattices) we reference neighbors
by lists of the node’s neighbors: list of all available neighbors S, list of left-side
neighbors S, and list of right-side neighbors S,.. In the ring lattice such an adjust-
ment is fully reversible: a neighbor index is directly correlated to a neighboring
node’s actual number, e.g. a third neighbor to the right r3 is the actual third
node to the right, ¢ + 3. In random networks, however, the situation is different.
Let us describe it for Watts-Strogatz network. In a Watts-Strogatz network lists
of neighbors are defined at the initial stage of the network configuration in accor-
dance to the neighbors’ indices: S ={i— K,...,i+ K}, S;={i—K,...,i — 1},
S,={i+1,...,i+ K}. Next, links to these neighbors are randomized according
to the WS topology (see Section 3.3.2), but the referencing remains the same,
e.g., the third neighbor to the right from the node i (in a ring lattice, node i — 3)
becomes the third element of the list of right-side neighbors S, — r3, which in
WS network can be a random node, i.e., not always r3 = ¢ + 3. These lists are
further used by consensus algorithms to access the respective neighbors. A similar
transformation is implemented for Waxman networks.
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Simple Majority Consensus

To study SM consensus in random networks with message loss and noise, the
algorithm should be adjusted to match the new system model. We modify SM,
defined in Section 2.1, using the state information messages o; ; randomized by
noise and message loss, and a list of node ¢’s neighbors S:

jes
The update function G(x) remains as defined in Section 2.2:

—1 forxz <0,
Glo) = { +1  for x > 0. (42)

SM consensus is arguably the simplest algorithm for binary majority sorting,
and has a balanced design: in ring lattices each node 7 receives an equal number
of messages from both sides of the lattice.

Gacs-Kurdyumov-Levin Consensus

GKL consensus is adjusted to perform in randomized networks as follows. We
substitute the neighbors ¢ — 1 and ¢ — 3 with first and third neighbors [; and I3
from the list of left-side neighbors of the node 7, S;. A similar transformation is
implemented for right-side neighbors:

G(oilt) + o[t + oiaslt]) for oilt] <0,

[ ] G 054 [t] + 04, [t] + Oj.rs [t]) for O'i’z‘[t] > 0.

(4.3)

In GKL, each node chooses from which side to receive messages on the basis
of its own current state. It enables GKL to “wash out” clusters of nodes having
the same states. This bias provides for high efficiency of GKL in ring lattices
but it can lead to low efficiency if the network structure or an update sequence is
disturbed, as we will show in Section 4.3.

The transition from a ring lattice to WS and Waxman networks preserves the
algorithm function and allows to randomize the underlying network topology. Such
a topological randomization can affect the update sequence of both algorithms and
the built-in direction bias of GKL.
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4.2.2 Randomization by Noise and Message Loss
Additive Noise

To introduce noise, we modify the reference system as follows. In the reference
system the node i receives state information from the node j at time ¢ via the
state information message o; ;[t]. We implement noise added to a received state
information as described in Section 3.4.1.

We implement two types of noise: Additive White Gaussian Noise (AWGN)
where ¢; ; ~ N (0, (4)?), and Additive White Uniform Noise (AWUN) where ¢; ; ~
U(— A, A), with the magnitude A € [0, 4].

Previous studies mostly consider AWGN as the most common noise type in real
networks [KMO07, CFF107], and AWUN is generally used to model the response
of filters and amplifiers [VDO02].

Message Loss

Message loss can severely decrease the performance of the studied algorithms,
since a node decision is based on state information received from other nodes.
If a message is lost, a node can come to a state when the sum of all received
state messages Y ¢0;; = 0 and the state of the node stays unchanged. In our
simulations we implement message loss as described in Section 3.4.2.

4.2.3 Scope of Randomization

We study randomizing disturbances in two schemes. In the first scheme the own
state of the node o; is influenced by noise and message loss, i.e., 0, # 0.
This case corresponds to the scenario of distributed detection where the nodes
are expected to agree whether the detected event took place or not, based on
noisy inputs from unreliable sensors. In such a scenario, the sensing subsystem is
“decoupled” from the decision-making subsystem of the networked node.

In the second scheme, o; is free of randomizing disturbances. In this scenario
noise and message loss represent node-to-node communication disturbances that
do not affect the node i’s own state.

4.2.4 Initial Configurations and Update Modes
Recall that a system is expected to converge to a binary state given a set of N

initial random binary states called initial configuration. We use initial configura-
tions obtained by a coin-flip trial. In addition to this, for comparison purposes we
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also use initial configurations with p ~ U(—N, N) (for further details on initial
configurations refer to Section 2.4.6).

Update Modes

System-wide synchrony is important for a consensus process [DDS87]. We simulate
systems with synchronous and asynchronous updates. In the synchronous mode,
all nodes update their states simultaneously. In the asynchronous sequential mode,
nodes are updated sequentially, one after another, according to their indices. In
the fully asynchronous mode, nodes are updated randomly, independent from their
indices. Random update sequence is generated once in the beginning of simulation.
To update its state, a node uses the latest available states of its neighbors. Such
distributed state updates can provide network randomization in time (for more
details on system synchrony refer to Sections 3.3.4 and 2.4.2).

4.3 Performance Analysis

Performance Metrics

We use performance metrics as described in Section 2.3. For each set of parame-
ters we generate three random networks. Each network is then simulated over 30
different sets of initial configurations (each set combined of 10.000 initial configu-
rations). The resulting 90 values of R and F' are then averaged and plotted with
95% confidence intervals.

In the following sections we analyze the impact of:

e Different initial configurations (obtained by a flip-coin trial and with p ~

U(-N,N));
System size (growing N with constant K);

Different number of neighbors (growing K with constant N);

Additive noise (increasing A);

Message loss (increasing F);

Topology randomization (increasing P and ();
e Combined impact of randomization by topology, noise and message loss.

In the next section we address the influence of initial configurations and system
size on convergence rate of SM and GKL. In Sections 4.3.1, 4.3.3, 4.3.4 we inves-
tigate effects of sole randomization by additive noise, message loss and topology,
respectively. Then, we study the combined randomizing impact of these distur-
bances in Sections 4.3.5 and 4.3.6. The efficiency in random Waxman networks
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with noise and message loss is addressed in Section 4.3.7. Section 4.3.8 investi-
gates how noise and message loss affect the convergence rate of GKL and SM with
different scope of randomization. The influence of randomization on convergence
speed is studied in Section 4.3.9. Finally, Section 4.4 concludes the chapter.

4.3.1 Impact of Initial Configurations and System Size

Certain algorithms can converge with different R on two initial configurations with
the same density but different permutations. Due to this, some scholars study
binary consensus with different initial configurations that can result in different
convergence rate [MCH94].
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a) Test sets obtained by a coin-flip trial ~ b) Test sets with p ~ U(—N, N)

Figure 4.2: Efficiency of SM and GKL in ring lattices of different size.

Binary majority consensus has been previously studied in relatively large sys-
tems. Thus, Moreira et al. [MMDAO4] and Mitchell et al. [MHC93| study binary
majority consensus in networks of N > 149 nodes, showing that its efficiency
changes with growth of the system. In this thesis we approach the problem of
distributed decision making from a perspective of wireless sensor networks that
often consist of a hundred, or even fewer, nodes. This motivated us to study con-
sensus in networks of N < 149 nodes. Figure 4.2 shows that consensus algorithms
can significantly change efficiency in such relatively small systems. It presents R
of SM and GKL in networks of N € {29,...,160} nodes and synchronous and
asynchronous updates. Figure 4.2a presents convergence rate with initial config-
urations obtained by a coin-flip trial, and Figure 4.2b presents convergence rates
for test sets with p ~ U(—N, N). Their comparison shows that test sets obtained
by a flip-coin trial result in lower convergence rate for both algorithms. It also
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shows that all algorithms, except synchronous GKL, degrade in efficiency with
larger N and that SM degrades stronger than GKL.

The decrease in efficiency with growing N can be related to the fact that systems
with larger ratio % can be more prone to clustering [BR99]. The built-in direction
bias of GKL is designed to dither such clusters [GKL78], which explains the higher
R of GKL that is independent from the system size.

Figure 4.2 indicates that in networks of N = 149 nodes with test sets obtained by
a coin-flip procedure, synchronous GKL shows R ~ 82%, while asynchronous GKL
reaches R ~ 50%. It also shows that in networks of N = 29 nodes synchronous
and asynchronous SM show R ~ 15% and R ~ 40% respectively, which decreases
to R~ 0.5% at N = 149. These observations can be generalized as follows:

e the convergence rate of GKL weakly depends on the system size, while the
R of SM degrades in larger systems;

e lack of synchrony inhibits GKL but increases the R of SM.

The different response to asynchronous updates can be also explained by the
state-direction bias of GKL: asynchronous state updates can hinder this bias and
decrease the R of GKL. At the same time, asynchronous updates can provide
randomization for SM in time, and thus promote consensus. We analyze these
new observations in further detail in the following section.

Analysis of the System Evolution

Let us analyze the convergence dynamics of GKL and SM with synchronous and
asynchronous updates in ring lattices. We plot the density of the system p[t] at
every time step ¢t € {0,...,T}. Figure 4.3 presents examples of density evolution
for successfully and falsely converged networks.

Figure 4.3a presents the evolution of p over time for GKL with synchronous up-
dates. It shows that the “state-direction bias” of GKL can steer a system to both
successful (Figure 4.3a) and unsuccessful (Figure 4.3b) agreement. Figure 4.3b
indicates that unsuccessful agreement is generally a result of initial configurations
with po close to 0.

It also shows that successful and unsuccessful agreements emerge from the initial
configurations with initial densities close to 0, and that density evolution has
similar dynamics. Latter effects can be explained by the sensitivity of GKL to
different permutations in initial configurations (our simulations show that GKL
converges to the wrong majority over “mixed” initial configurations with multiple
small clusters).

Figure 4.3c shows examples of density evolution for asynchronous GKL, indicat-
ing that GKL with sequential asynchronous updates tends to converge to a single
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stable but incorrect majority. This happens due to the sequential asynchronous
updates. Such updates can steer the direction bias of GKL: networks converge to
— N if the update sequence is defined as 0 — N, and to N if the updates defined
as N — 0. Figure 4.3d shows that GKL does not converge in fully asynchronous
systems.

Figures 4.3e and 4.3f shows that both synchronous and asynchronous SM tend
to cluster around stable p and mostly do not converge. It also shows that asyn-
chronous SM Figure 4.3f shows evolutions to a wider spread set of stable clusters,
which can explain its higher R in smaller networks.

In the further analysis we will mainly focus on asynchronous networks that can
be more difficult for consensus [DDS87]. In the following we investigate whether

stochastic intrusions such as noise and message loss can promote consensus in such
networks.

4.3.2 Impact of Additive Noise

Figure 4.5 shows examples of system evolution with GKL and SM consensus in
ring lattices with noise.
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Figure 4.4: Convergence rate of GKL and SM in ring lattices with noise. N =
99, K = 3.

Figure 4.5a presents an example of the synchronous GKL evolution in a network
that converges in noiseless conditions (gray areas on a diagram indicate regular
switching between available states). Figure 4.5b shows an asynchronous GKL
that reaches agreement with noise. Both evolutions illustrate that GKL washes
out clusters of nodes with the same state due to its state-direction bias.
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Figure 4.6: SM and GKL in ring lattices with message loss. N =99, K = 3.

Figure 4.5b shows that asynchronous updates and noise can destabilize this
bias. Further growth of the noise magnitude can fully inhibit GKL. Figures 4.5¢
and 4.5d illustrate how noise can promote SM consensus by destabilizing the
clusters of nodes with the same states.

The influence of noise on the convergence rate of GKL and SM in ring lattices is
illustrated in Figure 4.4. The new observations can be described as follows. Fig-
ure 4.4a indicates that noise inhibits both synchronous and asynchronous GKL
to R ~ 0 in ring lattices, and that synchronous GKL degrades faster than asyn-
chronous. It also indicates a weak positive effect on asynchronous GKL with
A € {0.75,1} for AWUN and AWGN. Figure 4.4b shows that noise can signif-
icantly increase the convergence rate of SM. AWUN and AWGN influence the
consensus differently: with AWUN SM reaches the maximum R at A ~ 2, while
with AWGN SM achieves the same R at A ~ 3.5.

These newly observed effects can be explained by randomization provided by
noise. Noise randomizes the information exchange and destabilizes the clusters
of nodes that have the same values. GKL is designed to wash out such stable
clusters [GKL78], and unstable clusters can inhibit its performance. SM has no
built-in cluster-dithering features, and thus can benefit from clusters destabilized
by noise.

4.3.3 Impact of Message Loss

Let us investigate the influence of random message loss on GKL and SM in ring
lattices. We vary the message loss probability £ € [0,1) with steps of 0.04.
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Figure 4.6 shows the impact of random message loss on both algorithms in
noiseless ring lattices. It illustrates that message loss can destabilize the state-
direction bias of GKL (Figure 4.7a), and even prevent agreement (Figure 4.7b) for
high message loss rate. Figure 4.7 shows an example of GKL and SM evolutions
for such cases.

On the other hand, SM responds to message loss with increasing convergence
rate. This happens due to the fact that random message loss destabilizes the
clusters, and thus promotes consensus. Figure 4.7c¢ shows how clusters become
unstable, and Figure 4.7d shows that further growth of £ leads to agreement.

Figure 4.6a shows that asynchronous GKL can benefit from message loss below
4%. Figure 4.6b indicates that SM is promoted with up to 80% of message loss.

These observations show that consensus can be promoted by a message loss
until a certain threshold when its positive randomizing effect is outweighed by the
reduction of the information exchange. This threshold may vary depending on the
algorithm, number of neighbors and update scheme. The randomizing effect of
message loss is similar to that of noise. With message loss, nodes at the borders
of the cluster can randomly change their state, and thus destabilize the cluster.

4.3.4 Impact of Topology Randomization

Figure 4.8 shows the impact of topology randomization on both algorithms in
noiseless WS networks.
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Figure 4.8: Impact of topology randomization on SM and GKL in networks. N =
99, K = 3.
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It shows that GKL is inhibited by topology randomization in WS networks
(Figure 4.8a). The decrease is more evident for synchronous GKL: it degrades
from R ~ 82% in ring lattices (P = 0) to R ~ 2% at P = 0.04. This happens
due to the fact that topology randomization changes the network structure and
inhibits the state-direction bias of GKL. However, with further topology random-
ization (P > 0.1 for synchronous and P > 0.2 for asynchronous) GKL converges
more often. This happens because topology randomization in WS networks also
increases the average link length, which promotes consensus (see Fig. 3.3). Topol-
ogy randomization in WS networks disrupts the updating sequence, and therefore
stronger influences the synchronous consensus. This can explain why synchronous
GKL degrades much stronger than the asynchronously updated version.

Figure 4.8b indicates that topology randomization promotes SM consensus,

showing that SM can benefit from both randomized network structure and in-
creased link length.

4.3.5 Combined Impact of Noise and Topology Randomization

Figure 4.9 shows the combined influence of topology randomization and noise on
SM. Figure 4.9a indicates that in noisy networks (A = 3.5) SM with K € {2,3,4}
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a) Response to topology randomization,  b) Response to additive noise, WS
noise magnitude A = 3.5 network, P = 0.8

Figure 4.9: Asynchronous SM, response to noise and topology randomization in
WS networks with K neighbors, N = 99.

neighbors, randomized by topology, reaches R > 60%. Figure 4.9b shows that in
random WS networks (P = 0.8) SM is promoted by noise in a manner similar
to that of ring lattices. It also shows that noise promotes SM until a certain
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threshold, while the randomizing effect outweighs the information exchange. This
threshold grows with higher information exchange, e.g. SM with AWUN and
K = 4 neighbors is promoted by noise with magnitudes below A = 3, while SM
with K = 2 degrades already with noise magnitude A > 1.8.
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Figure 4.10: Asynchronous SM and GKL, response to noise and topology random-
ization in WS networks. K =3, N = 99.

Figures of convergence rate indicate that a combination of topology random-
ization and noise produces a cumulative positive effect on SM. This combined
influence for asynchronous GKL and SM is further shown in Figure 4.10 . It il-
lustrates that randomization by topology and noise produce a cumulative effect
when combined. This cumulative effect is possible due to different types of ran-
domization that complement each other. The character of the impact, however,
varies for GKL and SM: the area of optimal disturbances for GKL is smaller and
lies within lower values of noise and rewiring probability. This can be explained by
previously observed response of GKL to sole randomization by noise and topology,
determined by its direction bias.

These new results show that an optimal combination of disturbances can be
selected to promote binary majority consensus, depending on given system con-
ditions.

4.3.6 Combined Impact of Message Loss, Noise, and Topology

In the previous sections we show that random topology, noise, and message loss
can promote consensus due to their anti-clustering influence. This motivates us
to investigate whether their combined influence can increase the positive impact.
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4.3 PERFORMANCE ANALYSIS

Figures 4.11 and 4.12 present the combined influence of topology randomization
and message loss in noiseless and noisy networks, respectively.
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Figure 4.11: Asynchronous SM and GKL with combined randomization by message
loss and topology in noiseless WS networks. K =3, N = 99.
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Figure 4.12: Asynchronous SM and GKL with message loss and topology random-
ization in noisy WS networks. K = 3, N = 99.

A comparison of Figures 4.11a and 4.12a shows that randomization with a
high level of noise increases the convergence rate of SM, but significantly lowers
robustness towards message loss. This happens due to the excessive randomization
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that outweighs the information exchange which is additionally reduced by message
loss.

Figure 4.12b compared to Figure 4.10b shows that in networks with low message
loss GKL randomized by noise and topologically converges more often. This can be
explained by positive randomizing effect of low message loss for GKL strengthened
by noise and increased link length (as a result of randomized topology).

We can generalize these new observations as follows. Solely applied additive
noise, topology randomization and message loss can promote consensus. The pos-
itive impact of such randomization has a cumulative effect if these disturbances
are applied jointly. Randomization can inhibit consensus as well as promote it,
and both effects are stronger expressed with combined randomization: with com-
bined randomization algorithms can achieve higher R, but with further growth of
disturbances R quickly decreases.

In other words, results shows that although with multiple sources of random-
ization a positive impact is expressed stronger, the area of optimal combination
of disturbances becomes more narrow. Consequently, consensus promotion with
an optimal combination of disturbances is sensitive to an exceeding level of any of
these disturbances. This brings up a question for the future research: can a combi-
nation of randomizing disturbances be described by a single metric that accounts
for the types and the levels of stochastic intrusions? This ambitious challenge
can be approached with an extended analysis of de-clustering impact of different
disturbances and their fusion at an algorithm level. Interested scholar is advised
to look into the network semantic extraction and the data fusion techniques.

4.3.7 Impact of Noise and Message Loss in Waxman Networks

In this section we study GKL and SM in Waxman networks. Unlike WS networks
that are used to model natural random networks [WS98], Waxman networks are
used to model human-designed random networks [Wax88]. The behavior of the
binary consensus in such networks can provide insights on dynamics of distributed
decision making algorithms in human-designed random networks, e.g., wireless
sensor networks.

The network is modeled as described in Sections 3.3.3 and 4.2. Recall that the
parameter 3 here has an impact similar to that of P in WS networks, with an
important difference: growth of [ increases both the average link length and the
node degree. We vary 3 between 0.1 and 0.4 with fixed a = 0.05. We artificially
limit the maximum node degree to 2K = 6 to match that of WS networks. Our
simulations show that with initial settings of # = 0.1 and o = 0.05, Waxman
networks are not guaranteed to be connected. This can explain low figures of R
in networks with g < 0.25.
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Figure 4.13: Asynchronous SM promoted with message loss and topology random-
ization in Waxman networks. K =3, N = 99.

Figure 4.13 shows the convergence rate of asynchronous SM in Waxman net-
works with noise and message loss. Figure 4.13a indicates effects similar to that
of Figures 4.12a and 4.10: additive noise promotes consensus in random networks
but also lowers the robustness to message loss (recall that Waxman networks
are initially random networks). It also shows that with sufficient connectivity
(8 > 0.25) SM reaches high R and tolerates high level of message loss (€ < 80%
with R > 80%). Finally, it shows that in Waxman networks noise can promote
consensus in networks with low connectivity (8 < 0.25).

This can be generalized as follows. Although WS and Waxman networks de-
scribe different random networked models and are modeled differently, consensus
algorithms exhibit similar response to separately and jointly applied randomizing
disturbances.

We omit results for GKL since due to non-guaranteed connectivity and random
state updates in Waxman networks it achieves R below 10%. The latter effect
can be mitigated if the network structure is made “known” to the algorithm and
a direction bias can be established. This can be done via embedding the location
parameters in the nodes decision-making system, but it is out of scope of our
research and of moderate scientific importance.

4.3.8 Impact of the Scope of Randomization

In this section we analyze the difference between randomization that includes the
node’s own state, i.e., where 0;; # o, and the one that does not affect it, i.e.,

61



4. STANDARD ALGORITHMS WITH RANDOMIZATION

where O;; = 0y.

Figure 4.14 shows how noise and message loss influence asynchronous GKL and
SM in ring lattices.
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Figure 4.14: Impact of different scope of randomization on GKL and SM in noisy
ring lattices. N =99, K =3, P =0, =0.

It shows that excluding o0;; from randomization reduces the randomization im-
pact, whether this impact is positive or negative. Next, Figures 4.15 and 4.16
show how excluding o;; from randomization influences combined randomization
by noise, message loss, and topology. A pairwise comparison of Figures 4.15a and
4.15b with Figures 4.11a and 4.11b shows effects similar to that of randomization
in ring lattices: randomization shows less influence when o;; is not affected.

However, a pairwise comparison of Figures 4.16a and 4.16b with Figures 4.12a
and 4.12b shows that if all three types of randomization are combined, the pos-
itive effect is higher when o;; is not affected. In other words, the optimal area
of consensus promotion by randomization of different origin is broader when o;;
is not affected. Latter effect can be explained by the fact that complementary
randomization, which has a positive effect, can reach “saturation” when further
growth of stochasticity leads to random state dynamics and decreases the con-
vergence rate. In addition to this, message loss decreases information exchange,
inhibiting consensus.

4.3.9 Impact of Randomization on Convergence Speed

In this section we describe the impact of randomization on convergence speed
F. Tt is often argued that randomization destabilizes the convergence process
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Figure 4.15: Asynchronous SM and GKL. Message loss and topology randomiza-
tion in noiseless WS networks, 0;; = 0;,. K =3, N =99.
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Figure 4.16: Asynchronous SM and GKL. Message loss and topology randomiza-
tion in noisy WS networks. K =3, N =99, 0;,; = 0;.

and affects convergence speed (time) [Asp03]. Such influence can be adverse for
wait-free consensus where convergence time is bounded. For a wait-free consensus
a critical level for convergence speed is close to 0%. Convergence speed F ~ 0
indicates that the network requires more than 7' time steps to converge and can
suggest that an extension of the consensus cycle duration 7' is required. Recall
that the convergence speed F' is defined as F' = %, where t, € {0,...,T} is
the time step at which the system has reached the agreement. For simplicity we
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register the convergence speed only for successfully converged networks. Let us
show how the randomization by noise, topology and message loss influences the
convergence speed of GKL and SM.
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Figure 4.17: Convergence speed of GKL and SM in ring lattices with noise and
message loss. N =99, K = 3.
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Figure 4.18: Convergence speed of GKL and SM in WS networks with combined
noise and message loss. N =99, K = 3.

Figure 4.17a shows that asynchronous SM converges slower with noise than
without noise. As mentioned above, randomization can affect convergence time, as
agreement itself becomes probabilistic. This can explain a decrease in convergence
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speed under noise. Figure 4.17b shows how message loss decreases the convergence
speed of GKL.

Note that in addition to randomization that affects the convergence, message
loss itself contributes to a decrease in convergence speed by reducing the infor-
mation exchange. This explains the heavier impact of message loss on conver-
gence speed. An increase of convergence speed for GKL with message loss above
~ 70% can be explained as follows. We consider the convergence speed only for
successfully converged setups, and with £ > 70% GKL shows R < 1%. Initial
configurations that provide convergence in such conditions have py close to N or
—N, and if such a network converges, it converges quickly.

Figure 4.18 illustrates the impact of combined randomization on convergence
speed. It indicates that a combined randomization by noise and message loss
decreases the convergence speed stronger than a sole randomization by noise or
message loss. It also shows that the randomization by topology has little impact
on convergence speed.

However, in all studied setups the convergence rate does not decrease close to
0%. It shows that randomization by topology, noise and message loss increases
the convergence rate but does not critically decrease the convergence speed.

4.4 Summary

In this chapter we analyze the impact of randomization by noise, message loss,
and topology on convergence rate and speed of two standard algorithms, namely
GKL and SM. These are simple one-step algorithms for binary majority consen-
sus. In noiseless ring lattices GKL shows convergence rate of nearly 82%, while
under the same conditions SM scores only 1%. We show that randomization by
noise, message loss, and topology generally increases the efficiency of SM. These
disturbances in some cases can promote the asynchronous GKL as well. However,
the positive impact of disturbances on GKL is weaker due to its direction bias.

Further, we observe that the positive impact of randomization is often related to
its ability to counter network clustering. Network clustering is a process of cluster
formation of the nodes that have the same states. Since consensus algorithms are
designed to steer the system to the same state for all nodes, such clusters inhibit
their performance.

Additive noise, message loss, and topology randomization produce a cumula-
tive effect when combined, due to the different types of counter-clustering influ-
ence they provide. Simulation results indicate that an optimal combination of
randomizing disturbances of different origin can be selected, depending on the
given system conditions. With known systemic conditions, such as the ratio of
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random links, level of noise, etc., a combination of disturbances to promote con-
sensus (that compensates and complements the given conditions) can be selected.
Multiple sources of randomization can narrow down the optimal area of consensus
promotion, but this can be mitigated by excluding o;; from the scope of ran-
domization. The update scheme has a twofold impact on the evolution of the
consensus systems. On the one hand, algorithms designed to perform in certain
types of systems, e.g., GKL, rarely converge in asynchronous systems. On the
other hand, simple algorithms, e.g., SM in asynchronous systems converge more
often. Furthermore, randomization by noise, message loss and topology can pro-
mote simple consensus algorithms in asynchronous systems even stronger than in
synchronous.

The main contributions of this chapter can be summarized as follows:

e explicit randomizing disturbances can promote binary majority consensus
in asynchronous and topologically randomized systems;

e a cumulative promotion effect can be produced by combining different types
of randomization;

e an optimal combination of disturbances and their levels can be selected,
depending on system conditions;

e these effects are evident in ring lattices, WS and Waxman networks.

These new results can be interpreted in support of the hypothesis that random-
izing disturbances are not only a “basic requirement” [MMDAO4] for modeling of
distributed systems, but their intrinsic feature that can ensure high performance.

Although we show that randomization can be used to increase the convergence
rate of wait-free binary majority consensus, several open questions remain. We ob-
serve that SM performs efficiently in strongly randomized environments but poorly
in ordered and noiseless ones. GKL indicates opposite dynamics, with high con-
vergence rate in synchronized undisturbed ring lattices, but low R in randomized
environments. A challenging task therefore is to design a consensus algorithm
that can perform efficiently in both ordered noiseless grids and randomized envi-
ronments. An intuitive approach is to consider a more complex algorithm design.
As we mention earlier, it can address, e.g., a deeper analysis of the anti-clustering
influences and their fusion at an algorithm level. However, a simple algorithm
that directly embeds random elements in its structure can be a possible solution
as well. Randomization by noise and message loss is beneficial, and randomization
by network topology indicates the most positive effect when combined with noise
and message loss. In the following chapter we show how random neighbor selec-
tion, embedded in the algorithm, can provide a positive impact similar to that of
message loss and topology randomization. We show that such embedded random-
ization can be further extended by noise and errors to increase the convergence
rate.
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Another important question, which is not considered in this chapter, is the
robustness of simple algorithms towards faulty node behavior, and whether such
robustness can be improved by randomization, or not. We address this issue in
Chapter 6.

Wait-free distributed consensus often assumes that nodes can access only limited
local information, and consensus termination is performed through the consensus
termination time 7', common for all nodes. In case of deterministic consensus
algorithms, e.g., synchronous GKL, this is a valid termination condition: the
state-direction bias steadily steers the system to the agreement. In a random-
ized consensus system, however, stochasticity can steer the system away from an
agreement state. Therefore, the question is: if a randomized system has con-
verged, how stable such agreement is? In the following chapters we investigate
randomized binary majority consensus in respect to the aforementioned questions.
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CHAPTER .
Consensus Randomized

by Neighbor Selection

5.1 Introduction and Motivation

An ideal algorithm for binary majority consensus should provide convergence rate
of 100%. Investigations in the domain of binary majority consensus date back for
almost forty years to a paper by Gacs et al. [GKL78|, which proposes an algo-
rithm (later named after the authors, Gacs-Kurdyumov-Levin (GKL)) that solves
binary majority consensus problem with efficiency of ~ 82%. Since then, several
deterministic solutions have been proposed with convergence rates up to 86% (for
more details, see Table 2.1). Land and Belew [LB95] showed that determinis-
tic algorithms for binary majority consensus cannot reach R = 100%. However,
this restriction does not apply to randomized consensus algorithms. Random-
ization is a technique that uses random processes (often considered as negative
disturbances) to increase convergence rate and fault tolerance of consensus algo-
rithms [Asp03]. In some cases, randomization can even guarantee successful agree-
ment, but the convergence itself and the time till the actual agreement become
probabilistic (more details given in Section 2.5). This condition limits the applica-
bility of randomization to wait-free consensus algorithms (see Section 2.2.1). On
one hand, wait-free consensus algorithms can be inhibited by disturbances. Thus,
GKL consensus can significantly decrease the convergence rate with noise [5] or
errors [MMDAO4].

On the other hand, several studies [MMDA04, Cha96, Fat13] indicate that ran-
domization can also be beneficial for wait-free consensus algorithms. In particular,
Moreira et al. show that Simple Majority (SM) consensus can reach up to 85%
convergence rate when randomized by errors and topologically. SM exhibits high
convergence rate only in strongly randomized environments, while in synchronous
undisturbed networks R is low. A challenging task is, therefore, to design an
algorithm with high convergence rate in both ordered undisturbed and random-
ized networks. A track of studies on distributed consensus show that this task is
difficult for systems with restricted time and connectivity. However, some recent
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works show serious advancements. In addition to the aforementioned paper by
Moreira et al. [MMDAO4], another study [KKBT12] shows that a self-organizing
algorithm, accompanied by stochastic disturbances can guarantee a synchroniza-
tion in a wide range of distributed systems.

Investigations, presented in Chapter 4, show that standard algorithms can in-
crease efficiency in environments, randomized by various disturbances. In par-
ticular, we show that SM consensus significantly increases convergence rate if
randomized by additive noise, message loss, and topology. We explain this posi-
tive impact by the cluster dithering process, which is enforced by randomization.
Some types of randomization, such as noise or errors, can be directly embedded
in a consensus rule to promote its efficiency in ordered networks. Topology ran-
domization, however, is generally provided by the underlying networking model.

In this chapter we introduce a new binary majority consensus algorithm ran-
domized by neighbor selection. Random neighbor selection can be embedded in
the algorithm to provide beneficial topology randomization in the neighborhood of
each node, while the global underlying network topology remains intact. Further
in this chapter we:

e propose two schemes of random neighbor selection and extend this random-
ization with noise and errors;

e show that cumulative effect of such a combination can promote convergence
rate closely to 100% in random and ordered environments;

e discuss the agreement dynamics and propose a direction to seek for a more
advanced solution.

This chapter is organized as follows. Next section describes system modeling
and algorithm design. Section 5.4 investigates the proposed randomized algorithm
in various conditions. Section 5.4.4 discusses the agreement dynamics. Finally,
Section 5.5 concludes the chapter with the summary of results and future research
directions. Some of the results presented in this chapter have been published
in [4, 5].

5.2 System Model

For the network modeling we implement three types of networks. We model ring
lattices as an example of ordered networks, and for randomized networks modeling
we use Watts-Strogatz (WS) and Waxman random graphs. Networks are built
as described in Sections 3.3 and 4.2.1. In our simulations, network topology is
generated once at the beginning of the simulation. After the network generation,
each node is connected to its neighboring nodes with bidirectional links. Nodes
that have connections to node i form a set of its neighbors S, ||S|| < 2K. Nodes
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j € 5,7 < i sorted in ascending order form the vector of the left-side neighbors
Si, ||Si]] < K. Similarly, the vector of right-side neighbors S, is built.

5.2.1 Randomization by Topology

Besides random neighbor selection embedded in RNM, we use randomization by
network topology by WS and Waxman graphs, described in Sections 3.3 and 4.2.1.
We also use randomization by noise, errors and message loss. Let us briefly de-
scribe the latter.

5.2.2 Randomization by Noise, Errors and Message Loss

In Chapter 4, we show that stochastic intrusions of various type can have a cu-
mulative effect when combined.

In this chapter we extend randomization in RNM by adding Additive White
Gaussian Noise (AWGN) in message exchange of RNM as described in Sec-
tion 3.4.1.

Positive impact of randomization by errors reported by Moreira et
al. [MMDAO4] motivated us to investigate RNM with additional randomization
by errors. Errors are modeled as described in Section 3.4.3.

Scope of Randomization and Initial Configurations

We apply randomizing disturbances with the full scope of randomization, where
own state of the node 7 can be affected by noise, errors or message loss, i.e.,
0; # oi,i. For more details on the scope of randomization see Section 3.4.4.

In our message exchange system message loss, errors and noise are applied
independently from each other. Therefore if a message is lost a receiving node
can still receive a noise sample or an erroneous state information. Such a joint
scheme allows us not to specifically distinguish, whether a certain randomizing
disturbance applied as an “environmental influence” or an “internal” feature of
an algorithm. We keep the models simple so that randomizing disturbances can
be embedded in the algorithm without a significant increase in its complexity, if
needed.

In this chapter we simulate consensus over initial configurations obtained by a
coin-flip trial, as described in Sections 2.4.6 and 3.7.

71



5. CONSENSUS RANDOMIZED BY NEIGHBOR SELECTION

5.3 Random Neighbor Majority

In this section we describe the consensus algorithm with the random neighbor se-
lection and additional randomization by errors and noise — the Random Neighbor
Majority (RNM) consensus. In the aforementioned studies of simple algorithms,
a randomization by topology is generally provided by a network model, as simple
algorithms often posses no data of network structure. Embedding the network
topology information in the algorithm increases its complexity and can be done in
more sophisticated algorithms. In the following section we describe how a random
neighbor selection can be embedded in a simple one-step algorithm without signifi-
cant increase in its complexity. Such a scheme allows to mimic the effect of global
topology randomization on a local scale. It can also provide a “de-clustering”
effect if an algorithm is running in an ordered network.

As a basis algorithm we use SM consensus (see Sections 2.4.6 and 4.2.1), ar-
guably the simplest algorithm for the binary majority consensus. With SM con-
sensus, each networked node, connected to its 2K neighbors, receives messages
from all of its neighbors at each time step. Such communication is illustrated in
Figure 5.1.

Figure 5.1: The node ng is connected to its 2K = 6 neighbors

In Chapter 4 we show that SM is heavily inhibited by the network clustering
and that randomization by topology, provided by the WS model, can produce a
“de-clustering” impact. Here we propose randomization by neighbor selection that
can dither network clusters without changing the underlying network topology.

We introduce two random neighbor selection schemes, where at each time step
t € {0,...,T} nodes follow one of the neighbor selection schemes:

e a balanced (or uniform) neighbor selection, where a node randomly selects
C out of 2K available neighbors;

e an update-biased neighbor selection, where a node randomly selects C' out
of K left-side neighbors (that have already performed an update to a “next”
time step).

The motivation for these two selection schemes is the following. In environ-
ments, where a partial synchrony or, e.g., an update sequence can be established
(ring lattices or some WS networks), it can be beneficial for each node to use the
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information from the nodes that have already updated their state. Random selec-
tion of such neighbors can additionally randomize the information exchange and
counteract clustering. If the network is fully random and update sequence cannot
be established (e.g., Waxman networks and strongly randomized WS networks),
uniform neighbor selection can be used to ensure counter-clustering randomiza-
tion. Therefore, these two schemes of neighbor selection can be used to promote
consensus in different types of networks. Let us describe them in more detail.

5.3.1 Uniform Neighbor Selection

We use uniform (balanced) neighbor selection scheme on a basis of a SM, so that
expression (4.1) transforms to:

olt+1]=G (O’m’[t] + Zai,nj [t]) ) (5.1)

Here, neighbor n; is randomly selected C' times from a set of neighbors S.
Neighbor selection is implemented as a random uniform selection with repetition;
i.e., neighbors are selected with equal probabilities and the same neighbor can
be selected more than once. This scheme is illustrated in Figure 5.2, showing
evolution of a neighbor selection of a node nz over time in an asynchronous network
with sequential updates. It illustrates a balanced neighbor selection of a node
that receives information from C' = 4 neighbors, randomly selected at each time
step t € {1,2,3}. Neighbors are selected uniformly from a set of neighbors S,
provided by the network. Selection is uniform and independent from the update
sequence (recall that we define asynchronous sequential update according to the
nodes’ indices, i.e., 0 — N). Thus, Figure 5.2b shows that at a time ¢ = 2 node
ng can receive information from the nodes that have already updated their state
(e.g., opt = 2]) and from nodes that have not performed an update yet (e.g.,
Ons[t = 1]).

Such a selection scheme can increase the convergence rate in networks, where
the update sequence is disrupted by topology randomization (e.g., in Waxman
networks).

5.3.2 Update-Biased Neighbor Selection

For networks where the update sequence is not disrupted by the topology ran-
domization (or can be established as, e.g., asynchronous sequential update) it can
be beneficial to select neighbors from the set of those that already have performed
an update. For this we implement an update-biased neighbor selection scheme.
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OMOBOROIORONO

Update sequence

a) Node nj is connected to its C' = 4 randomly selected neighbors at
t=1

OOROIOEORORO

Update sequence

b) Node ns is connected to its C' = 4 randomly selected neighbors at
t=2

@

Update sequence
c¢) Node nj is connected to its C' = 4 randomly selected neighbors at
t=3

Figure 5.2: The node n3 is connected to C' randomly selected neighbors. K =
3,C =4.

Let us for simplicity assume that the update sequence follows nodes’ indices, i.e.,
from ¢ = 0 to ¢ = N or otherwise, from “left” to “right”. With such an update
sequence, e.g., at time t = 3, nodes j € S5; will send to the node i their state
information o[t = 3], while nodes j € S, can only send their state information
o[t = 2]. With an update-biased selection a node i chooses neighbors only from
the set of left-side neighbors S;. Then, expression (4.1) becomes:

Here, a random neighbor n; is randomly selected C' times from a set of left-side
neighbors 5;. The selection procedure is again a uniform one with repetition.

This scheme can be beneficial with asynchronous sequential updates, when
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Update sequence
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Update sequence

) C' > K, ny selected twice at t = 2
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Update sequence

c) C > K, ny selected twice at t =3

Figure 5.3: A networked node, randomly connected to its C' > K randomly se-
lected neighbors from the left.

nodes are updated asynchronously, one after another according to their indices.
Such selection has two important effects: (a) it reduces the effective radius of a
node 7, but (b) allows to use the latest available states of the neighboring nodes.
This scheme is illustrated in Figure 5.3. It shows that a node n3 can select C' out
of K neighbors from its set of left-side neighbors, S, ||5|| = K. Here, if C > K
nodes will be selected multiple times.

5.4 Performance Analysis of Random Neighbor
Majority

In the following sections we study RNM in comparison with SM and GKL in
ordered and randomized WS and Waxman networks. We start with RNM in
in noiseless and error-free systems of different size and systems with message
loss. Next, in Section 5.4.2 we investigate RNM with additional randomization
by noise and errors. In Section 5.4.3 we address efficiency of RNM in Waxman
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networks. In Section 5.4.4 we analyze the convergence dynamics of RNM and
explain mechanisms behind its high convergence rate.

5.4.1 Noiseless and Error-Free Environments

Let us analyze how random neighbor selection schemes change R of RNM, com-
pared to SM and GKL consensus in asynchronous noiseless and error-free envi-
ronments.

1 e 1
-e- (=4
= 0.8 —— C =6 - 508 —
g -=- SM et
= —— GKL 5
0] ey 00
Q )
= =
5004 - 9044
) & )
> ] >
3 . 3
O 027 l"\.' | O 027
0 T T \"\\“\‘.\— — - 0 T T T T T T
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Number of nodes, NV Number of nodes, N
a) Ring lattice, P =0 b) Random WS graph, P =1

Figure 5.4: Asynchronous RNM, GKL and SM, in noiseless WS networks. K = 3,
N € {29,...,160}.

We start with WS graphs where the rewiring probability P enables to produce
networks ranging from ring lattices (P = 0) to fully random networks (P = 1). In
such networks an update sequence can be established and update-biased neighbor
selection can be used.

We focus on RNM with C' € {2,4,6} randomly selected neighbors, which is
lower than the number of active neighbors (2K = 6) of GKL and SM. This can
exhibit whether a random neighbor selection can be beneficial for consensus with
lower number of received state messages.

Figure 5.4 shows the convergence rate of RNM, SM and GKL with a biased
neighbor selection in noiseless and error-free WS networks of different size. Results
indicate that asynchronous RNM outperforms SM and GKL in both ordered and
random networks. They also show that, unlike SM, RNM does not significantly
degrade with larger N. This is due to the embedded randomization that hinders
the network clustering. RNM randomized solely by neighbor selection shows stable
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R independent of system size outperforming the best algorithms in ordered and
WS networks (best-performing solutions are described in Table 2.1).
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Message loss, € Message loss, £
a) Ring lattice, P =0 b) WS network, P = 0.5

Figure 5.5: Asynchronous RNM, response to message loss in noiseless WS net-
works. K =3, N = 99.

Figure 5.5 shows RNM in comparison with SM in noiseless networks with mes-
sage loss. It indicates that RNM outperforms SM with message loss below 70%
in ordered networks and message loss below 60% in randomized WS networks.
We can generalize these new observations as follows. RNM outperforms SM and
GKL in asynchronous ordered and randomized networks. Maximum R achieved
by RNM is lower than maximum R of the best algorithms for binary majority
consensus (see Table 2.1). Further we present results for RNM with additional
randomization by noise or errors, showing that such cumulative randomization
can increase its R to ~ 100%.

5.4.2 Noisy and Erroneous Environments

Let us consider the efficiency of RNM with additional randomization by noise and
errors. We use the probability of error € {0.05,0.06,0.07,0.08} and fix the noise
amplitudes at A € {2,3}. Error probability and noise are chosen empirically to
provide the optimum randomization.

Figures 5.6 — 5.12 show the dynamics of Random Neighbor Majority with
enforced noise and errors in networks with message loss, noise and topology ran-
domization. Figure 5.6 illustrates the convergence rate of RNM with different
levels of additive noise and errors in ring lattices and random networks. It shows
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Figure 5.6: Asynchronous RNM, with C' € {2,4,6} and A € {2,3} in ring lattices
and random networks. K =3, N = 99.

that RNM with C' € {4,6} randomly selected neighbors and magnitude of en-
forced noise A € {2,3} can reach R ~ 100% in ordered networks. It also shows
that with such C' € {4,6} and n € {0.2,0.4,0.6,0.12} RNM can reach R ~ 100%
in random WS networks.

This shows that positive effects of random neighbor selection in RNM can be
complemented by additional randomization by noise and errors to reach high con-
vergence rate in both ring lattices and random networks. It also indicates that an
optimal level of noise or errors can be selected for maximum convergence rate of
RNM, depending on system conditions.

However, such combined randomization can reach certain “saturation” when
stochasticity outweighs useful information exchange. The following analysis shows
that this can happen if an algorithm with optimal level of noise or errors is ad-
ditionally influenced by other stochastic disturbances. Thus, Figure 5.7 presents
convergence rate of RNM in WS networks with growing topology randomization.
It shows that topology randomization can inhibit RNM with the optimal ran-
domization by errors, but also can promote the RNM with sub-optimal erroneous
randomization until the optimal randomization level is reached. It also indicates
that larger C' increases maximum R while larger n can promote robustness towards
topology randomization.

Figure 5.8 presents R of noisy RNM in ring lattices (P = 0) and random
WS networks (P € {0.5,1}), indicating that in ring lattices message loss always
inhibits RNM, while in randomized networks it can promote consensus.

Noisy RNM with C' = 2 selected neighbors RNM reaches optimum performance
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Figure 5.7: Asynchronous RNM with noise, response to topology randomization
in WS networks. K =3, N = 99.

in ring lattices at noise amplitude A = 2, and with C' = 4 the optimum noise
amplitude is A = 3. This can be explained as follows. Topology randomization
(P > 0) disrupts the update sequence and inhibits the update-biased neighbor
selection, so that RNM requires higher levels of additional randomization to reach
an optimum performance. Message loss can provide such an additional stochas-
ticity until its randomizing effect and message loss effect itself outweigh the useful
information exchange. With this cumulative additional randomization the range
of optimum performance is narrowed — an effect, similar to that earlier observed
in Sections 4.3.6 and 4.3.8.

Figure 5.8 also indicates that noisy RNM strongly decreases R with message
loss & > 50%. This can be explained by the randomization saturation, similar
to that observed in the previous chapter and decrease of information exchange
induced by message loss itself.

Figure 5.9 presents R of erroneous RNM in ring lattices with noise. It indi-
cates effects, similar to that of Figures 5.7 and 5.8: larger C' and 7 can promote
consensus and robustness towards noise respectively.

Figure 5.10 shows R of RNM compared to SM in WS networks with combined
influence of randomization by noise, topology, and message loss. It illustrates
that RNM with additional randomization by noise shows the convergence rate
R ~ 100% with message loss £ < 50%. It indicates that although RNM also
reaches “saturation” of combined randomizing influences, it is more robust towards
message loss and shows higher R than SM and GKL (for GKL, see Figures 4.10).
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Figure 5.8: Asynchronous RNM with noise, response to message loss in WS net-
works. K =3, N =99.
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Figure 5.9: Asynchronous RNM with errors, response to noise in WS networks.
K =3 N=99.

5.4.3 Waxman Networks

Let us compare asynchronous RNM and SM in Waxman networks with noise
and message loss. Recall that Waxman networks are initially random and thus
the update sequence cannot be established. In such networks the uniform or
“balanced” neighbor selection can be beneficial, when neighbors are randomly
selected from the set of all available neighbors. Figure 5.11 shows convergence rate
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Figure 5.10: Asynchronous SM and RNM, response to message loss and topology
randomization in noisy WS networks. K =3, N = 99.

of RNM with such balanced neighbor selection in comparison to SM in noiseless

Waxman networks.
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Figure 5.11: Asynchronous SM and RNM in noiseless Waxman networks. K = 3,

N =99.

It shows that RNM with balanced random neighbor selection outperforms SM in
Waxman networks and shows higher robustness towards message loss. It also in-
dicates that such a random neighbor selection can promote consensus in networks

with low connectivity (8 < 0.25).
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Next, Figure 5.12 shows performance of RNM in noisy Waxman Networks with
message loss. Comparison of Figures 5.12a and 5.12b illustrates that in noisy
networks RNM again outperforms SM with message loss below 50%. It shows
that added noise increases R of RNM in networks with even lower connectivity
(8 > 0.1), but also decreases robustness towards message loss. These effects can
be explained as follows. In Waxman networks with low connectivity () there exist
clusters of nodes weakly connected to the remaining network. In Section 4.3.2, we
show that noise can destabilize clusters by randomizing the information exchange.
This latter effect of noise can additionally promote consensus in weakly connected
Waxman networks.

Convergence rate, R
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Figure 5.12: Asynchronous RNM and SM with message loss in noisy Waxman
networks. K =3, N = 99.

5.4.4 Analysis of the System Evolution

In this section we analyze state and density evolution in asynchronous networks
with RNM to explain the mechanisms behind its high convergence rate. Fig-
ures 5.13 and 5.14 show state and density evolution of RNM and SM in noisy WS
and Waxman networks.

Figure 5.13 presents an example of system evolution with asynchronous RNM,
resembling state evolution of SM with randomization, presented in Figures 4.5
and 4.7. It illustrates that embedded randomization by neighbor selection and
noise can dither clusters of nodes with the same states and promote consensus.

Larger system overview by density evolution over 1.000 initial configurations
is presented in Figure 5.14 (each dot corresponds to a system evolving over the
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Figure 5.13: Examples of state evolutions of asynchronous SM and RNM, K = 3,
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unique initial configuration). It shows that RNM with noise converges to the
correct majority (Figure 5.14b) while noiseless SM tends to cluster around stable
densities (Figure 5.14a). This indicates two important observations: (a) RNM
with noise or errors can provide R ~ 100% in ordered and randomized systems and
(b) RNM cannot guarantee successful convergence within a given consensus time
T'. Latter effect is due to a significant measure of random switching illustrated by
Figure 5.14b. Unlike the direction bias of GKL (see Figure 4.3a and 4.3b) random
switching does not steadily steer the system to a stable state of correct majority,
but allows for stochastic state changes.

5.5 Summary

In Chapter 4 we show that SM can be significantly promoted by randomizing
disturbances, but in ordered noiseless grids it indicates low R. GKL, however,
shows the opposite dynamics, with high R in noiseless ring lattices and low R in
randomized ones.

In this chapter we propose a Random Neighbor Majority consensus that embeds
a local-scope topology randomization by random neighbor selection. We show
that RNM outperforms GKL and SM in asynchronous networks. We then show
that RNM with additional randomization by an optimal level of noise and errors
can reach efficiency close to 100%. We study RNM in asynchronous ordered
and random networks with noise and message loss. We show that RNM can
achieve R ~ 100% convergence rate in both ordered and randomized networks. We
also show that these results are robust towards message loss, noise, and topology
randomization. This can be generalized as follows. RNM can achieve efficiency of
100% in most types of randomized and disturbance-free environments with optimal
selection of neighbor selection scheme, number of neighbors C, and additional
randomization by noise and errors.

Although RNM with additional randomization by noise and errors can achieve
convergence rate close to 100%, convergence analysis shows that strong random-
ization yields a significant measure of stochastic convergence. Stochastic conver-
gence is not steady and cannot guarantee a stable agreement on a correct majority.
Therefore, if a network is given more time, it can leave the agreed state. The fu-
ture challenge is, therefore, to design an algorithm that can not only provide
convergence but also can “steadily steer” the network to a correct state. This
can be tackled with a more complex solution that accounts for a system evolution
dynamics with, e.g., adaptively decreasing amplitude of noise.

The main contributions of this chapter can be generalized as follows:

e we show that randomization by neighbor selection can increase the efficiency
of consensus without altering the underlying network topology;
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e we propose two neighbor selection schemes that can increase the efficiency
in both random and ordered environments;

e we show that an optimal level of additional randomization by noise and
errors can be selected to accompany random neighbor selection, depending
on the system conditions.

These new results show that random neighbor selection can strongly promote
consensus in various types of networks and, even though it does not guarantee
convergence with explicit randomization by noise or errors, it has a strong po-
tential for future investigation. An intuitive suggestion on how to approach this
would consider the adaptive change of the embedded randomization. A scheme
that would provide a higher level of disturbances in the beginning of the network
evolution that is relaxed towards the time limit. Obviously, such a scheme requires
additional research. We did not yet cover the issue of robustness of consensus al-
gorithms towards faulty node behavior, mentioned in Chapter 4: it is addressed
in the next chapter.
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CHAPTER .
Consensus Algorithms

with Faulty Nodes

6.1 Introduction and Motivation

Algorithms for distributed decision making, operating in real-life systems should
be robust towards various disturbances. Studies on robustness of consensus algo-
rithms investigate the influence of noise [Asp00, CFFT07], message loss [KMO7],
random topologies [KB06], and faulty node behavior [US04]. Faulty nodes are
often considered as one of the main impediments to consensus [PSL80], as even a
single faulty node in a network can prevent agreement [FLP85, FLMS85].

An early study by Pease et al. [PSL80] shows that in a synchronized networked
system of N nodes, M of them being faulty, consensus is possible if M < %
However, Fischer et al. [FLP85] show that in asynchronous systems consensus
may become impossible with already M = 1. Such faulty nodes are generally
represented as Byzantine faulty nodes — nodes that can have any arbitrary failure,
except full failure. Later studies compare the impact of Byzantine faulty nodes
with dormant faulty nodes [MP91] and crash-failing faulty nodes [AFJ06], showing

that consensus can stabilize and overcome the impact of such non-Byzantine nodes.

Scholars approach the problem of fault tolerance with fault-detection [CT96,
CHTO96], increasing system-wide synchrony [DDS87, DLS88|, and randomiza-
tion [BO83, Asp03]. Randomization is the technique that utilizes random pro-
cesses (that are often considered as negative disturbances) to increase fault toler-
ance [Asp03]. Compared to fault-detection, randomization is less complex and
does not require system-wide adjustments, e.g., as imposed system-wide syn-
chrony. Investigations show that randomization can be beneficial for various con-
sensus algorithms both in terms of convergence rate [Asp03, MMDAO04] and fault
tolerance [BO83, Asp03]. Such randomization, e.g., for binary majority consensus,
can be provided explicitly by noise [5, 4] or errors [MMDAO4].

Randomized consensus algorithms show higher robustness towards faulty node
behavior [MNC10] than deterministic solutions. Some algorithms can guarantee
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the agreement in systems with M < & faulty nodes in the system [BO83]. Such
algorithms provide convergence rate of 100%, but often have relaxed connectivity
or time restrictions [BO83].

Binary majority consensus has more strict termination requirements than gen-
eral consensus considered in the aforementioned studies, and can be more sensitive
to the faulty node behavior. This motivated us to investigate the impact of faulty
nodes on binary majority consensus. In this chapter we study faulty nodes with
persistent and random failure, and different layout over the network. We study
faulty nodes influence in ring lattices, random Watts-Strogatz [WS98], and Wax-
man [Wax88| networks with noise, errors, and message loss.

We show that:

e performance decrease induced by faulty nodes can be mitigated by random-
ization of different origin;

e commonly-used faulty nodes with random failure are less adverse for con-
sensus than faulty nodes with persistent failure;

e in some cases faulty nodes with random failures can provide randomization
beneficial for consensus.

The chapter is organized as follows. Section 6.2 explains system modeling and
adjustments. Section 6.3 presents simulation results and analysis. Finally, Sec-
tion 6.4 concludes the chapter with summary of results. Main contributions of
this chapter are published in [3, 2, 5].

6.2 System Model

We investigate consensus with faulty nodes in ordered networks, Watts-Strogatz
and Waxman networks. Ordered networks modeled as ring lattices, set up as
described in Section 3.3.1. Random Watts-Strogatz and Waxman networks are
modeled as described in Sections 3.3.2 and 4.2.1, respectively.

6.2.1 Randomization by Noise, Message Loss, and Topology

We introduce noise and message loss as described in Sections 4.2.2 and 4.2.2,
respectively. Randomizing disturbances are applied as described in Section 4.2.3.
Randomization by topology is provided by underlying network topology in WS
and Waxman networks, as described in Sections 3.3 and 4.2.1, respectively.

38



6.2 SYSTEM MODEL

6.2.2 Consensus Algorithms

We study the impact of faulty nodes on three consensus algorithms: Simple
Majority (SM), Gacs-Kurdyumov-Levin (GKL), and Random Neighbor Major-
ity (RNM). We modify these algorithms to perform in randomized systems as
described in Sections 4.2.1, 4.2.1 and 5.3, respectively.

To accommodate random disturbances the system model has undergone adjust-
ments described in Section 4.2.1. Further details on the system modeling and the
implementation of faulty nodes can be found in Chapter 3.

6.2.3 Faulty Nodes

We study faulty nodes with two failure models: faulty nodes with random failure,
modeled after Byzantine failure model, and faulty nodes with persistent failure.

We implement faulty nodes as follows. At the starting time ¢t = 0, M faulty
nodes are added to N non-faulty nodes to avoid a bias of the initial configuration.
The network topology is then created for all N 4+ M nodes. After adding M faulty
nodes to the system they are labeled as faulty and counter consensus according
to their failure model.

The Layout of Faulty Nodes

We use two layouts of faulty nodes over the network: clustered and distributed.
With a clustered layout all faulty nodes are located next to each other. The loca-
tion of the cluster is randomly chosen at each simulation run. With a distributed
layout all faulty nodes are randomly placed over the network, independently from
each other. Further details on the layout of faulty nodes can be found in Sec-
tion 3.5.

Faulty Nodes with Persistent Failure

Faulty nodes with persistent failure (persistent faulty nodes) are modeled as fol-
lows. After M faulty nodes are added, they are assigned with a faulty value
owm, opposite to the initial majority. ILe., if Zzzév 0;[0] < 0,0ps = 1 and if
S22 640] > 0,04 = —1. During the consensus process such faulty nodes broad-
cast their states but do not update them. Unlike faulty nodes with random failure,
persistent faulty nodes provide enduring inhibition for consensus.
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Faulty Nodes with Random Failure

We implement faulty nodes with random failure (non-persistent faulty nodes)
after Byzantine random failure model with a reduced state space. Such nodes
randomly change their broadcasted state, independently from state information
received from their neighbors. We investigate two types of faulty nodes with
reduced state space:

e two-state faulty nodes, randomly switching between states o), € {—1,1};
e three-state faulty nodes, switching between o), € {—1,0, 1}.

The first case presents a faulty node that broadcasts correct and erroneous state
information with equal probabilities. The second case additionally implements a
state of sending no information, i.e., full failure. Full failure, or a “crash” failure is
often considered as a separate type of failure [Fis83] which, depending on a system
design, can be less adverse than Byzantine failure. Impact of fully crashed nodes
added to the system is predictably negative, as it will decrease of effective average
connectivity (as non-faulty nodes will obtain “useless” links instead of active ones).
In Chapter 4 we show that a random message loss can promote consensus, and
randomly crashing faulty nodes, added to the system can be represented as a local
disturbance with a similar impact. In our simulations we incorporate the crash
failure into a state space of randomly failing faulty nodes to exhibit whether there
is a difference, compared to a two-state random failure.

6.2.4 Consensus Termination with Faulty Nodes

We consider the system to be converged if all N non-faulty nodes have agreed on a
state that corresponds to initial majority within the consensus period T' = 2N time
steps. Detailed description of termination condition can be found in Section 3.6.

6.3 Performance Analysis with Faulty Nodes

We investigate the impact of faulty nodes on binary majority consensus in net-
works with randomization. In the following sections we consequently analyze the
impact of:

e persistently failing faulty nodes with randomization by noise, message loss
and topology,

e randomly failing faulty nodes;
e faulty nodes positioning over the network;

e faulty nodes with random failures in asynchronous ring lattices.
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6.3 PERFORMANCE ANALYSIS WITH FAULTY NODES

As the main performance metric of the algorithms we employ the convergence
rate R as described in Section 2.3. We use initial configurations, obtained by a
coin-flip trial, described in Section 3.7.

In the following section we analyze the impact of faulty nodes with persistent
failure. In Section 6.3.2 we study the impact of persistently failing nodes in Wax-
man networks with additive noise and stochastic message loss. In Section 6.3.3 we
compare the impact of persistent faulty nodes with commonly-used non-persistent
faulty nodes. In Section 6.3.4 we investigate whether a random placement of the
faulty nodes can mitigate their impact. In Section 6.3.5 we investigate the effect
of GKL consensus promotion by randomly failing faulty nodes and explain its
mechanism. Finally, Section 6.4 concludes the chapter.

6.3.1 Impact of Faulty Nodes with Persistent Failure

Figure 6.1 shows R of asynchronous SM with persistently failing faulty nodes.
It shows that noise and topology randomization can promote robustness of SM
consensus towards faulty node behavior. This important observation indicates
that “de-clustering” influence of randomization by topology and noise not only
increases R in systems with M = 0, but can contribute to a higher R in systems
with faulty nodes.
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3 s 221 ;
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= ) s
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01 23 45 6 7 01 2 3 456 7
Faulty nodes, M Faulty nodes, M
a) Response to topology randomization  b) Response to additive noise with
with faulty nodes in noisy networks, faulty nodes in random WS network,
A=35 P=1.0

Figure 6.1: Convergence rate of asynchronous SM with M faulty nodes. Noise and
topology randomization in WS networks. K = 3, N = 99.
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Figure 6.2: Convergence rate of asynchronous SM and GKL with M faulty nodes
and message loss in random WS networks, P =1, K =3, N = 99.

Figure 6.2 indicates a similar impact of message loss: in topologically random-
ized environments it can increase R of SM and GKL with faulty nodes. Latter
effects can be explained as follows. Topology randomization in WS networks con-
nects a faulty node with random neighbors enabling the latter ones to overcome
the reduced negative impact.
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Figure 6.3: Asynchronous RNM and SM, response to message loss in noiseless WS
networks with faulty nodes. K =3, N =99, C' = 4.

Additive noise and message loss mitigate the negative impact of each faulty
node and promote consensus in a similar manner.
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Figure 6.4: Asynchronous RNM and SM, response to message loss in noisy WS
networks with faulty nodes. K =3, N =99, A =3, C =4.

Simple Majority and Random Neighbor Majority

Figures 6.3 and 6.4 show R of SM in comparison to RNM. Figure 6.3a shows
that although in noiseless ring lattices RNM outperforms SM with message loss
E < 70%, with presence of faulty nodes both algorithms drastically decrease the
convergence rate.

Figure 6.3b, however, illustrates that in topologically randomized networks,
RNM outperforms SM both with and without faulty nodes, with message loss
E < 30% and £ < 60%, respectively. This can be explained by the nature of RNM
itself — random neighbor selection at each time step can mitigate the impact of
a faulty node to its neighbors, as they receive less incorrect state information.

Figure 6.4 shows convergence rate of RNM and SM with faulty nodes in noisy
ring lattices and WS networks. It indicates that in noisy networks with a single
faulty node, M = 1, RNM outperforms SM. However, already M = 2 leads to
a drastic decrease in R for both algorithms. Figure 6.4 compared to Figure 6.3
illustrates that the impact of additive noise is twofold: a) it increases R of the
algorithms, and b) it decreases robustness towards message loss, which was ob-
served earlier in Chapters 4 and 5. It can be explained by combined randomizing
impact of noise and message loss that outweighs the useful information exchange.
Analysis of Figure 6.4 shows that in random WS networks (Figure 6.4b) algo-
rithms show higher variation in R than in ring lattices (Figure 6.4a). This can be
explained by the positive impact of randomized topologies, discussed earlier.
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6.3.2 Impact of Faulty Nodes in Waxman Networks

Figure 6.5 presents the convergence rate of SM and RNM with faulty nodes in
weakly connected Waxman networks with noise and message loss. Figure 6.5a
indicates that in a Waxman network with low message loss (£ < 5%) RNM out-
performs SM with faulty nodes. Figure 6.5b demonstrates that RNM outperforms
SM with faulty nodes while the noise level is below A ~ 1.
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Figure 6.5: Asynchronous SM and RNM in loosely connected Waxman networks
with faulty nodes. N =99, K =3, a =0.05, 5 =0.18, C = 4.

Figure 6.5 shows that RNM is slightly less robust towards noise and message
loss than SM. This effect is similar to that observed in WS networks and can
be explained by the lower information exchange of RNM (four state information
messages instead of six in SM), and the excessive randomization that decreases R.
We omit GKL analysis in Waxman networks as it achieves R < 10% with M =0
and R ~ 1% with M > 1.

6.3.3 Comparison of Persistent and Non-persistent Faulty
Nodes

Let us analyze the impact of commonly-used faulty nodes with random failure
compared to faulty nodes with persistent failure. Again, we simulate SM and
GKL in WS and Waxman networks with noise and message loss. Figures 6.6a
and 6.6b show that randomization by topology and noise can promote robustness
of SM consensus towards both types of faulty nodes.

Figure 6.6 also shows that faulty nodes with persistent failure inhibit consensus
stronger than faulty nodes with random failure.
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Figure 6.6: Asynchronous SM with M faulty nodes. Noise (AWUN) and topology
randomization in WS networks. PF and RF stand for faulty nodes with persistent
and random failure models, respectively. K =3, N = 99.
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Figure 6.7: Asynchronous SM with M faulty nodes and message loss in random
WS networks (P = 1). PF and RF stand for faulty nodes with persistent and
2-state random failure models, respectively. K =3, N = 99.

Figure 6.7 shows R of SM in random WS networks with message loss and
non-persistent faulty nodes with two-state and three-state failure. Figure 6.7a
shows that in random WS networks message loss can increase R of SM and GKL
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with faulty nodes of both types. Figure 6.7b indicates a small difference in the
impact between faulty nodes with two-state and three-state random failure.

Figure 6.8 presents the convergence rate of SM in Waxman networks with ran-
domization by noise and message loss.

| | | |
1 —— M =1, RF -e- M =3, RF 1
—&=— M=1,PF -a- M =3,PF
T 0.8 [hpenee. L Sos -
<} <}
E E
2 0.6 [ g 0.6 -
g g
%0 0.4+ - %0 0.4+ -
= =
g 0.2 . 3 0.2 i
o ey oV ,
A 0 b
0 $ I I I I il 0 I I I I I I I I ;
0 02 04 06 08 1 0 051 15 2 25 3 35 4
Message loss, € Noise magnitude, A
a) Response to message loss b) Response to noise (AWGN)

Figure 6.8: Asynchronous SM with M faulty nodes in loosely connected Waxman
networks. PF and RF stand for faulty nodes with persistent and random failure
models, respectively. K =3, N =99, a = 0.05, § = 0.18.

It indicates that in Waxman networks faulty nodes with persistent failure inhibit
consensus stronger than faulty nodes with random failure — the effect earlier
observed for WS networks.

These observations indicate that persistent faulty nodes inhibit binary majority
consensus stronger than commonly used faulty nodes with arbitrary Byzantine
failure. This effect is observed with all types of randomization in ring lattices,
random WS, and Waxman networks.

These effects can be explained by the nature of persistently failing faulty nodes:
such nodes always send the state information that counters the consensus process.
Faulty nodes with random failure can also send the correct information and, thus,
contribute to a correct convergence process. Moreover, it was shown that random
binary errors and message loss can provide beneficial stochasticity [MMDAO4, 4, 2],
which can further weaken the impact of non-persistent faulty nodes.

The stronger impact of persistent faulty nodes has the following effect. A num-
ber of persistent faulty nodes (e.g., M = 2) with both possible faulty states
oy € {—1,1} inhibit the a binary majority consensus system with an arbitrary
initial density stronger than M = 2 non-persistent faulty nodes, randomly switch-
ing between two or three possible states. Therefore, to inhibit a binary majority
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Figure 6.10: Asynchronous GKL in random WS networks (P = 1) with M faulty

nodes. “Clust.” and “dist.” stand for clustered and random faulty node place-
ment. K =3, N =99.

consensus system with unknown initial density an intruder should rather use an
equal number of persistent faulty nodes with both available oy, (e.g., M = 4: 2
nodes with o) = —1 and 2 nodes with oy, = 1) rather than a bigger number of
non-persistent faulty nodes (M = 4 nodes with o)y € {—1,1} or oy € {—1,0,1}).
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6.3.4 Faulty Nodes with Random and Clustered Layout

In Figures 6.1 and 6.6 we observed that topology randomization can mitigate the
negative impact of faulty nodes. This motivated us to determine whether a static
random placement of faulty nodes can produce similar effect.

We simulate networks with two types of faulty nodes layout on the network
where (a) all faulty nodes are located in a single cluster, and (b) faulty nodes are
randomly placed over the network.

Figures 6.9-6.11 present R of asynchronous GKL and SM in WS and Waxman
networks with persistent faulty nodes with random and clustered layouts.

Topology Randomization

Figure 6.9 shows dynamics of the SM consensus with clustered and randomly
placed faulty nodes in Watts-Strogatz and Waxman networks with topology ran-
domization (increasing P and f3).

Figure 6.9a indicates that in WS networks M = 4 faulty nodes with clustered
layout inhibit consensus slightly stronger than faulty nodes randomly placed over
the network. The observed difference in impact lies within the confidence intervals
and thus cannot be considered as determinative. Further, Figure 6.9b does not
indicate such difference in impact for Waxman networks. This difference in impact
of clustered and distributed faulty nodes, observed for SM in WS networks can
be explained as follows. SM with M > K (Figure 6.9a) faulty nodes achieves
R € (5,10)%, and at this level of convergence the contribution of randomization
can lead to serious fluctuations, which is partially indicated by the wide confidence
intervals. This is further illustrated by Figure 6.10. It shows that in random WS
networks (P = 1) with additional randomization by message loss faulty nodes
with clustered and distributed layout have similar impact.

Randomization by Noise and Message Loss in Waxman Networks

In Waxman networks with additional randomization by noise or message loss the
impact of clustered faulty nodes is similar to that of randomly placed ones, as
can be seen from Figures 6.9b, 6.10, and 6.11. This can be explained by topology
randomization that distributes the impact of the clustered faulty nodes into a
wider set of nodes. This leads to “de-clustering” of the faulty nodes and mitigates
the difference in impact with randomly placed faulty nodes.

This effect is observed with different types of randomization in both WS and
Waxman networks, as can be seen from Figures 6.10 and 6.11. This can infer that
the observed effect of increased robustness with faulty node random placement,
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Figure 6.11: Asynchronous SM with M faulty nodes in connected Waxman net-
works. K =3, N =99, a = 0.05, 8 = 0.26.

weakly expressed for asynchronous SM in WS networks, is a specific feature of
such a setup.

6.3.5 Consensus Promotion with Non-Persistent Faulty Nodes

Moreira et al. [MMDAO4] study binary majority consensus with binary errors,
showing that such random intrusions can significantly promote consensus. Ran-
domly failing faulty nodes with reduced state space essentially act as locally placed
error generators, and can produce a similar effect. In our simulations we ob-
serve consensus promotion by randomly failing faulty nodes in ring lattices with
asynchronous GKL. Figure 6.12 shows R of asynchronous GKL with clustered
non-persistent faulty nodes in WS networks and ring lattices of different sizes.
Figure 6.12a shows that M > K of such faulty nodes located in a single cluster
can significantly increase R in ring lattices (P = 0). Figure 6.12b shows that
this effect scales with the system size and remains with three-state non-persistent
faulty nodes.

Two-state non-persistent faulty nodes promote consensus stronger than three-
state faulty nodes, although both types indicate similar dependencies.

This can infer that randomization within the consensus state space can be more
efficient [5, 1, MMDAO4]. Positive impact of faulty nodes on GKL consensus can
be explained by the explicit randomization they impose on the information ex-
change. It was previously shown that randomization by binary errors can promote
consensus [MMDAO4]. Consensus promotion by faulty nodes reaches maximum
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Figure 6.13: A ring lattice with M = K clustered faulty nodes, N = 15, K = 3.

with M > K faulty nodes allocated in a single cluster. Figure 6.13a) illustrates
such a case: in a presented network, nodes 11 and 0 cannot access the state in-
formation from each other because the ring is logically disconnected by a cluster
of faulty nodes. Figure 6.13b) shows similar situation in a ring that is actually
disconnected: nodes 11 and 0 cannot access the mutual state information in a way
similar to that of Figure 6.13a).

Such setup can be presented as an open one-dimensional lattice with M faulty
nodes at both ends (see Figure 6.13b). This can also be interpreted as a solution

100



6.3 PERFORMANCE ANALYSIS WITH FAULTY NODES

accounting for boundary effects: consensus can be promoted by providing sufficient
random inputs (M > K') on network borders.

Analysis of the System Evolution

The evolution of asynchronous GKL in networks with faulty nodes is presented in
Figures 6.14 and 6.15.

Figures 6.14a and 6.15a show the state and density evolution of the synchronous

GKL without faulty nodes over time, respectively.
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Figure 6.14: State evolution of GKL. K =3, N = 99.

Figure 6.14a illustrates that in a connected synchronized ring clusters can mi-
grate over the network. Figure 6.15a shows that ~ 82% of all systems with various
densities steadily evolve to the state of correct majority. Figures 6.14b and 6.15b
show the state and density evolution asynchronous GKL with M > K faulty
nodes. Figure 6.14b shows that a cluster in a logically disconnected ring (see
Figure 6.13) does not migrate and is destroyed faster. Figure 6.15b shows that in
such a setup systems evolution is biased with an update sequence and that there
exist random shifts of density.
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This indicates that the state direction bias of the GKL combined with asyn-
chronous updates can steer the system to the expected state. It also shows that
density often evolves closely to the opposite majority, and then it is steered to the
correct one. This happens due to the steering effect of the asynchronous update
and the contribution of the faulty nodes state information messages.

Latter observations can be explained as follows. Even though asynchronous
GKL with additional randomization by faulty nodes can reach R ~ 100%, it
can not be considered as a solution to the binary majority consensus problem:
the system exhibits significant random dynamics and cannot guarantee correct
convergence in the given consensus time 7.

6.4 Summary

In this chapter we investigate the influence of faulty nodes on binary majority
consensus with randomization. We simulate two standard and one randomized
algorithm in different setups, including ordered and topologically randomized net-
works with noise and message loss. We study faulty nodes with persistent failure
in comparison with faulty nodes with random failure.

New results presented in this chapter can be summarized as follows:
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e faulty nodes with persistent failure inhibit binary majority consensus
stronger than faulty nodes with random failure;

e randomization by noise, message loss, and topology can mitigate such a
decrease with M < 3 in the system;

e although randomization can help mitigate the decrease in R, with M > 3
the decrease in convergence rate is drastic;

e Random Neighbor Majority consensus, proposed in Chapter 5, exhibits
higher robustness towards faulty nodes in all studied setups.

The stronger impact of persistent faulty nodes makes them more adverse. A
number of persistent faulty nodes (e.g., M = 2) with both possible faulty states
oy € {—1,1} will inhibit the binary majority consensus system with arbitrary ini-
tial density stronger than M = 4 non-persistent faulty nodes, randomly switching
between two or three possible states.

We show that in certain conditions (e.g., with GKL in asynchronous ring lat-
tices) randomly failing faulty nodes can even promote consensus, due to local
boundary effects and cluster-dithering impact. We should note, however, that
latter result cannot be considered as a solution to the binary majority consensus
problem as the system exhibits significant measure of stochastic dynamics.

In Chapter 4 we show that randomizing disturbances can promote wait-free
binary majority consensus and that an optimal combination can be selected de-
pending on a system conditions. In Chapter 5 we propose a random neighbor
selection scheme for a consensus algorithm that with additional randomization by
noise and errors can reach 100% convergence rate.

New results presented in this chapter show that randomizing disturbances not
only increase the convergence rate but also promote robustness of wait-free binary
majority consensus. We present a setup where faulty nodes themselves promote
consensus due to local boundary effects and counter-clustering influence.

Ben-Or [BOS83]| offered a randomized algorithm that can tolerate up to a M =
9 faulty nodes in a fully asynchronous system. Important remaining question is
whether an algorithm with the similar robustness can be designed for a wait-free
system with limited connectivity, such as a binary majority consensus system.
This issue again can be approached with a more complex solution than the ones
studied in this work.
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CHAPTER .
Conclusions

Binary consensus algorithms can be used in systems where centralized decision-
making is difficult or impossible. In technical systems, such use was reported in
distributed database management [BG84], mission planning [AH06], wireless sen-
sor networking [MNC10] and cognitive networking [AMM11]. Such real-life net-
worked and distributed systems, such as wireless sensor networks, seldom operate
in a synchronous regime, or with the full connectivity. Algorithms with bounded
time can be beneficial in such networks as they are not suited for long-running
algorithms, due to scarce resources of networked nodes. Due to restrictions in
connectivity, execution time, and lack of synchrony, it is difficult to provide a
solution with a 100% convergence rate. In the last several decades new algo-
rithms advanced the convergence rate from ~ 82% to ~ 90%. Some of the best
results were achieved by randomized algorithms. Randomization is a technique
that utilizes stochastic disturbances to promote consensus.

In this thesis we investigate simple binary majority consensus with stochastic
disturbances and faulty nodes. We study simple algorithms with explicit distur-
bances in different systems, including:

e ring lattices, as an example of ordered networks;
e random Watts-Strogatz and Waxman networks;
e synchronous and asynchronous networks.
We investigate the influence of explicit randomizing disturbances such as:
e Additive noise and random errors;
e Stochastic message loss;
e Randomly and persistently failing faulty nodes.

We simulate binary majority consensus with a focus on its convergence rate and
speed. We analyze the system evolution dynamics and propose a random neighbor
selection scheme that can promote consensus. With additional randomization
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by noise or errors, the proposed Random Neighbor Majority (RNM) algorithm
shows higher convergence rate and fault tolerance in both ordered and randomized
environments.

7.1 Summary of Contributions

We present new results in Chapters 4, 5 and 6. Chapter 4 investigates standard
algorithms with various types of randomization. Chapter 5 proposes a new ran-
domized algorithm and compares it with standard algorithms. Finally, Chapter 6
studies fault tolerance of aforementioned algorithms in various setups.

Chapter 4 investigates Gacs-Kurdyumov-Levin and Simple Majority consensus
in ordered and topologically randomized Watts-Strogatz and Waxman Networks.
Presented results show that topology randomization, noise, and message loss can
promote distributed binary majority consensus. The analysis of system evolu-
tion indicates that consensus is promoted due to different types of “de-clustering”
influence provided by stochastic disturbances. Different types of randomization
show cumulative effect when combined, and an optimal combination of distur-
bances can be selected depending on system conditions. Although randomization
can strongly promote consensus, it does not critically influence its convergence
time. These observations can infer that some of the randomizing disturbances can
be embedded in simple consensus algorithms.

Further, in Chapter 5 we propose an algorithm with embedded random neighbor
selection that can counter the network clustering without changing the underlying
network topology. We study RNM with additional randomization by noise and
errors in comparison with standard and randomized SM and GKL in ordered and
topologically randomized Watts-Strogatz and Waxman networks. We explain that
RNM outperforms SM and GKL due to embedded random neighbor selection . We
show that an optimal level of additional randomization by noise or errors can be
selected, depending on system conditions. We analyze system evolution dynamics
and show that although RNM with additional randomization can reach R of up
to ~ 100%, it cannot guarantee a stable agreement in a wait-free manner. Finally
we suggest a further research direction to improve the stability of RNM through
an adaptive levels of embedded randomization.

Chapter 6 investigates the impact of the faulty node behavior on binary majority
consensus. It considers faulty nodes with random and persistent failure, including
faulty nodes with clustered and random layout over the network. We show that
GKL, SM and RNM strongly degrade with presence of faulty nodes, although
RNM shows higher robustness with low number of faulty nodes. Next, we show
that faulty nodes with persistent failure are more adverse for binary majority
consensus, and that faulty node impact can be mitigated by randomization of
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various nature. We show that although in some setups GKL, randomized by
clustered non-persistent faulty nodes, reaches almost 100% convergence rate, this
cannot be considered as a wait-free solution for a binary majority consensus.
Finally, we explain these effects with the analysis of system evolution.

Throughout the analysis we do not specifically accentuate whether the distur-
bances, such as noise, errors and message loss, are “embedded” in the algorithm
or “external”. However, we keep the respective models simple and allow for their
independent combinations so that if needed, a disturbance can be easily embedded
in the algorithm. This can be done to increase the efficiency and robustness of
the algorithm by complementing the disturbance profile of a given system without
significant increase in complexity of the algorithm itself.

7.2 Open Questions and Future Work

New results presented in this thesis extend and complement the previous inves-
tigations on binary majority consensus with disturbances. We show that explicit
randomization can promote simple algorithms for binary majority consensus, and
increase their robustness towards faulty nodes. However, open challenges remain.

One of the most important ones is whether a stable consensus on arbitrary initial
configurations with a limited network connectivity and bounded time is possible.
In Chapters 4 and 5 we mention two possible approaches for the further research
in this direction. The first approach assumes the fusion of the counter-clustering
influences provided by different disturbances. The second intuitive direction for
the further research is to embed an adaptive mechanism for disturbance levels.
Such a mechanism could trigger a high level of the appropriate disturbance in the
beginning of the system evolution (or if the node’s state is unchanged for a certain
number of time steps). Then a disturbance level can be relaxed in time to ensure
the stability of the new achieved state of the overall system. Both approaches
will significantly increase the complexity of the algorithms and require additional
extensive research that exceeds the scope of this thesis.

Another important issue is related to the robustness of the consensus towards
faulty nodes: although we show that randomization can mitigate their impact,
already at M > 3 of faulty nodes added to system convergence rate decreases
below 50%. Therefore, it is important to investigate if a solution for a wait-free
binary majority consensus can be proposed with the robustness close to that of
Ben-Or’s algorithm.

These questions can be addressed analytically and by means of simulations.
Interested scholars are advised to introduce themselves to works of Mitchell, Fuks,
and Aspnes.
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List of Symbols

=

~.

=

oM

Number of nodes in the system

Number of faulty nodes added to the system
Number of the node

Number of neighbors on each side of the lattice

Rewiring probability in Watts-Strogatz networks: a probability of
the node i to have a link to a random node z,z ¢ {i — K,... i —
Li+1,...;i+ K}

A parameter defining the average connectivity in Waxman net-
works

A parameter defining the average link length in Waxman net-
works

A distance between nodes ¢ and j in Waxman networks, ran-
domly chosen from (0, 1]

A list of all neighbors of the node ¢

A list of left-side neighbors of the node %

A list of right-side neighbors of the node

Initial state of the node ¢

State of the node i at the time ¢

State of the node j received by the node i at the time ¢

State of the node 7 received by the node itself, o;; # o0; in pres-
ence of randomizing disturbances

State of the faulty node: (a) with a persistent failure model
oy = —Llifpy > 0,0p = 1ifpy < 0, (b) with a ran-
dom failure: oy € {—1,1}, (¢) With a random and full failure:
oM € {—1, 0, 1}

Decision step function, G = —1ifx <0, G=1if x>0

Message loss probability
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Additive noise amplitude
Probability of receiving erroneous message
Sample of noise added to a transmitted state message o; ;

Initial system configuration: a combination of N states o; €
{-1,1}

System density, the sum of all states in I; p € {—N,..., N}
System density at the time ¢

Initial system density at the time ¢t =0

Convergence rate of the algorithm: a fraction of initial configura-
tions that result in a successful agreement

Algorithm termination time, T'= 2N

The convergence (agreement) moment, if py < 0, oy[t.] = —1, Vi, if
Po > O,O'Z‘[tc] = 17VZ

Convergence speed of the algorithm, F' = 1 — % registered for
successfully converged networks

A node randomly chosen from the list of available neighbors
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