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Abstract

One of the most important functions of smartphones and tablets is capturing, storing and

viewing images and videos. Never before was it so easy and effortless to take a picture.

As a result, image collections grow increasingly on mobile devices. However, their current

browsing interfaces are not designed to support users handling large collections in an efficient

way. It is hard to find images again when users do not exactly know where the photo was

filed. Users end up scrolling endlessly. The same can be said for video collections or even

navigation inside a video. Discovering important scenes without knowing the exact time

code is hard.

The improvement of this situation is the focus of this thesis. In a first step, the status

quo is evaluated regarding mobile media usage on smartphones and tablets by performing

a survey with 215 participants. In the next step, the implications of the survey influence

the development of a variety of mobile 2D and 3D image and video browsing interfaces.

To enable these approaches, results of content analysis are utilized. In case of images, the

dominant color is used for sorting purposes. Moreover, videos are segmented with the help

of a new sub-shot based approach. Three user studies have been performed - two for image

browsing and one for video browsing. They show an important difference between browsing

on small vs. large touchscreens and prove the utility of sub-shot visualization in a mobile

setting. Furthermore, additional mobile video browsing interfaces are introduced. Finally,

as content analysis is extensively utilized, performance of current smartphones and tablets

regarding well-known OpenCV functions is measured, listed and discussed.

xvii



CHAPTER

1 Introduction

The 22nd November of the year 1826 marks a very important point in time for the history

of images. On this date, Joseph Nicéphore Niépce was able to produce a durable and light-

resistant representation of an motive captured by a camera for the first time: the view out

of his workroom in Le Gras (see Figure 1.1). It took him eight hours to capture this image.

Several years later Eadweard Muybridge created with a setup of several still cameras the

first moving picture of Sallie Gardner, a horse, as can be seen in Figure 1.2. Technology

advanced in fast pace, from large and expensive professional devices to smaller and cheaper

personal cameras.

Figure 1.1: Oldest surviving camera
photograph by J. N. Niépce.

Figure 1.2: First movie captured in
real-time by E. Muybridge.
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With the technology also the produced content advanced: from poor black and white

photographs to high quality images and movies. As capturing became easier and more af-

fordable, also the amount of images and videos owned by an individual grew. Shelves of

photo albums and film cartridges were produced. Digital cameras and camcorders were cre-

ated that replaced their analog predecessors and quickly surpassed them in terms of quality

and storage capabilities.

Today we live in a world were mobile phones have fused with digital cameras and mo-

bile computers, creating the smartphone. In 2015 smartphones are ubiquitous. Projected

smartphone sales are still rising (see Figure 1.3) and it also infused new life into another

device category that never really gained momentum until reimagined during the smartphone

boom: the tablet. Rather than shrinking a laptop computer down, the new generation of

tablets evolved from the smartphone, adopting the user experience and capabilities. Also

shipments for this device category are expected to further increase until 2017 [IDC15] (see

Figure 1.4).

Figure 1.3: Global smartphone shipments
2012 to 2018 (* = forecast)[IDC15].

Figure 1.4: Global tablet shipments
2012 to 2017 (* = forecast)[IDC15].
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1.1 The Challenge

When looking at the most popular cameras of the photo sharing site Flickr the first five

places are all taken by smartphones, as can be seen in Figure 1.5. Newest smartphones offer

good cameras and have the advantage that people do not have to carry around an additional

device for photo capture. They have replaced traditional point-and-shoot cameras for many

people. The same is true for video capture. Not too long ago you needed a special device for

recording personal videos: a camcorder. Smartphones took over this category too. More-

over, as tablets continue to become more and more common, people use them for image and

video capture too.

Figure 1.5: Most popular cameras in the Flickr community (adapted [Fli14]).

However, this also creates a problem: the easier it is to produce content the more con-

tent accumulates over time, as people generally tend not to delete old photos and videos.

This results in large collections of media. A large collection in itself is not something bad,

but users are not very likely to organize their media collections or describe the content of

their media by adding tags. With such preconditions it becomes very hard to find anything

although users have a clear memory about the item that they are looking for. In research

such situations are called Known-Item Search (KIS) scenarios. Traditionally, image and

video retrieval techniques are proposed to solve such challenges and extensive research has
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been performed in that direction. Unfortunately, there is a catch to it: retrieval methods

require users to be able to formulate their search request in a query - a requirement that

many users are not able to fulfill. It is often too difficult for them to appropriately describe

their mental image in such a way. Also the semantic gap is of concern as retrieval tools are

still not able to decipher actual meaning and purpose of images and videos.

As a result users nowadays are still using the limited image and video interfaces created

decades ago. When we look at current image browsing interfaces we are faced most of the

time with simple lists or grids. Lists or grids are a good way to provide access to a small

amount of items. It becomes problematic when the number of items grows. At a given time

only a subset of items is visible, which entails more and more scrolling. Furthermore, this

visualization makes it hard to see any content structure in the collection. What makes it

worse is that when users reach the end of a list or grid they tend to first scroll all they way

up again to start over [SC13]. The task becomes cumbersome, time consuming and in the

end frustrating.

Similarly, current video tools seem to be stuck in the old VCR-days. Play/pause, fast

forward, fast rewind and a seeker bar are the basic features that are currently available

when users play a video. Imagine you want to show your best friend a funny scene in the

latest episode of Big Bang Theory but you cannot remember the exact time code. Imagine

you have the task of seeking through security cam footage to find related sequences. You

have to seek through either the whole video or count on your luck and give the seeker bar a

try! Sometimes it works; often you are frustrated by investing a lot of time and not finding

anything.

What makes things even worse is that the same interaction techniques of PCs were

transferred without any notable changes directly to smartphones and tablets. However, they

were designed with keyboard and mouse in mind - not touchscreens. Due to the smaller

screens even less screen space is available for large image grids and video seeker bars. On

the other hand, todays increased interaction and visualization opportunities are ignored for

the most part.
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1.2 Finding a Better Way

The research community starts to recognize that although retrieval tools can produce im-

pressing results, the lack of user involvement is bothersome. Worring et al. [WSS+12] said

it best when they ask the question: where is the user in multimedia retrieval?. They request

that researchers should focus more on interactive search, such as image and video browsing,

as it is a user-focused way to:

• Find a specific item/sequence in a collection/video.

• Understand the structure of formerly unknown collections and videos.

• Filter collections/videos for new interesting items or sequences.

Instead of relying exclusively on the capabilities of automatic retrieval systems, browsing

systems include the user as an active part in the search process. They take into account

that a human being is still the best one to decide whether something is relevant or not. The

system on the other hand tries to give the user enough information and overview to make

efficient decisions to reach the goal as fast as possible. Furthermore, in certain scenarios it

can make the process enjoyable and playful, especially when exploring new and unknown

image collections or videos.

As discussed above, smartphones and tablets play an important role in image/video

capture, consumption and storage. It is therefore necessary to not only perform research

on image/video browsing in general but tailored to these new mobile environments. They

differ in many ways from traditional computing:

• Interaction happens via touch gestures with one or multiple fingers or by changing

the physical orientation of the device.

• They have powerful CPUs and GPUs capable of rich visualizations, but still have their

limits due to their small and mobile nature (heat and battery constraints).

• Compared to PCs their screens are much smaller, requiring intelligent utilization of

the available space.
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• They are most of the time connected with a widespread set of connectivity options.

• They offer a variety of sensors to perceive their environment.

Therefore, great opportunity exists in utilizing those features and to discover better ways

of image and video browsing, especially on these device categories.

1.3 Contributions

The research in this thesis investigates several approaches on how to improve image and

video browsing on smartphones and tablets, and investigates several connected sub-areas

that are related to this topic.

1.3.1 Investigating User Habits

In order to be able to improve image/video browsing it is essential to collect and analyze data

about how users interact with their smartphone and tablets. To gather this information, an

extensive survey was performed. Participants were asked questions regarding their specific

usage patterns when doing image or video related work with their devices. The gathered

knowledge is reported as well as discussed in terms of implications.

1.3.2 Developing New Mobile Browsing Concepts

The core of this thesis is the introduction of several new interface concepts for mobile

image and video browsing on smartphones and tablets. They utilize different approaches to

improve the browsing experience of users. On one hand they use new strategies for content

visualization and interaction. On the other hand they provide tools for filtering content in

an interactive and iterative way. Some techniques that are used for those purposes include:

• 3D visualization

• Image sorting based on dominant color

• Sub-shot based video content segmentation
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• User ergonomics

• Filtering dependent on various content properties (e.g. motion, keypoint density or

color layout)

In total two tablet and four smartphone image browsing concepts and four tablet video

browsing concepts are included.

1.3.3 Evaluation of Mobile Browsing Concepts

To be able to verify whether a browsing idea actually improves the state-of-the art it is

necessary to test it. In comparison with other evaluation techniques, user studies are a

method that is on one hand rather expensive and time consuming, but on the other hand

can give great insights and feedback. This thesis reports about a number of such user

studies. After an initial idea for a browsing concept, a prototype is built, which is then used

by study participants to complete different search tasks. Their performance is recorded and

afterwards analyzed. Three such reports are included in this thesis.

1.3.4 Measuring Performance for Content Analysis Purposes

In multimedia retrieval and browsing, images and videos have to be analyzed in order to

gather more information about their contents. Typically, this process is linked with exten-

sive processing needs. To deal with this problem on mobile devices, different approaches

exist.

First, the processing can be offloaded to a server and performed beforehand (offline) or

on demand via a network connection (online). The problem with this approach is that the

content needs to be available in advance, or the device has to have a broadband internet

connection at all times.

Second, the processing can be done directly on the device. This approach may require

users to endure waiting times of different length, depending on the type of content and the

chosen analysis method.
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OpenCV1 (Open Computer Vision) is an open source and freely available library of

functions aimed at computer vision. It is widely used in the multimedia retrieval domain

to perform different kinds of content analysis. Furthermore, it is available on a wide set

of platforms, including Windows, Mac OS X, Linux, iOS and Android. Choosing the right

method for the right environment can be a key to succeed. To be able to do this, measure-

ments are required on the computational limits of different classes of devices. This fact is

often overlooked and therefore to the best our knowledge no measurements in this domain

exist for smartphone and tablets. Hence, in this thesis the results of two measurement se-

tups are reported where commonly used OpenCV functions are evaluated regarding their

performance on a diverse set of smartphones and tablets.

1.4 Structure

This thesis is organized in three big parts, in accordance with the discussion in the earlier

contributions section. In chapter 2 the context of the thesis is presented. The research

described in that work was performed to large parts in the Next-Generation Video Browsing

project (NGVB). A short introduction and its goals are reported. Furthermore, the current

state-of-the-art of research in the fields of image and video retrieval/browsing is described.

Next, in chapter 3 the conditions and results of an extensive online survey are reported.

In the following, the results are discussed and implications for new browsing designs are

introduced. In chapters 4 and 5 the work and results of two user studies in the field of

mobile image browsing are discussed. The first concentrates on image browsing on tablets

and the second on image browsing on smartphones. In both cases novel interface concepts

are introduced. Subsequently, in chapter 6 a novel video browsing concept, the Keyframe-

Navigation-Tree Browser (KNT-Browser), is introduced. Moreover, it is evaluated in a user

study of which the results are reported and discussed. After that, in chapter 7 the setup and

report of OpenCV performance evaluations on mobile devices is given. Chapter 8 contains

a short discussion about novel and published but not yet evaluated mobile video browsing

interface concepts that incorporate the insights that were gathered in the earlier discussed

research. Finally, the thesis is concluded in chapter 9.

1
http://www.opencv.org



CHAPTER

2 Context

The work described in this thesis was performed for the most part in association with the

Next-Generation Video Browsing Project (NGVB). This chapter includes an introduction of

the project as well as an overview of important and recent work in the domain of (mobile)

image and video browsing as well as retrieval.

2.1 The Next-Generation Video Browsing Project

Figure 2.1: Logo of the Next-

Generation Video Browsing

project.

The goal of the NGVB project (see Fig-

ure 2.1 for the projects’ logo) is the inves-

tigation of novel video browsing opportuni-

ties by taking advantage of the capabilities

of modern tablets and smartphones. Es-

pecially, novel browsing techniques should

be discovered and evaluated. Furthermore,

collaborative search utilizing mobile devices

is another focus. The project was started

in August 2012 and will be completed in

February 2016. The project team consists of two project leaders, two full time members,

and a few master students.
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Two important sub-goals are (1) utilizing 3D visualizations for video browsing and (2)

evaluating on-the-fly content analysis on smartphones and tablets. In earlier work it could

be shown that a 3D visualization can in fact improve the browsing process compared to

2D scrollable grids [SAH14]. It is therefore the aim to further explore the possibilities that

this visualization technique can offer in the given context. As the combination of content

analysis and video browsing offers great potential, another aim is to test the capabilities of

mobile devices to perform content analysis on-the-fly. This is important to investigate, as

otherwise preprocessing or a server connection is mandatory. The project is structured into

two primary work packages and two administrative work packages. In the following, the two

primary work packages are described in greater detail.

Work package one (Novel Video Browsing Interfaces) focuses on designing, implementing

and evaluating novel video browsing concepts for smartphones and tablets. Especially the

utilization of 3D to enhance the browsing and navigation process is one of its main points.

Furthermore, another important task is the investigation whether on-the-fly content analysis

is possible with mobile devices and if yes, to what degree. Most of the work in this thesis

was performed as part of this work package.

The second work package (Collaborative Video Browsing) investigated possibilities of

solving video search and exploration tasks in a group of people. Each member of such a

team would use a mobile device to participate. Especially in the professional domain such

a system could be beneficial. For example, security camera footage could be much faster

evaluated or it would improve the collaboration in the medical domain, as doctors could

collaborate on recorded surgeries in a new way.

The project is currently in its final year and was successful in producing multiple research

results that yielded in related publications.



CHAPTER 2. CONTEXT 11

2.2 State of Mobile Image Browsing

As mobile image browsing inevitably builds on the experiences and results of traditional

image browsing/retrieval and content analysis, a couple of important works have to be men-

tioned before concentrating on the mobile domain.

Smeulders et al. [SWS+00] give an extensive overview about content-based image re-

trieval up to the year 2000. Rodden et al. provide further important insights regarding

image browsing. On one hand, it seems that users prefer rather simple browsing solutions in

contrast to very extensive but complex ones [RW03]. On the other hand, they showed first

clues that arranging images similarity-wise could improve the browsing situation for users

[RBSW01]. In the following, works of image browsing directly targeted at mobile devices

like smartphones, tablets or PDAs are summarized.

Ganhör presents Athmos [Gan14], a context-driven visualization approach for image

collections. The basic idea is a stripe of thumbnails where the center image (the focus)

is displayed largest, while the rest of the thumbnails occupy the remaining space more or

less distorted. Due to the nature of a rectangular screen this stripe is broken up into three

stripes: a top stripe (starting range), a middle stripe (current range) and a bottom stripe

(ending range). See Figure 2.2 for a screenshot of this arrangement. As users navigate

through the collection with swipe gestures, the top and bottom stripes have to accommo-

date varying amounts of thumbnails, which results in different amounts of distortion.

With MINI, Gomi and Itoh [GI12] show a mobile visualization of multi-dimensional re-

sult datasets. Result items of the dataset (represented by images) are positioned in a 3D

space. Three functions, which have to be defined by the user, are called to calculate the

x-, y- and z-position of an item dependent on its attributes. Furthermore, their system

lets users choose how to prioritize the result items (e.g., prioritizing certain keywords or

attributes). It is possible to rotate and zoom this view with swipe gestures. The dataset is

always displayed in such a way that high priority items are located in the top left corner.
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Figure 2.2: Athmos: Focus- and context-driven mobile image browser by Ganhör
[Gan14]

Schaefer et al. [STF+12] improve the traditional grid of thumbnails by using a hexagonal

layout. Because of that, the images are visually more clearly separated, as can be seen in

Figure 2.3. Moreover, they use image positioning and clustering based on color hue and in-

tensity values. Similar images are close to each other while very similar images are grouped

into one cluster represented by a special thumbnail. Users can explore the collection by

zoom gestures and expand clusters by tapping on the respective thumbnails.

Khella and Bederson show an extension of their desktop image browser [Bed01] for mo-

bile devices: [KB04]. It utilizes quantum strip treemaps to layout images and minimizes the

amount of white space on the screen. Furthermore, it groups the images based on metadata

or directory. With semantic zoom operations it is possible to focus on a certain group and

use larger thumbnails.
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Figure 2.3: Image browsing using a hexagonal layout by Schaefer et al. [STF+12]

An image browser utilizing creation dates and color similarity is presented by Kim et al.

[KKC12]. They argue that images with similar creation timestamps most probably belong

to the same event and should be part of the same cluster. Each of the clusters is visualized

via a small collage in a grid-like interface. A grid of thumbnails then displays the contents of

a cluster. Very similar images (duplicates, photos with only minor differences) are collapsed

to a single entry, symbolized by a stack of photos.

Focusing on a problem that occurs when clustering based on creation date, Karlsson et

al. [KJZ14] show a mobile photo browser with a multiscale timeline. Time-based clustering

for events has the problem, that such events can last a few seconds (e.g., a group of people

posing), a day (e.g., a visit of a theme park) or weeks (e.g., vacations). This makes it

hard to apply time-based clustering as the scale always changes. Their browser therefore

makes it possible to change clustering scales on-the-fly, dependent on their current needs.

The individual clusters are displayed on a timeline that can be scrolled horizontally. A

screenshot of the interface can be see in Figure 2.4.
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Figure 2.4: Image browser with a multiscale timeline by Karlsson et al. [KJZ14]

2.3 State of Mobile Video Browsing

As it is the case for mobile image browsing, also mobile video browsing builds on the results

that were produced on traditional PCs before. An overview of the field is given by Schoeff-

mann et al. [SHM+10]. The ForkBrowser by de Rooij et al. [dRSW08] is a prominent

example of combining a 3D visualization with similarity clustering.

In the following, research that is directly focused on mobile video browsing is reported.

iBingo [SFBJ08] is a system for collaborative search with mobile clients. A laptop com-

puter initiates a search task by submitting a content-based query to a search engine. The

shots in the result set of the query are then distributed among members of the search team.

Each team member is equipped with an Apple iPod Touch device, which acts as mobile

client. The team members decide on the relevance of their proposed results and give feed-

back to the central collaborative module. The module then reformulates and re-ranks the

shots based on the given relevance feedback.
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Miller et al. [MFF+09] present a mobile video browser for the Apple iPhone that focuses

on live-events and lets users switch between multiple camera angles by using simple swipe

gestures. They group their video application into four main context sensitive interfaces: a

content browser, a video player, a multi-camera browser, and a history browser. Of spe-

cial interest is the video player interface. During playback of a video, users can swipe for

changing the camera. Swiping to the left switches to the camera located right of the cur-

rent camera and vice versa. Furthermore, it can display annotations for the current video

stream like names of players in a Hockey game. For this purpose users have to perform a

single tap and select the appropriate annotation options. The information is then overlaid

on the current video. Moreover, users can double-tap to bring up the multi-camera browser,

which is a scrollable grid-view of all available camera-streams. Finally, their history browser

provides functionality for going back to video sequences that were already selected earlier

with a rich, video-edit-like interface.

Bursuc et al. [BZP10, BZP12] proposed OVIDIUS (On-line VIDeo Indexing Univer-

sal System). It is a distributed system that is structured in two parts: a search engine

server that creates MPEG-7 descriptions of videos, and an interface server that enables

video browsing via a web interface tailored to mobile devices. The UI enables a hierarchical

browsing approach based on content segments. Navigation is performed vertically (scenes,

shots, keyframes) as well as horizontally (segments of the same level).

Czepa et al. [CBH+12] show a streaming video player for smartphones, which incorpo-

rates users’ attention. When users look away from their device during playback, the video is

automatically paused. If they refocus their attention on the device the playback continues

instantly. Their approach uses face detection in images recorded through the front camera

of the smartphone.

Propane, presented by Ganhör et al. [Gan12], divides a landscape-oriented smartphone

screen into four interaction areas: left, right, top and bottom. It can operate in three modes:

Standard Browsing, Advanced Browsing and Progressive Browsing. When in Standard Brows-

ing mode, tapping on the left or right areas once navigates the video to the previous or the
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next frame. When a finger is held on the areas the video is fast forwarded/rewinded. The

seeking speed is dependent on the vertical position of the finger in the area. The Advanced

Browsing mode further enables users to slow down a video for slow-motion playback using

the same areas. Last, the Progressive Browsing mode is a combination of both earlier men-

tioned modes.

Figure 2.5: Wipe’n’Watch: navigation in eLecture-videos by Huber et al. [HSL+10]

Huber et al. [HSL+10] propose a mobile video browsing approach tailored to e-lectures:

Wipe’n’Watch. Central to their idea are horizontal and vertical wipe gestures. They enable

users to navigate between the keyframes (i.e., e-lecture slides) of a video and between topi-

cally overlapping videos (e.g., keyframes of two videos cover the same topic). The proposed

visual interface is divided horizontally, as can be seen in Figure 2.5. At the top the con-

tent of the video is shown. At the bottom a grid of all keyframes of the current video is

displayed. The presence of an topical overlap is indicated by a small arrow in the top right

corner. Horizontal wipes navigate between keyframes. A vertical wipe during an overlap

first shows a list of related keyframes of other videos. When users tap on one of them the

interface is further scrolled down and displays the interlinked keyframes of the chosen video.



CHAPTER 2. CONTEXT 17

This process can be repeated as long as there are further semantically overlapping videos.

Moreover, a browsing history can be used for direct access to any of the earlier viewed videos.

One handed use is important for smartphones. Huerst and Merkle [HM08b] consider

this when they are presenting a mobile video browser for one-handed operation. The device

is held in landscape orientation while users scroll through a list of keyframes. Interaction

is performed only with the right thumb on the right side of the touchscreen. It provides

automatic scrolling of a list of keyframes, which can be manipulated by thumb gestures. The

list can also be scrolled manually. The video position can be set by positioning a keyframe

in the middle of the list and tapping the screen once.

A very important work for the space of mobile video navigation is the mobile zoom-slider

presented by Hürst et al. [HGW07b] in 2007. It enhances the functionality of seeker bars

by allowing to seek with different granularity levels. Depending on the vertical position

of a stylus touching the screen, a different navigation resolution is used, as can be seen in

Figure 2.6. At the top of the screen a fine granularity is used with minor temporal jumps.

When operated at the bottom of the screen, it uses a coarse granularity with major temporal

jumps. Various video players on smartphones and tablets later adopted this idea.

Buchinger et al. [BHH+10] show a video player interface for a smartphone or a similar

mobile device that is controlled by physical and touch interaction. To pause a video users

can position the device face down on a table or upside down in a pocket. Playback resumes

as soon as the device is positioned into landscape orientation. Switching between channels

is realized by swinging the device up or down. If users want to choose channels they have

to orient the device into portrait orientation. Furthermore, the system allows to control the

audio volume by swiping over the screen from left to right (increase) or from right to left

(decrease). A diagonal swipe from top left to bottom right mutes the sound completely,

whereas a swipe in the opposite direction restores the original volume. Fast forwarding

and rewinding can be activated with half-circular swipe gestures, either to the right (fast

forward) or to the left (fast rewind). Finally, a diagonal swipe from top right to bottom left

of the screen positions the video to the beginning.
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Figure 2.6: A video timeline with different granularity levels by Hürst et al.
[HGW07b]

Meixner et al. present the concept of a mobile video browser that incorporates anno-

tations to give users a non-linear video experience [MKK11]. Their SIVID player presents

users a split-interface. One side is used for the video playback, while the other side is used

to display annotations. Such annotations can be simple texts, images, or links to other

positions in the video. Furthermore, if multiple annotations are available for the current

position in the video an annotation stack is displayed. Users can tap on the elements on the

stack to get to the corresponding annotation, or display them in fullscreen mode.

Lux and Riegler [LR13] propose a mobile video player that allows to annotate video

by speech, speech-to-text, and in-frame sketches as well as bookmarking of frames and seg-

ments. The annotations are indicated on the time slider and automatically displayed on

playback of the corresponding time positions.
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Various interfaces and interaction models for mobile video browsing have been proposed

by Hürst and Meier [HM08a]: Dynamic flicking enables users to quickly scroll through a

video by dragging a stylus across the screen. The direction determines whether to seek

forward or backward. The drag distance determines the seeking speed. Elastic panning

uses an elastic slider metaphor to enable forward or backward seeking in a video. Constant

panning is similar, but the thumb is fixed and scrolling speed remains the same if the stylus

is not moved. In dynamic panning the initial touch position of a stylus is set equal with

the current position in a video. The left and right edges of the screen then represent the

beginning and the end of the video, while dragging the stylus in either direction navigates

the video. Constant flicking enables controlling an automatic, constant scrolling speed and

direction with flicking on the screen. In contrast, dynamic flicking decreases scrolling speed

automatically over time.

Figure 2.7: HiStory: video browsing with a hierarchical storyboard by Hürst and
Darzentas [HD12]

Utilizing a storyboard-like arrangement, Hürst and Darzentas [HD12] show a hierarchi-

cal approach for mobile video browsing. A screenshot of the default view can be seen in
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Figure 2.7. A grid of video keyframes are displayed on the screen. They are uniformly

sampled and represent chronologically ordered video sequences of the same length. A tap

on one of the keyframes refills the grid with keyframes of corresponding sub-sequences. This

can be continued until each keyframe represents a single frame. A narrow sidebar on the

right side tells users their current hierarchy level.

Zhang et al. present a mobile video system for collaborative annotation of videos as well

as video navigation with sketch gestures [ZML+13]. They describe a scenario where two

users are browsing the same video. Sketches, which are entered through the touchscreen,

are immediately visible to the other user if they are in the same part of the video. Users

can also share their current position and annotations. Such shared information is indicated

with a small image presented at the bottom right of the screen. Users can communicate

with each other via a built-in chat function and navigate in the video by applying predefined

touch gestures. For example, dragging both fingers from the sides to the center of the screen

opens the playlist, drawing a line from right to left starts fast reverse, and a single tap on

the screen starts playback or pauses the video.

A collaborative video browsing tool has been proposed by Cobarzan et al. [CHDF14].

The system is composed of multiple mobile clients implemented on Apple iPad devices and a

single server that manages communication between the clients as well as content-based search

requests. Users are able to search and browse a single video as well as video collections with

their tablets. The interface presents uniformly sampled keyframes with a storyboard-like

arrangement of thumbnails and allows users to perform content-based queries (e.g., color-

based filtering). Such queries are sent to the server, which returns matching sequences.

These sequences are then visualized through a 3D ring of keyframes [SA12a] and can be

further inspected by a simple selection (i.e., a tap gesture). The tool also shows which

parts of the video have been already viewed, either by the current user or other search team

members. Also, the content-based queries as well as set bookmarks of all team members are

shared among the group.
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Similar to the approaches of Huber et al. [HSL+10] and Hürst et al. [HGW07a], Schoeff-

mann et al. [SCB14] propose another wipe-based video navigator. Horizontal wipes on the

touchscreen first pause the playback of a fullscreen video. Then, the current frame is moved

outside of the screen, according to the direction of the wipe gesture. At the same time an

earlier or later frame is moved into the screen. This behavior is meant to mimic browsing a

photo collection. When the finger is lifted the playback continues from the new position. It

also adopts the idea of different granularities of the ZoomSlider [HGW07b]: when the wipe

is performed at the top of the screen, larger time skips are applied, while shorter time skips

are used when the wipe is performed at the bottom of the screen.

Hürst and Hoet [HH15] perform a comparison between two different approaches for

mobile video browsing on tablets. They compare a storyboard design with a slider-based

approach. The storyboard design features a scrollable grid of 5x5 keyframes. Furthermore,

their slider-based approach uses a vertical seeker bar on the left and a vertical filmstrip for

fine granular navigation on the right side of the screen. In their study they could confirm

the usefulness of both designs but no approach showed significant better results over the

other. Therefore, they suggest to integrate both approaches into a single interface.
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3 Mobile Media Collec-

tions: A Survey

Figure 3.1: Motorola Razr V3 [Jur04]

In order to investigate better alterna-

tives to default image and video browsers,

it is necessary to get a better un-

derstanding of the current status quo.

How many images do users store on

their devices? Where do they origi-

nate from? How often do they cap-

ture new images? Are they willing man-

age and describe their images on their

own? These questions have great impact

on how an improved solution has to look

like.

Kindberg et al. [KSFS05] performed a

study on digital image capturing behavior

in 2005. However, the problem is that smartphones were not widely adopted yet at that

time. In their study they investigated feature phones with built-in cameras instead. Fea-

ture phones have very limited functionality compared to smartphones. They can be used

for voice calling, texting and sometimes very basic internet and multimedia purposes (like

storing a couple of photos in low resolutions). For an example see the Motorola Razr V3, a
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popular phone at that time, in Figure 3.1. They report that the average amount of images

on the evaluated devices was around 44 images.

Another more recent study performed by Thakur et al. [TGE11] focused on work-related

scenarios only. About 90% of their participants stated that they would use their phone at

least once a week to take photos. They state that 45% had more than 100 photos stored

on their smartphones with an additional 3% having more than 1000 images stored on their

device.

Puikkonen et al. presented a study of video creation with mobile phones [PHBM09]

where participants reported that they use their mobile phones for video creation only once

or twice per month.

Furthermore, two surveys that were performed by Suite48Analytics were discovered,

which are unfortunately not freely available. Nevertheless, in their abstracts they state that

among 1004 interviewed users, more than 76% store more than 25 photos on multiple device

types (smartphones, computers, etc.) [Sui14a]. Moreover, they show that among 1000 in-

terviewed consumers in North America 58% of the participants, who have taken at least ten

photos in the last three months, exclusively used their smartphone to capture them [Sui14b].

They also note that 33% of their respondents use a combination of smartphone and digital

camera and that 5% in addition regularly take photos with their tablets.

Since none of the available surveys were entirely satisfactory, a custom survey was de-

signed, which will be discussed in this chapter1. An important objective of this study was to

structure the study in a way that provides valuable insights about usage patterns of mobile

image/video capturing, which can be used as input by the design and research community

([SHM+10], [BCD+12]) interested in improving interfaces for photo and video management.

1Please note that the contents of this chapter are adapted from [HSAL15]
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3.1 Study Design and Participant Statistics

The study was designed as an online web-based survey in the German-speaking region

(mostly Austria and Germany). To spread the word about it, social media (Facebook,

Google+, Twitter) and mailing lists were employed. The survey included 41 questions that

were grouped in three sections: a smartphone section, an optional tablet section and finally,

a demographic section.

In the smartphone and tablet related sections the participant were asked various ques-

tions about their mobile image and video collections:

• Period of ownership

• Storage capabilities

• Manufacturer and OS

• Number of images and videos stored locally (no cloud or similar services)

• Origins of the stored images (captured with device, downloaded, etc.)

• Organizing strategy (if any)

• Backup strategy (if any)

• Motives and intents

The questions of the first two sections (smartphones and tablets) were the same ex-

cept for slight formulation changes due to the nature of the devices. Furthermore, when

participants completed the smartphone section they were asked whether they also were in

possession of a tablet. If participants negated that question the entire tablet section was

skipped. In either case, the last (demographic) section asked about gender and age of the

participants, which completed the survey.

Over a timespan of three weeks a total of 215 participants completed the survey. Of

these, 125 were female and 90 were male. Moreover, of these 215 participants in total 82
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also were in possession of a tablet. Of these 82 tablet users, 38 were female and 44 were

male. The average age was around 29.9 years (s.d. = 9.0), with the male average age at

31.6 years (s.d. = 9.8) and female average age at 28.7 years (s.d. = 8.2). When the data

is restricted to participants who also own a tablet, the average age was around 31.6 years

(s.d. = 10.3) overall. Furthermore, the average age of female tablet users was at 30.2 years

(s.d. = 9.6) and male average age was at 32.8 years (s.d. = 10.9).

3.2 Results

The results of each of the before mentioned categories will be reported in their own sub-

chapter. Each report includes the figures of both, smartphones and tablets. Implications

and possible explanations are also included.

3.2.1 Ownership

The aim of this question is to investigate how familiar the participants to their devices

were. Most of them used them for at least a year or more. This is important, since their

media collections are the focus. Collections typically grow over time so it is necessary to

have participants that owned their device long enough. Otherwise, the sample would not be

representative.

In case of smartphones the data indicates that most participants already had them for

more than two years (70.2%) or at least one year (20.0%). Other participants had their

smartphones between six months and one year (6%) or for less than six months (3.7%).

Many participants indicated a shorter time regarding their tablets (more than one year:

34.1%, more than two years: 37.8%). Additionally, 15.9% indicated that they had their

tablet between six months and one year and 12.2% reported that they had it for less than

six months. The numbers are visualized graphically in Figure 3.2.
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Figure 3.2: Length of ownership for smartphones (left) and tablets (right).

3.2.2 Storage Space

Participants had to indicate how much storage space their devices feature. In case of smart-

phones, 20% had 8 GB, 39.5% 16 GB, 14.4% 32 GB and 2.3% had 64 GB of storage space

(see Figure 3.3). Moreover, 18.6% of the participants could not tell how much storage their

device offered. Participants who entered other storage space sizes were around 5.1%.

In case of tablets, 7.3% of the participants indicated that their devices offered 8 GB, 28%

16 GB, 26.8% 32 GB, 15.9% 64 GB, 4.9% 128 GB and 1.2% reported 256 GB. Furthermore,

15.9% of the participants reported that they were not aware of how much storage space their

tablet offers (as can be seen in Figure 3.4).

It was expected that 16 GB was the most used option for smartphones. Most phones

today are produced and sold with this memory size and for many people it seems to be the

best option in terms of space and cost. Interestingly, people seem to prefer to have a little

bit more space available when it comes to tablets, as the 16 GB and 32 GB options are head

to head. It will be interesting if this has any indication whether our participants actually

store more media on their tablets as a result.
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Figure 3.3: Distribution of Smart-
phone storage capabilities.

Figure 3.4: Distribution of Tablet
storage capabilities.

Surprisingly, also the amount of participants who had no idea about their device’s storage

capabilities was quite high. It seems that for a notable amount of people storage space does

have no influence on their buying decision.

3.2.3 Manufacturers and Operation Systems
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Figure 3.5: Distribution of smartphone (left) and tablet (right) vendors.

Most smartphones of participants were produced by either Samsung (33.5%) or Apple

(33.0%), followed by LG (9.8%), Sony (9.3%) and HTC (8.4%), as can be seen in Figure 3.5.
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Other manufactures amounted together for 6.2%. The most reported smartphone OS was

Android with 62.8%, followed by iOS with 32.1%, Windows Phone with 2.3% and Black-

berry OS with 0.5% (see Figure 3.6). Furthermore, 2.3% of the participants noted that they

were not aware what operating system they had installed on their device.

Compared to worldwide smartphone vendor figures of IDC for the third quarter of 2014

[IDC14b], the participant sample is a little bit off. The numbers agree on Samsung and Ap-

ple as the leader (although our percentages are higher). Xiaomi and Lenovo as Vendors are

not existent in our sample. This is probably a result of the strong focus of those companies

on the Chinese market and our focus on the German-speaking region. Interestingly, IDC

reports a huge amount of other manufacturers (49.3%) to which no further information is

given.

When comparing the market shares of smartphone operating systems to IDC [IDC14a],

our sample corresponds nicely with the order but shows some deviations in terms of per-

centages. IDC reports larger differences between Android and iOS (84.4% and 11.7%), while

the other numbers are much more close (deviations of only 0.6 percentage points at max).

Most tablets were manufactured by Apple (58.5%), followed by Samsung (14.6%), Asus

(11.0%), Medion (4.9%) and Microsoft (3.7%). The percentages of other manufacturers

of which each one was below 1.5% can be summed to 7.2%. Dominant operating system

on tablets was iOS with 51.2%, followed by Android with 30.5% and Windows with 8.5%.

Another 9.8% noted that they were not aware of the name of their tablet operating system

(see Figure 3.7).

A comparison with IDC numbers of the third quarter of 2014 [Sta14] shows that top

three vendors are the same for our sample (Apple, Samsung, Asus), although Apple shows

worldwide a strong difference with only 22.8%. It has to be noted that Medion is a vendor

that is strongly focused on the German-speaking market and therefore is absent in worldwide

numbers. Also Microsoft is better represented in our sample than internationally. Moreover,

IDC marks a huge amount of 41.8% as other vendors.
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Surprisingly, in terms of tablet OS percentages our sample deviates strongly with inter-

national numbers of IDC for 2014 [IDC14c]. They see Android at the top with 67.7% while

iOS ranking second with 27.5%. The reason for this very likely is the already stated high

number of other vendors in their report. It can be expected that most of them are rather

cheap Android tablets, sold in not so developed markets.

Figure 3.6: Distribution of smart-
phone operating systems.

Figure 3.7: Distribution of tablet op-
erating systems.

3.2.4 Stored Photos and Videos

Participants were also asked to tell how many photos and videos they had stored on their

devices. In case of smartphones, an average image count of 440.3 (s.d. = 503.3) was dis-

covered, with a minimum value of 0 and a maximum value of 2166.0. The average was

calculated after removing outliers with Tukeys outlier labeling method [Tuk77] and an ad-

justed multiplier of 2.2 [HIT86]. Furthermore, an average video count of 10.6 (s.d. = 12.4)

with a minimum value of 0.0 and a maximum value of 58.0 was calculated. For tablets an

average image count of 113.5 (s.d. = 189.6) could be calculated, with a minimum value

of 0.0 and a maximum value of 826.0. Interestingly, the difference to smartphones is quite

remarkable. The same can be seen when focusing on videos. An average video count of 4.6

videos (s.d. = 6.9) was calculated, with a minimum value of 0.0 and a maximum value of 25.0.
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This question was especially important, as it provided a first direction for how many

images and videos we should expect when developing new browsing solutions (for general

purpose). The effects can be seen later in the chapters 4 and 5, where four interfaces will

be presented (including different versions for smartphones and tablets) that operate with

collections of up to 400 images.

Moreover, the video counts were in both cases rather low. As a consequence, focus of

this thesis will be to improve video browsing inside a single video insteak of large collections.

In chapter 6 a new video browser for such purposes will be introduced and evaluated.

Also, a contradiction becomes visible when comparing these numbers with storage space

choices. As was discovered, people choose higher storage options for tablets than for smart-

phones. Surprisingly, they store in fact less media on their tablets. In lack of further data,

the following two theories could be the cause for this behavior.

On one hand, it could be caused by mental reasons. Users expect to have more data on

their tablets in the future, since it is a larger device. This expectation turns out to be false

over time, as they use it in a different way than what they originally planned.

On the other hand, tablets are not only used for images and videos. The additional stor-

age needs may originate from other apps that are installed, like navigation software, games

or music. However, no additional information that could further explain this circumstance

was collected in this study.
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3.2.5 Media Sources

Figure 3.8: Smartphone Photo-Capture

Habits

Figure 3.9: Smartphone Photo-Capture

Frequency

In the survey participants were also asked if they use their devices as the primary tool for

taking photos and in which intervals they add new photos. In case of smartphones 67.9%

of the participants noted that they primarily shoot new photos with the smartphone (see

Figure 3.8). Another 30.2% indicated that they preferred in most cases a normal camera for

photo shooting. The amount of people that never use their smartphone for taking a photo

was relatively small with 1.9%. Additionally, the time interval for new photos created with

their smartphones was rather short, as can be seen in Figure 3.9. Most participants noted

that they would take new photos on a weekly (52.1%) or daily (19.9%) basis.

Participants were also asked from where most of the stored images on their smartphone

originated from (Figure 3.10). The majority (88.6%) reported that most of them were shot

directly with their devices. The second option (from instant messaging services) was far

behind with only 6.2%. Other options like synching photos from a PC, a camera, a USB-

stick, from the internet or e-mails or from cloud services were all individually below 2%.

The numbers confirm our initial expectation that users are replacing their digital point-

and-shoot cameras with their smartphones. Furthermore, it appears that they use them on

a rather short recurring cycle, as more than two thirds take new photos daily or weekly.

The need to focus on smartphones therefore definitively exists. As a result, over 80% of the

images on smartphones are photos that are shot directly with the device.
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Figure 3.10: Image origins on smartphones (left) and tablets (right).

The numbers were completely different for tablets. Only 2.4% use their tablet as primary

device for photo shooting. Photos are shot in most cases with their smartphones (40.2%)

or with a dedicated camera (14.6%), as can be seen in Figure 3.11. Also, 42.7% indicate

that they never shoot any photos with their tablets. In terms of time intervals participants

indicated that they would use their tablets less than once a month for taking a photo (66.0%,

see Figure 3.12).

Tablet users were asked the same question about file origins. The answers were much

more diverse (Figure 3.10). The four dominant origins of images on tablets are: (1) directly

shot with the tablet (29.0%), (2) synced from a PC (21.0%), (3) copied from USB-stick or

camera (19.4%), and (4) synced from a cloud service (19.4%).

The tablet related numbers indicate that users avoid using them as cameras. Never-

theless, tablets seem to be used as viewing and browsing devices as the various kinds of

image sources show. Especially interesting is the high amount of cloud services and their
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absence with smartphones. This could be explained by the context in which tablets are

used. Typically, they are used in-house where Wi-Fi is available. As a result, bandwidth is

no restrictive element anymore and cloud services become more attractive. Smartphones on

the other hand have to operate in more restrictive environments.

Figure 3.11: Photo origins on tablets Figure 3.12: Tablet capture frequency

3.2.6 Image Organization and Photo App Usage

Participants were also asked if they would organize their images in manually created folders

or albums. It seems that in case of smartphones manually organizing photos is quite un-

popular, with 56.2% noting that they would never do something like that. Another 22.4%

noted that they do it rarely, 14.3% would do it for certain, special images, and only 6.7%

do it on a regular basis. In case of tablets a quite similar pattern of answers was received.

Most participants do not organize their images on their tablets (56.5%) or only in certain

cases (21.0%). Furthermore, 12.9% noted they would do it rarely and 9.7% said they would

always organize their images in such a way on their tablet.

Another question was if they would use any special photo apps to organize their photos,

which does not seem to be the case on smartphones, with 94.8% choosing No as answer.

The same is true in case of tablets with 96.8% not using any kind of such apps.
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Figure 3.13: Smartphone organization
habbits

Figure 3.14: Tablet organization hab-
bits

Figure 3.15: Usage of specialized photo

apps on smartphones

Figure 3.16: Usage of specialized photo

apps on tablets

What can be concluded from these numbers is, that the majority of users do not organize

their images in any way and also do not use any special management apps. This can be

interpreted in two ways: (1) there is no need for any further investment in image browsing

technologies because users do not care or (2) current solutions are too complicated and

inflexible to use, and users are still looking for a better way. The work in this thesis is

following prediction two.
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3.2.7 Backup Interval

The last question was about participant’s backup strategy. They could choose between the

options automatic (i.e., cloud-based), daily, weekly, monthly, less than once a month and

never. When asked in case of smartphones most participants marked the options less than

once a month (34.0%), automatic (24.1%), never (23.6%), monthly (11.3%), weekly (4.7%)

and daily (2.4%) as can be seen in Figure 3.17. In case of tablets the most submitted option

was automatic (35.5%) followed by never (27.4%), less than once a month (21.0%), monthly

(8.1%), weekly (6.5%) and daily (1.6%). The distribution can also be seen in Figure 3.18. l

Figure 3.17: Backup strategies on
smartphones

Figure 3.18: Backup strategies on
tablets

The figures show clearly that backup strategies are more an afterthought for users.

Either, they do not bother at all or only in very limited fashion. What is also visible is that

automatic backup solutions are on the rise. They are especially popular on tablet devices,

which corresponds with the earlier described usage context. For automatic solutions to work

properly a reliable connection is required, which is more often the case for tablets than for

smartphones.

3.2.8 Motives and Intents

Besides technical and demographic parameters also popular motives and capture-intents of

study participants were investigated. Ten different options for popular motives were avail-

able, including people, holiday pictures, events, landscapes, animals and pets, buildings and
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architecture, shopping and product photos, food and eating, and flowers. An additional open

question allowed for entering motives that were not covered by the ten categories. Answers

were presented in an ordinal scale, i.e. never, rarely, sometimes, often, and very often. Most

popular motive was people with an average of 2.69 in between sometimes (2) and often (3).

0,50 1,00 1,50 2,00 2,50 3,00

People

Holiday1Pictures

Events

Landscapes

Animals/Pets

Buildings/Architecture

Shopping/Products

Food/Eating

Flowers

Other

Figure 3.19: Motives of users sorted in descending popularity (0..never, 1..seldom,

2..sometimes, 3..often, 4..very often).

However, based on the confidence intervals for the average value it can be seen that the

motives people, holiday pictures, events and landscapes are generally more popular than the

others. On the other hand, it seems that buildings, shopping, food and flowers are noticeable

less popular to each of the four above mentioned as the confidence intervals do not overlap

(see Figure 3.19). Other is actually below 1 in average, meaning that it ranges between

never (0) and rarely (1).

While additional motives were not as popular as the main categories, there was an

interesting additional category mentioned: 28 out of 199 participants noted that they were

taking photos of documents, notes, blackboards and flip charts, to capture and store text or

graphics of documents. Eight more participants noted funny, humorous and strange (in an

entertaining sense) motives, while seven participants noted cars as a popular motive.
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0,50 1,00 1,50 2,00 2,50 3,00 3,50

For*myself

To*show* somebody

To*preserve*the*moment

To*share*the*moment

Selfie

Figure 3.20: Intents of users sorted in descending popularity (0..never, 1..seldom,

2..sometimes, 3..often, 4..very often).

Besides the popular motives survey participants were asked about their intent or the

intended use of the captured pictures. Most popular intent was for myself with an average

of 3.12 in between often (3) and very often (4). Based on the confidence intervals, it seems

to be more popular than to show somebody (e.g., showing off) and to preserve the moment

(see Figure 3.20). This is a non-obvious results and leads to the conclusion that in the age

of social media still a significant part of the images taken on a mobile phone are intended

for personal use only. Other intents that involve sharing like to share the moment (avg.

2.26) and selfie (avg. 0.88) are also less popular intents. When examining additional intents

not covered by the main categories, to document something was discovered as most popu-

lar. This goes along with the earlier findings on the motives, additional to the ones given

in the questionnaire, where taking photos of documents was often mentioned by participants.

3.3 Discussion

In this discussion two significant differences are reported that were discovered during anal-

ysis of the data. Both concern the amount of stored images on smartphones: a difference

in gender and a difference between manufacturers and operating systems. Furthermore,

correlation hypotheses are reported that were tested in the gathered data.
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3.3.1 Gender Differences

Figure 3.21: Images-Counts (me-

dians) between women and men

In the data analysis a significant difference

for stored images between women and men

was discovered. The data did not show

a normal distribution as a visual inspec-

tion with a Q-Q-Diagram showed. There-

fore, the data was analyzed with the Mann-

Whitney U test, as it does not require a

normal distributed dataset and is the non-

parametric alternative to the otherwise typ-

ical independent t-test. However, it has the

requirement that the distribution of both

groups is similar in shape, which was the

case, as a visual inspection revealed. The

median count of photos was statistically sig-

nificantly higher for females (384.0) than for

males (200.0) as can be seen in Figure 3.3.1,

U = 4217.0, z = -2.650, p = 0.008. The same test did not reveal a significant difference

when repeated for tablets with the same preconditions.

Speculating about the reasons for this result is difficult, but it seems that female partic-

ipants make more photos with their smartphones in general. It would have been interesting

to know, whether the captured images could be assigned a special group of photos (like shop-

ping, portraits, group photos, etc.). Unfortunately, this data was not available. It could be

that female users are more likely to create images of memorable events or communicate more

via images (by capturing them first and then sending them with e-mail or instant messaging

services). As noted, a follow-up survey would be required to answer this question properly.
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3.3.2 Differences between Operating Systems

Another significant difference that was discovered concerns operating systems related to the

image count. This time, the differences exist for both device types.

In the smartphone analysis Windows Phone (five participants) and Blackberry OS were

excluded since their results would not be representative enough given the low number of

participants (five and one participants). Therefore, the focus was on a comparison between

Android and iOS. Similarly to the analysis between genders, the data did not show a normal

distribution for which reason the Mann-Whitney U test for statistical evaluation was cho-

sen. The median photo count was statistically significantly higher for iOS (500.0) than for

Android (200.0), U = 2913.0, z = -3.932, p < 0.001. In case of tablets, the Mann-Whitney

U test showed that the median photo count was again statistically significantly higher for

iOS (286.0) than for Android (30.0), U = 188.0, z = -2.561, p = 0.01. Figure 3.22 visualizes

these differences visually.

Figure 3.22: Different amounts of images (medians) between the two biggest operating
systems

The result could be explained when considering the different camera qualities that are

used in both cases. iOS only runs on iPhones, which in general have high praised photo

quality. In contrast, Android runs on a wide variety of devices with different specifications
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and price-points. Especially cheaper Android smartphones do not include camera modules

of great quality. Sometimes, also pre-installed photo software can be slow and complicates

the capture process. Moreover, Apple products are supported by extensive marketing efforts

that also concentrate especially on the photo capturing capabilities of the devices. Users

could be more conscious about photos shooting because of these efforts and therefore make

photos more often.

3.3.3 Correlation Hypotheses

The gathered data was investigated for different kinds of relations between various factors.

Although it was not possible to detect any meaningful associations the lack of those could

still be of interest for researchers in the field. To investigate possible relations first a visual

inspection on the appropriate data for monotonic increasing or decreasing graphs was per-

formed, as they are a preference for performing a Spearman’s Correlation test. When this

visual inspection failed the hypothesis of a relation between the factors was dismissed.

What was discovered first is, that there seems to be no relation between stored pho-

tos and storage sizes of the devices. One could argue that the more storage is available

participants could be more likely to store more images. However, no indication for such an

association could be found in the data.

It was also analyzed if there exists a relation between the amount of stored photos and

the backup interval. There seems, however, to be no relation between how many im-

ages people have on their devices and how often they would backup their device.

Another expectation was, that participants who had many images on their devices would

be more likely to organize them in specific folders or albums. The gathered data indicates

nothing in that direction. There seems to be no relation between organizational habits

and how many images are on the device.

Furthermore, a possible relation between the interval in which users take new photos and

the amount of images on the devices was investigated. One could argue that a short interval
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should indicate a larger amount of images on the device. Nevertheless, in the data no indi-

cation that supports this claim could be found. No association between the recording

interval of new photos and the photo count on the devices was visible.

Finally, it was evaluated if the photo count was an indication for the likeliness that users

took advantage of such apps but the data did not show any such relation exists.

3.4 Summary

The average survey participant can be summarized as being 30 years old, owning an An-

droid smartphone with 16 GB of storage, with 400 stored photos and ten stored videos. The

user makes new photos regularly with the smartphone on a weekly basis and is not likely

to backup or organize the media collection. Furthermore, if the user has a tablet it is very

likely an iPad, which is rarely used for capturing but for viewing purposes. It has less media

locally stored but uses cloud services extensively.

In comparison to the findings of [TGE11] in 2011, it was discovered that 70% (an in-

crease of 25%) of the survey participants had more than 100 photos on their smartphones

and 19% (an increase of 16%) had more than 1000 photos on their devices. Contrary to the

belief that tablets deliver a better experience for viewing images and watching videos, par-

ticipants in fact stored considerably less media on their tablets than in comparison to their

smartphones. Furthermore, participants with iOS devices seem to have significantly more

images stored on their devices than in comparison to participants with Android devices. It

was also observed that in case of smartphones there was a significant difference between

women and men. Female participants had significantly more images on their devices than

men. Moreover, regardless in terms of the amount of images, users seem to rarely organize

their photos in any way. This means there is potential for works that try to optimize the

browsing process in such unmanaged collections.

As for user intentions and motives it was found that the most popular motives are non-

surprisingly those for which the cameras have been optimized. Manufacturers of course know
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since several years that people like to take photos of people and landscapes, at holidays and

at events. However, the notion of document scanning and preserving notes and text with

the camera seems to be a popular use case too, which has not yet been addressed at large.

Focusing on the actual goal or intent of users it was discovered with the survey that not

everything is meant for sharing. While lately most of the manufacturers and many of the

researchers have focused on social sharing of images and automated image upload to the

cloud, there is still the recognition of private and not-shared photos.

In accordance, the focus in this thesis will be to optimize the browsing experience for a

collection of 100 to 400 images and around ten videos. Since ten videos is rather low it is

reasonable to concentrate on browsing in a single video, at least for this work.



CHAPTER

4 Mobile Image Browsing

on Tablets

Based on the insights of chapter 3, especially regarding the size of image collections, in this

chapter, two image browsing interfaces for tablets are proposed and evaluated1. The inter-

faces not only explore a new kind of visualization but also utilize content analysis results.

In the course of implementing and testing the interface ideas, it became clear that although

smartphones and tablets have gained large performance gains over the last years, there are

still limitations. Rodden et al. [RBSW01] showed that organizing images on similarity can

have a positive effect on image browsing. As a result the following interface concepts all

incorporate offline color sorting of images. Sorting images based on their dominant color was

chosen because of the promising results shown by Schoeffmann and Ahlström [SA12b]. It

was moreover already successfully applied to a mobile setting by Schoeffmann et al. [SAB11]

and Ahlström et al. [AHSS12]. Furthermore, the described work in this chapter and chapter

5 raised the demand for a more thorough investigation of device performance in regards to

content analysis. The results of this investigation can be found later in chapter 7.

All of the following interface concepts utilize the color sorting approach of Schoeffmann

and Ahlström [SA12b]. Images are sorted based on their dominant hue level of the HSV

color space. To do this, for each image a 24-bin HSV histogram is generated. Moreover, very

bright and very dark images receive a special treatment. Since in such cases the dominant

color becomes less important they are positioned differently in the sorted set of images. Very
1Please note that the contents of this chapter are adapted from [Hud13] and [HSA14]
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bright images are placed at the beginning, whereas very dark images are placed at the end.

Based on earlier works of Schoeffmann et al. [SAB11] and Ahlström et al. [AHSS12] with

following 3D interfaces it is investigated whether the shape of a 3D visualization actually

makes a difference.

4.1 Color-Sorted 3D Image Browsing on Tablets

In the work by Ahlström et al. [AHSS12] two 3D image browsing interfaces for tablet

devices were compared in a user study. Both used the shape of 3D globe. Moreover, they

were contrasted with the performance of a color sorted grid image browser. The two globes

(HY-Globe and H-Globe) differ in the way how the images are positioned on their surfaces.

In the study the H-Globe was the most successful and could outperform its competitors.

In another work, Schoeffmann and Ahlström [SA12a] propose a color sorted 3D ring

interface, which also performed significantly better when compared to a grid image browser.

The interface was originally implemented and evaluated as a desktop application. Later, it

was ported to a tablet device but not yet evaluated in that context.

The aim of the following work is now to find out whether there are differences in search

performance between the Ring interface and the H-Globe. Both will use the same color

sorting procedure as mentioned before. This precondition is necessary in order to be able

to determine if the different shapes actually have an impact. Both interfaces will first be

explained in greater detail. After that, setup and results of the user study are reported and

discussed.

4.1.1 Color-sorted 3D Globe for Tablets

The work on the 3D Globe interface originally started with the intension to create a mobile,

touchscreen-based version of the hierarchical 3D sphere interface of Schaefer [Sch10]. His

interface places images on the surface of a rotatable 3D sphere based on their median H

and S values of the HSV color space [SH98]. Furthermore, a grid-based clustering organizes

the spheres’ surface into image cells of equal size. Based on calculated surface coordinates

(dependent on the median H and S values) images are assigned to the cells. To avoid holes
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in this structure a distribution algorithm then shifts images to nearby empty image cells.

This is done for a maximum of one quarter of a cells images. Image cells are visualized by

one representative image. Other images of the cell can be explored by clicking on the cell,

enabling a hierarchical tree-like browsing approach.

The touchscreen-based version that was implemented for an Apple iPad was published

at the International Conference for Multimedia Retrieval 2012 [SA12a] and received good

feedback. However, it became clear that the hierarchical approach can become quickly

irritating for users, as they often had difficulties deducing to which image cell a desired

image could have been assigned. As a result, alternative globe-based visualizations were

investigated and contrasted with a simple 2D color sorted grid browser [Hud12, AHSS12].

For example, the ZHV-Globe that adjusts the amount of displayed image cells dependent on

the current zoom level, the HY-Globe that displays image hierarchies via splitting of root

image cells, removing the need to use representative images, or the H-Globe that uses a fixed

image grid layout without image clustering or hierarchy generation. In the evaluation the

H-Globe could outperform all other interfaces and is thus re-evaluated as Globe interface in

this user study.

The Globe interface arranges images on a rotatable and zoomable 3D globe. The surface

of the Globe is divided up into cells of same size, where each cell contains one image. The

number of cells is calculated in advance to ensure that every image in the collection can be

assigned. Moreover, the system tries to maintain an aspect ratio close to four-by-three to

reduce visual distortion. Nevertheless, some distortion cannot be avoided, especially near

the poles of the globe, given the nature of the surface.

In the configuration seen in Figure 4.1 the globe’s cell lattice is made up of 12 cell rows

and 30 cell columns, providing space for up to 360 images. The same configuration is used

in the user study.

The color sorted images are assigned to the cells of the Globe in a one-by-one fashion.

This is done by starting at a cell closest to the North Pole and then continuing south. To

each cell an image is assigned on the way south until the cell closest to the South Pole

is filled. When the whole cell column is complete the next column to the right is filled

(column-major-order).
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Figure 4.1: The Globe interface concept on an iPad with 350 images.

Users interact with the Globe by applying touch gestures like dragging, pinching or tap-

ping. Drag gestures rotate and tilt the globe. In this way, the Globe can be rotated without

limitations around its vertical axis. Tilting is limited to a maximum of 30 degrees in either

direction. This restriction is required in order to avoid irritation of users when accidentally

turning the Globe upside down. Zooming is realized with pinch gestures. Since the thumb-

nails can be too small to make out all the details of an image, this technique enables users

to see less but larger and therefore more detailed thumbnails.

Finally, images can also be displayed in a detail mode by tapping on their thumbnail.

The selected image is then displayed fullscreen. To return to the Globe a back -button can

be used, which is displayed in the lower left corner of the screen.
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4.1.2 Color-sorted 3D Ring for Tablets

This interface organizes the images in the shape of a 3D ring. Its organization is in fact very

similar to the 3D globe: a grid of image cells that is wrapped in a hovering circle. Figure

4.2 shows the Ring providing five cell rows and 70 cell columns. This results in a capacity

for up to 350 images and represents the configuration that was used for the evaluation. The

color-sorted images are assigned by filling each column of image cells from top to bottom

and then continuing with the next column to the right (counter-clockwise).

An apparent advantage of the ring-concept is that more thumbnails can be shown on

the screen at once when it is slightly tilted to the front. Because of this, users are able to

spot thumbnails that are currently at the back of the ring. As a result, more thumbnails

are visible at once in comparison with the globe. The better overview is also helpful in case

users want to scroll to a certain color. Since more of the actual color distribution is exposed

it is easier to orientate and navigate. Moreover, thumbnails that are currently at the back

of the Ring are automatically mirrored vertically. This prevents visual irritation of users,

since otherwise the thumbnails would appear horizontally flipped. The mirroring process

is hidden from users by performing it at the left and right sides of the ring, which are not

visible. A slight black border around the thumbnails also visually separates them from each

other. This should ease perception and avoid visual merging effects.

Users can interact with the Ring by applying dragging, tapping or pinching gestures.

Rotating the Ring clockwise or counter-clockwise is possible by using horizontal drag ges-

tures. Tapping once on one of the thumbnails changes the view to a detail mode, similar to

what is used in the Globe interface.

The Ring interface also supports zooming the view by applying pinch gestures. The

zooming process is more complex than with the globe. When zooming-in, the Ring reduces

the tilting angle while at the same time increasing its size until the front part covers most

of the available screen space. Additional zooming at that point results in transitioning the

view to enable sight of the rings back area.
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Figure 4.2: The Ring interface concept on an iPad at 350 images.

To directly zoom to the back area it is also possible to double-tap on the screen. Another

double-tap returns the view to the default minimum zoom level. The idea behind this is that

users can save time when they want a larger view of the thumbnails currently positioned in

the back of the ring.

4.1.3 Evaluation

The aim of the evaluation is to find out whether one of the interfaces performs significantly

faster in a KIS-like scenario (Known-Item Search). A user study was performed in which 16

participants took part (15 male and one female). All of the participants were members of

our institute but none of them was involved in the project. All participants stated that they

would work at least 40 hours professionally with a computer. Moreover, they were asked if

they owned a smartphone or tablet to determine how much they were accustomed to touch
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screen interactions. In total 15 participants were using a smartphone. Furthermore, four of

the smartphone users told us that they would also use a tablet.

The user test was structured into two learning and two test phases. In the first learning

phase participants had to read through an instructional text that informed them about what

the study was about and how to use the first interface. When they were finished and had

no further questions, they continued with the first test phase. In the following, they had to

perform a number of trials with the first interface. After that they were asked to fill out a

questionnaire and then continued with the learning and test phases of the next interface. In

the end, after they completed the second questionnaire, participants had to fill out a final

questionnaire that asked about their personal ranking of the interfaces, with the possibility

to give further comments and feedback.

Since the same target images and the same image collection were used for both inter-

faces, the order in which the interfaces were tested was alternated between the participants.

This was done to level out learning effects that might occur when participants memorized

images from their first test phase.

In each of the two test phases the participants had to find a minimum of 40 target im-

ages, e.g., images that were shown to them and which they had to find with one of the

interfaces. An image collection of 350 images was chosen based on the insights that were

gained in chapter 3. The individual images were randomly drawn from the Wang image data

set [WLW00], as well as a couple of key-frames from shots of the IACC.1 TRECVID 2010

repository [SOK06]. To further increase the diversity of the data set a number of randomly

drawn images from Flickr were also included.

Each of the 40 trials started with the display of the target image in full resolution on

the screen (see Figure 4.3 left). Text on the screen instructed the participants to memorize

the image as good as possible. For this part they were allowed to take as much time as

they wanted (there was no option to display the image again later). When they were sure

they were ready, the participants could start the search phase with a tap on the start-button.
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To complete the trial, participants had to tap on the appropriate thumbnail to switch

the view into detail mode and tap on the accept-button (see Figure 4.3 right). Furthermore,

participants had the possibility to return to the browsing interface without submitting the

image via a back -button.

After submitting an image, participants got immediate feedback whether their choice

was correct or not. This was realized by turning the whole screen green (for correct) or red

(for incorrect) for a few seconds. After that, they were transferred to the next trial.

Participants also had the possibility to abort a trial in case they forgot how the desired

target image looked like, or if they wanted to give up on searching. For this reason, a skip-

button was always visible during the search process. Tapping this button would result in

canceling the current trial. Participants would then be immediately transferred to the next

trial.

Figure 4.3: Trial start (left) and detail mode (right) for both interfaces.

4.1.4 Target Groups

In this study so called target groups are used. They are intended to even out different search

difficulty levels between images. This concerns the problem that, due to their contents, some

images might be easier to spot than others. The subjective performance of each individual

participant at a specific day and time also plays a part in this matter. Therefore, images in

a certain area are logically grouped together to form a target group. Any image in such a
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group should (in theory) require a similar amount of search effort and could be exchanged

with any other image of the same group. This makes it possible to provide alternatives to

skipped images that require a similar amount of search effort.

All images of the data set were grouped into ten target groups, such that each group

included 35 images. The groups were formed by dividing the color-sorted list of images into

ten groups of equal length. Since the images are applied in both interfaces in a one-by-one

manner to the cells of the 3D surfaces, images that are similar in color are also spatially

close to each other in the interfaces. See figure 4.4 for an example.

Figure 4.4: Target groups marked in Ring interface (left) and Globe interface (right).

As already mentioned, target groups are used to appropriately react to skipped images.

To do this two lists are created: list A and list B. List A defines in which order new images

are drawn from ten image pools. The images contained in each pool are described in list B.

For each image pool seven images are randomly drawn from one of the ten target groups

(each containing 35 images). The first four images of each pool are considered as default

target images. This will result, in case no images are skipped, in a total of 40 target images

being displayed. The additional three images serve as backup in case participants choose

to skip one or more images of the pool. In such a case users continue with the next image

out of the same pool. If users keep skipping images, this process is continued until all seven
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images have been used. In that case the participants continue with images of the next pool

defined in list A until all image pools are depleted.

The lists were randomly created in advance. All participants used the same lists to max-

imize comparability. Due to the explained procedure of trial management it was expected

that not all participants performed the same amount of trials.

4.1.5 Questionnaires

In the questionnaires participants had to rate the interfaces and give comments about their

personal subjective experience. They could also suggest improvements if they thought of

any. The questionnaires were designed in the style of the NASA TLX workload index [HS88]

and remained the same for both interfaces. Nine questions had to be answered on a Lik-

ert scale rating, ranging from 1 to 10. The questions were about Mental demand, Physical

demand, Experienced temporal pressure, Effort, Frustration, Fun, Experienced support of in-

terface visualization technique, Learning effect and Experienced support of color sorting. A

value of one was the best achievable value for all questions except for Fun, Experienced

support of interface and Experienced support of color sorting.

In the final questionnaire at the end of the user test, participants additionally had to

report which of the interfaces they would personally prefer (by assigning a first and a second

rank). Furthermore, they were able to give final remarks and comments about the whole

user test experience.

4.1.6 Results - Trial Distribution

In total 691 trials were performed with the Globe interface. 618 trials were correct (i.e.,

participants submitted the right image), 54 were skipped and 19 were wrong. With the

Ring interface 678 trials in total were performed. 604 were correct, 39 were skipped and

35 were wrong submissions. As mentioned before, the trial counts are different between the

interfaces because participants could freely choose to skip target images.



CHAPTER 4. MOBILE IMAGE BROWSING ON TABLETS 53

4.1.7 Results - Trial Times

In this analysis it is evaluated whether there are statistical significant differences for the

following factors: (1) interface (i.e., differences between interfaces), (2) target group (i.e.,

differences between target groups across all interfaces), and (3) interface ⇥ target group

interaction (i.e., differences between combinations of the two factors). Additionally, partial

eta-squared (⌘2) is reported, which is a measure of effect size. It can be interpreted as

follows: 0.01 signifies a small effect size, 0.06 signifies a medium effect size and 0.14 signifies

a large effect size, as described by Cohan [Coh73].

The statistical analysis of trial times is based only on correct trials (participants found

the correct image). As search times were positively skewed a logarithmic transformation

was applied to achieve a near normal distribution, as it is a requirement to perform a

statistical ANOVA test. For that reason, geometric mean search times are reported, which

are the result of an anti-logarithmic transformation of calculated mean values in the log

scale. For the Globe interface the geometric mean search time was 9.42 seconds, for the

Ring interface it was 10.61 seconds. To determine statistical significance of the difference

a repeated measures ANOVA was applied with the independent factors interface and target

group. The test did not show any statistical significant main effect for interface (F1,15 =

3.07, p = 0.1, ⌘2 = 0.17), but a statistical significant main effect for target group (F5,74.2 =

40.10, p < 0.0001, ⌘2 = 0.728; Greenhouse-Geisser corrected) and a statistical significant

interface ⇥ target group interaction (F4.1,61.2 = 6.22, p < 0.0001, ⌘2 = 0.293; Greenhouse-

Geisser corrected).

As can be seen in Figure 4.5, there are major deviations between the target groups one

and nine of the two interfaces. After analyzing the configurations of both interfaces thor-

oughly it can be concluded that the difference primarily was caused by a slight different

initial rotation of the interfaces.

In Figure 4.4 it is visible that target group one was slightly better exposed at the trial

start on the Ring interface than what was the case for the Globe interface. Target group

nine on the other hand was under-exposed on the Ring interface accordingly. It can be

presumed that participants therefore were able to find images placed in target group one

much faster with the Ring interface. Moreover, images of target group nine should have
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Figure 4.5: Trial times between target groups of Globe and Ring (Error bars: 95%
CI).

be been much easier to find with the Globe interface. All other differences that could be

measured between the interfaces were statistically not significant.

4.1.8 Results - Questionnaires

Ratings for both interfaces were very similar as can be seen in Figure 4.6 (lower is better

except for Fun, Support of Interface and Support of Color Sort). For each of the questions

a t-Test was performed. No significant difference between the interfaces could be measured.

This also was reflected in the subjective interface rating of the final questionnaire. The

Globe and Ring interface scored equally well with both interfaces getting ranked at first

place by eight participants.

4.1.9 Results - Summary

As reported in the analysis, no significant differences could be found except for the target

groups one and nine, which is negligible as explained earlier. The mentioned anomalies most

likely will not have a big impact on search performance in real life. When considering the

results of Ahlström et al. [AHSS12] and Schoeffmann and Ahlström [SA12a], it seems that
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Figure 4.6: Questionnaire ratings between Globe and Ring (Error bars: +/- SE).

color-sorted 3D interfaces can show an improvement in comparison to typical (color-sorted)

2D grid layouts but it does not matter if a ring-like or a globe-like visualization is used (at

least when using a tablet).

These findings are further supported by how the participants ranked the interfaces in

the questionnaires. No significant differences for the answers of the regular questions and

an exact tie in terms of interface ranking shows that also in subjective terms the interfaces

were similarly easy to use.

This result is interesting, as it was actually expected that the Ring would outperform

the globe. As mentioned before, the Ring actually exposes more images on the screen to

users since also a large part of images currently at the back of it are visible. Participants

seem not to have taken advantage of this feature at all. A possible reason for this could

be that users need more time to get used to the interface in order to be able to utilize

the rings’ functionality to its fullest. Another reason could be that the thumbnails at the

back are already quite small for viewing and interaction. Therefore, users may concentrated

primarily on the front part of the ring, which would result in a similar scrolling effort to

what is necessary with the globe.



CHAPTER

5 Mobile Image Browsing

on Smartphones

The earlier reported study concentrated on tablet devices for image browsing. The next step

is a transition to smaller devices like smartphones, and thus smaller screens. The greatly

decreased screen size could potentially influence the performance of 3D interfaces, since they

cannot utilize available screen space as efficient as 2D interfaces. The 3D Ring and 3D Globe

interfaces are adapted to these smaller screen sizes (regarding column and row setup) and

re-evaluated. Furthermore, the Ring is extended with small interaction improvements.

Since both interfaces were never compared in earlier studies to a color-sorted standard

2D grid at this screen size before, such an interface type is also added to the mix. Moreover,

another color-sorted 2D interface idea is proposed - the ImagePane.

All four interfaces again use the same color sorting algorithm that is applied by the

tablet-centric prototypes [SA12b]. This time, the interface concepts were implemented on

a fourth generation Apple iPod Touch with Objective-C and OpenGL ES. The iPod Touch

was chosen because it has the same screen-size (3.5 inches) and similar performance to the

(at that time) very popular iPhone 4/4s while keeping cost low.

Furthermore, the interfaces are tested with four different image data sets, ranging from

100 up to 400 distinct images, as can be seen in Figure 5.1.

In the following, the adjustments that were necessary in terms of Ring and Globe are

described, followed by an introduction to the Grid and the ImagePane interface.
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Figure 5.1: Smartphone interfaces in configurations with 100, 200, 300 and 400 im-
ages.

5.1 Globe

The Globe interface is adjusted in terms of column/row counts, rotation speed and maximum

zoom-level. Although columns and rows adjust automatically to minimize image distortion,

some slight changes in respect to the now largely reduced screen space had to be imple-

mented. Particularly, it had to be ensured that the hit targets of each thumbnail image

were large enough for individually tapping them. Moreover, it is necessary to make some

changes to the code that managed the rotation of the globe. Since the finger movement is

much shorter when swiping from left to right on smartphone screens, the globes rotation

speed is increased in order to make the interaction feel natural again. The same also applies

to the tilting mechanism.

Last, the maximum zoom level is adjusted as due to the new environment the current

configuration would have caused users to be able to actually scroll through the globe. Ev-

erything else remains the same to the earlier tablet-optimized version.
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5.2 Ring

The smaller version of the Ring is altered in a similar way as the Globe interface (rotation

speed, column/row adjustments, etc.). Additionally, a number of improvements that were

often mentioned by previous test participants are introduced. First, the height and the

position of Ring are changed slightly to better use the available screen space. The original

version is not completely centered vertically, which wastes screen real estate. Second, the

gaps between the images are changed. In the earlier version users are able to see through

this gaps. This was reported to be very irritating by many participants. As a reaction, in

this version the gaps are realized with an opaque black border.

Another frequent suggestion by participants concerns the sensitivity in which the Ring

registers selective single-taps in contrast to drag gestures for rotation. This often resulted in

undesired image selection. To solve this problem the thresholds in the gesture recognition

algorithms are changed.

Furthermore, a new gesture is implemented. When users perform a swipe-up on the

screen the interface directly zooms to the front of the ring, filling most of the screen space,

as can be seen in Figure 5.2 on the left side. A subsequent swipe-down resets the interface

again.

Additionally, double-tapping is improved by taking the tapping location into account.

The Ring is first rotated so that the touched area is centered at the back. After that, the

actual zoom operation to the back is performed. Both steps happen so fast that users are

not able to notice it. This new behavior is meant to save users time. Originally they first

had to zoom and then manually adjust the rotation of the Ring appropriatly. Please see

Figure 5.2 (right) for reference.

5.3 ImagePane

The idea behind this interface is quite simple: give users all the information at once and let

them choose which area to explore in more detail. It was born out of the need to maximize

the usefulness of the color sorting. To do that, users should be able to instantly access
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Figure 5.2: Zoomed view to the front (left) and back (right) of the Ring interface
(100 images).

images of a given dominant color. Another objective was, to re-evaluate the impact of the

3D interfaces by contrasting them with an improved 2D approach that utilizes the same

color sorting method.

The ImagePane displays all images of the collection at once. Small thumbnails repre-

sent each image. As a result, all color regions are immediately visible and accessible. This

visualization of course has its limits. It cannot be used to inspect images in detail, as the

thumbnails are too small. Users are also not expected to select individual images in this

view, as the hit targets are very small too (although this functionality is available). It is

meant more to give a first lead as to where the wanted image might be located in the col-

lection.

The image placement is implemented in a very simple way. The color sorted images are

applied left to right, row after row. Even with this simplistic approach the color sorting

effect is visible, as can be seen in Figure 5.1.

Users can narrow down their search by zooming the view to a specific region. This can

be done by performing a double-tap on the wanted area. In that zoomed mode the quadratic

thumbnails are big enough for more thorough inspection. Furthermore, users are not locked

to that zoomed area. It is possible to scroll through the whole pane vertically as well as

horizontally. Finally, to display images in their full size users have to single-tap on the

appropriate thumbnail.
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The ImagePane adapts automatically to the amount of images in the collection. This

is realized by a simple measure: the more images there are, the smaller the quadratic

thumbnails become. That means that with increasing collection sizes the importance of

the color sorting raises, as it becomes very hard to recognize details or select individual

thumbnails.

5.4 Grid

The standard Grid interface is designed to look similar to the pre-installed photo browser

on iOS 7 devices. The only enhancement is that it uses the same color sorting as the other

interfaces.

The thumbnails do not have the same aspect ratio as the original image. For space

reasons all thumbnails are quadratic in size. The contents of the original images are not

distorted but are zoomed and cropped while preserving their aspect ratio.

The interface displays six thumbnails in each row in landscape orientation. Moreover,

three and a half rows of thumbnails are visible at any time on the screen. Please see

Figure 5.1 for reference. The user can scroll up or down by using swipe gestures. Images for

display in their full size are selected by tapping on the appropriate thumbnail.

5.5 Evaluation Setup

In contrast to the tablet-centric user study, the interfaces this time were evaluated with

four different image collections that differed in terms of images and in terms collection size.

The four sets were configured with 100, 200, 300 and 400 images in order to see how the

interfaces would perform when they had to visualize more and more images. The sizes

also go along with what we discovered in chapter 3. The Wang [WLW00] and TRECVID

[SOK06] datasets as well as Flickr served as basis from which images were randomly drawn.

Moreover, the evaluation consisted of two parts: an analysis of navigation support by

performing a user interaction simulation and a between-subject user study.
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5.6 Evaluation by User Simulation

In addition to a user study, a user simulation similar to works of other authors in the field

(e.g., [Sch10], [STF+12] or [NW08]) was performed. Such simulation methods can reflect real

user behavior only up to a certain degree and should not be used as sole evaluation methods.

Nevertheless, they can be seen as complementary assessment and are an easy and fast way

to get a rough estimate of how well an interface might perform compared to other interfaces.

It has to be noted that the following interaction simulation is assumed to operate under

optimal conditions. Simulated users have perfect vision and understanding of the interfaces,

e.g., are able to correctly identify the dominant color of an image and know how to use the

color sorting for their advantage. It is also assumed that users recognize the thumbnail of

the wanted image as soon as it is visible on the screen in a size of four by four millimeters.

This is based on findings in works by Torralba [TFF08] and Hürst [HSST10]. Furthermore,

after the recognition they immediately select the right image for display in detail mode and

accept it by pressing the Accept-button.

Five different interaction categories are defined and the following amount of interaction

points, which represent the required effort, are assigned to each one:

Gesture Interaction Points
Single-Tap (st) 1
Double-Tap (dt) 1.5
Swipe (sw) 2
Drag (dg) 2.5
Pinch (pn) 3

Table 5.1: Definition of gestures and their interaction points.

For this simulation the gestures have to be defined thoroughly. A single-tap gesture (st)

is a single quick tap on the screen with one finger. A double-tap gesture (dt) is done with

two single-taps quickly performed after each other at approximately the same area on the

screen. When performing a swipe gesture (sw) users place a single finger on the screen and
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quickly move it in one direction without losing the contact to the screen. For this gesture

users do not decelerate their finger before lifting it off the screen. A drag gesture (dg) is the

same as a swipe gesture but it is usually performed slower and users decelerate their finger

until it stops before they lift it off the screen. Finally, a pinch gesture (pn) is defined as

placing two fingers on the screen (e.g., index finger and thumb) and moving them closer to

each other or apart, without losing the contact to the screen.

The weighting seen in Table 5.1 is used to reflect how much physical interaction is neces-

sary to perform one interaction step of a category. For a given goal (e.g., finding an image)

the needed interaction steps are counted, weighted and summed to get an overall interaction

score for an interface.

Figure 5.3: Target groups of the small versions of the Ring (left) and Globe (right)
with 300 images.

To see how the interaction scores change between different target positions, four inter-

action groups are defined that span over a set of spatially close target groups. Since the

images in the interaction groups are in approximately the same area, they should require

the same amount of interaction. Furthermore, it is simulated that users search for a target

image that is placed in the center of each interaction group.
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The following groups are defined:

• Interaction group one: target groups 0 - 2

• Interaction group two: target groups 3 - 4

• Interaction group three: target groups 5 - 7

• Interaction group four: target groups 8 - 9

For a visualization of the target groups see Figure 5.3. In the following the interaction

demands for the four interaction groups in the case of every interface is reported.

5.6.1 Interaction Group One

For the sets of 100 and 200 images, the image pane, Globe and Ring are very similar in their

interaction requirements. The desired thumbnail is already displayed on the screen (see

Figure 5.1). Therefore, a single-tap is already sufficient to show the target image in detail

mode. Also for set sizes 300 and 400 the interaction needs are identical. All interfaces require

that users perform a zoom operation because the thumbnails are too small for immediate

identification of the right one. After zooming, they are able to select the right thumbnail

with a single tap on the screen. The zooming operations of the interfaces require different

kinds of interactions. In case of the ImagePane a double-tap is required. The Ring interface

requires users to perform a swipe-up gesture to zoom to the front part of the ring. Finally,

pinching is required with the Globe interface.

When comparing the interaction needs of the interfaces it can be seen that the Grid

interface shows a positive correlation with the set sizes. The more images the more scrolling

is needed. With 100 images no further interaction is necessary other than a tap on the

already displayed thumbnail. At 200 images users first have to apply a drag gesture in order

to scroll to the thumbnails location. A collection of 300 images requires two additional drag

gestures and with 400 images three additional drag gestures are needed. A summery of all

interaction scores for this group can be seen Table 5.2.
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Interface 100 200 300 400 Avg.
ImagePane 1(st) 1(st) 1.5(dt) + 1(st) 1.5(dt) + 1(st) 1.75
Globe 1(st) 1(st) 3(pn) + 1(st) 3(pn) + 1(st) 2.5
Grid 1(st) 2.5(dg) + 1(st) 2 * 2.5(dg) + 1(st) 3 * 2.5(dg) + 1(st) 4.75
Ring 1(st) 1(st) 2(sw) + 1(st) 2(sw) + 1(st) 2

Table 5.2: Required interactions for interaction group one.

5.6.2 Interaction Group Two

At interaction group two the ImagePane requires the same amount of interaction with 100

and 200 images as what is the case at interaction group one. The Globe and Ring interfaces

require one additional drag gesture to perform rotations to make the wanted thumbnail

visible. When the collections of 300 and 400 images are used, users additionally have to

zoom the view to make the thumbnail large enough. The Grid interface requires users to

apply two drag gestures (100 images), three drag gestures (200 images), four and a half drag

gestures (300 images) and seven drag gestures (400 images) in addition to a single tap to

select the wanted image. All interaction scores are summarized in Tables 5.3 and 5.4.

Interface 100 200
ImagePane 1(st) 1(st)
Globe 2.5(dg) + 1(st) 2.5(dg) + 1(st)
Grid 2 * 2.5(dg) + 1(st) 3 * 2.5(dg) + 1(st)
Ring 2.5(dg) + 1(st) 2.5(dg) + 1(st)

Table 5.3: Required interactions for interaction group two (part one).

Interface 300 400 Avg.
ImagePane 1.5(dt) + 1(st) 1.5(dt) + 1(st) 1.75
Globe 2.5(dg) + 3(pn) + 1(st) 2.5(dg) + 3(pn) + 1(st) 5
Grid 4.5 * 2.5(dg) + 1(st) 7 * 2.5(dg) + 1(st) 11.3
Ring 2.5(dg) + 2(sw) + 1(st) 2.5(dg) + 2(sw) + 1(st) 4.5

Table 5.4: Required interactions for interaction group two (part two).



CHAPTER 5. MOBILE IMAGE BROWSING ON SMARTPHONES 65

5.6.3 Interaction Group Three

The interaction effort for the ImagePane remain the same as in the earlier described inter-

action groups.

In case of the Ring interface one tap is sufficient with sets of 100 and 200 images. Interac-

tion group three is already exposed in a sufficient size on the screen, therefore no additional

scrolling or zooming is required. When used with sets of 300 and 400 images, users first

need to use a double-tap gesture to zoom to the back part of the ring. After that they can

select the target image with a single tap.

The Globe interface requires multiple drag gestures as interaction group three is placed

on the back of it. In detail, it requires for the sets of 100 and 200 images two drag-gestures,

either to the left or the right, plus a tap on the screen to select the appropriate image.

Furthermore, in case of the sets with 300 and 400 images an additional pinch is needed to

scale the thumbnails to a convenient size.

The Grid interface follows the trend seen in interaction groups one and two. The inter-

action effort increases in relation with the number of images in the set. At 100 images users

have to apply three drag gestures to scroll the Grid to the appropriate position. A collection

of 200 images already demands six drag gestures. In case of the set with 300 images, ten

drag gestures are required and with the largest set of 400 images 14 drag gestures have to

be used. Moreover, an additional tap is needed to select the desired image. Tables 5.5 and

5.6 summarize all interaction steps for all interfaces/sets.

Interface 100 200
ImagePane 1(st) 1(st)
Globe 2 * 2.5(dg) + 1(st) 2 * 2.5(dg) + 1(st)
Grid 3 * 2.5(dg) + 1(st) 6 * 2.5(dg) + 1(st)
Ring 1(st) 1(st)

Table 5.5: Required interactions for interaction group three (part one).
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Interface 300 400 Avg.
ImagePane 1.5(dt) + 1(st) 1.5(dt) + 1(st) 1.75
Globe 2 * 2.5(dg) + 3(pn) + 1(st) 2 * 2.5(dg) + 3(pn) + 1(st) 7.5
Grid 10 * 2.5(dg) + 1(st) 14 * 2.5(dg) + 1(st) 21.6
Ring 1.5(dt) + 1(st) 1.5(dt) + 1(st) 1.75

Table 5.6: Required interactions for interaction group three (part two).

5.6.4 Interaction Group Four

The ImagePane implies the same amount of interaction as with the earlier groups.

The Ring and the Globe interface require one drag gesture for right rotation as well as

a tap for sets with 100 and 200 images. The larger sets of 300 and 400 images require after

a drag gesture an additional swipe in case of the Ring and a pinch in case of the Globe

interface to zoom the view appropriately.

The analysis reveals that interaction group four is the most problematic group for the

Grid interface. Paired with the set of 100 images it requires four drag gestures to scroll

to the needed area. At 200 images it already requires nine drag gestures and 300 images

demand the Grid to be scrolled by using 14 drag gestures. Finally, the largest set of 400

images requires users to apply 19 drag gestures.

All interaction steps are summarized in the Tables 5.7 and 5.8.

Interface 100 200
ImagePane 1(st) 1(st)
Globe 2.5(dg) + 1(st) 2.5(dg) + 1(st)
Grid 4 * 2.5(dg) + 1(st) 9 * 2.5(dg) + 1(st)
Ring 2.5(dg) + 1(st) 2.5(dg) + 1(st)

Table 5.7: Required interactions for interaction group four (part one).
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Interface 300 400 Avg.
ImagePane 1.5(dt) + 1(st) 1.5(dt) + 1(st) 1.75
Globe 2.5(dg) + 3(pn) + 1(st) 2.5(dg) + 3(pn) + 1(st) 5
Grid 14 * 2.5(dg) + 1(st) 19 * 2.5(dg) + 1(st) 29.8
Ring 2.5(dg) + 2(sw) + 1(st) 2.5(dg) + 2(sw) + 1(st) 4.5

Table 5.8: Required interactions for interaction group four (part two).

5.6.5 Summary

Table 5.9 shows the average interaction scores for each interface over all image sets and

interaction groups.

Interface Avg. Interaction Points
ImagePane 1.75
Globe 5
Grid 16.9
Ring 3.2

Table 5.9: Average interactions needed with each interface (lower is better).

Under the earlier described simulation conditions, the ImagePane performs best of all

interfaces. It provides direct access to all images in the collection from the start and examin-

ing a certain color region in greater detail is achieved by a simple double-tap. Furthermore,

it turns out that the second best interface is the 3D ring. It also exposes almost the whole

image collection with only little additional interaction effort to reveal the rest. Third rank

can be assigned to the 3D Globe interface. The Globe primarily lost to the Ring because of

the extra interaction need to reach images that are placed at the back.

The interface that requires most interaction is the traditional color sorted Grid interface.

Since it cannot display as many images as the other interfaces, it has a major disadvantage.

The situation becomes even worse the more images are in a collection. The result of interac-

tion groups three and four are a good example of this problem. They require users to apply

over ten consecutive drag gestures on the screen to get to the appropriate area.
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Although the results of this simulation have to be taken cautiously they already show

one of the major problems of traditional grid interfaces. The more images there are in the

collection and the lower the searched item is located in the grid, the more interaction is

needed.

The exceptional good performance of the ImagePane on the other hand is rather theo-

retical, as most likely actual users’ vision and perception will not be that perfect, so that

they can reproduce the results in all cases.

5.7 Evaluation - User Study

In total 48 participants took part in the study, of which 23 were male and 25 female. Average

age was around 24 years and the self-reported weekly computer usage was around 40 hours

a week. All but four participants used a smartphone with a touchscreen and 16 had used

or owned a tablet. Three quarters of the participants were students of social or psychology

sciences. One fourth was recruited from members of our institute that were not involved in

the project. The participants were grouped in four groups of twelve, assuring that three in

every group were institute members. This setup should balance out novice and more pro-

fessional users. Each of the groups tested only one interface, but with four different image

sets (between subject study design).

Testing an interface with an image set consisted out of finding 60 target images. For

each of the image sets a list of 60 randomly drawn target images was created. The lists

remained the same for all participants and for all interfaces. In contrast to the tablet user

study, participants were not allowed to skip target images. Instead they had to find the

target image within one minute. After that, the target image was automatically skipped

and the participants were transferred to the next target image. This was done because it

was discovered in the tablet user study that participants would skip the image after one

minute anyway. On the other hand, in this way it could be avoided that participants would

invest too much energy in a single image.
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Searching all 240 target images in one single session would be too much of a strain.

Therefore, the study was designed as a two-day assignment. Participants could freely choose

two days within a week. On the first day they would receive the initial introduction and

would perform the test with the first two image sets, finishing the first day with filling out a

questionnaire. On the second day they would continue with the remaining two image sets,

fill out a second questionnaire with the same questions and give their final remarks. The

order in which the sets were tested was alternated between the participants.

Before starting with the first session participants had to read an explanatory text about

the goals of the user study and how their assigned interface is used. This was followed by a

training session. When participants said they were comfortable with using the interface the

test session was started.

A single trial was structured as follows: The target image was displayed on the screen

and participants could take as much time as they wanted to memorize it. When they felt

ready they started the trial by a single tap on the Start-button. They were then transferred

to the browsing interface and continued with searching for the image. When displaying an

image in detail mode, participants were able to submit the image by tapping the Accept-

button or return to the browsing interface by using the Back -button. Submitting an image

ended the trial by turning the whole screen green (correct image) or red (wrong image).

Moreover, if participants took longer than one minute the trial was also ended by turning

the screen red. After that they were transferred to the target image of the next trial until

all trials had been completed.

5.8 Results - Trial Distribution

Over the span of the whole study the participants performed 11520 trials. Each of them

performed 240 trials with their assigned interface. This means that each interface was tested

by 2880 trials in total. Of those, the Globe interface showed 2505 correct trials (87%), 295

skipped (10%) and 80 wrong (3%) trials (users submitted the wrong image). The Ring

interface showed 2452 correct trials (85%), 287 skipped trials (10%) and 152 wrong trials
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(5%). The ImagePane showed 2449 correct trials (85%), 279 skipped trials (10%) and 152

wrong trials (5%). Eventually, the Grid interface had 2696 correct trials (94%), 142 skipped

(5%) and 42 wrong (1%) trials.

5.9 Results - Trial Times

Figure 5.4: Geometric mean trial

times of all smartphone interfaces.

In the statistical analysis only correct tri-

als are considered (trials completed with

the correct image). The search times were

positively skewed, which is why a log-

transformation was applied. After the

transformation the data showed a close

to normal distribution. In the statistical

analysis the geometric mean search time

is reported. The Grid interface showed

a geometric mean search time of 8.04

seconds, Globe as well as ImagePane of

8.12 seconds and the Ring showed a geo-

metric mean search time of 9.25 seconds.

See Figure 5.9 for a visualization of the

data.

A mixed ANOVA with repeated measures was utilized to detect statistical significant

differences. Independent factors set size and target group (inside subjects) and interface (be-

tween subjects) showed no significant main effect for interface (F3,44 = 2.71, p = 0.056, ⌘2 =

0.156) but a significant main effect for set size (F3,132 = 398.94, p < 0.0001, ⌘2 = 0.901),

target group (F5.7,252.6 = 179.81, p < 0.0001, ⌘2 = 0.803; Greenhouse-Geisser corrected) as

well as set size ⇥ interface interaction (F9,132 = 4.51, p < 0.001, ⌘2 = 0.235), target group

⇥ interface interaction (F27,396 = 23.54, p < 0.0001, ⌘2 = 0.616), set size ⇥ target group

interaction (F16.2,710.9 = 22.66, p < 0.0001, ⌘2 = 0.34; Greenhouse-Geisser corrected) and

set size ⇥ target group ⇥ interface interaction (F81,1188 = 1.61, p = 0.001, ⌘2 = 0.099).
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In Figure 5.5 it can be seen that the Grid interface shows a steady increase of search

time in relation to the set size, which is not the case for the other interfaces. In fact, the

globe, Ring and ImagePane show more of a leveling down at the larger set sizes. It would

be interesting to do further research if this trend continues with set sizes of 500 and more

images.

Figure 5.5: Geometric mean trial time per set per interface for smartphones (Error
bars: 95% CI).

The geometric mean search times are shown in contrast to the target groups in Figure 5.6.

As can be expected for the Grid interface, the lower the target group is placed in the Grid

the higher the mean search time (with target group one at the top and target group ten

at the bottom of the grid). Also, color sorting of the images did not help in this case. In

contrast, the other interfaces do not show such a linear increase. The geometric mean search

times are much more evenly distributed across all target groups. Especially the ImagePane

seems to provide close to equal access time to all ten target groups.

In Figure 5.6 it is also visible that the Ring and the Globe interface have a common

weak point at the target groups three and nine. At trial start, these two target groups are

located in both interfaces at the far left and the right sides and are therefore barley visible.

This can easily be seen when looking at Figure 5.3. What is interesting is that although the

images at the back of the Globe are not visible, participants needed much less time to find
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Figure 5.6: Geometric mean trial time per target group and interface (Error bars:
95% CI).

those than the ones that resided at the edges. Most probably, the reason for this is that a

little more than a single drag gesture across the whole screen already turned the Globe by a

full 180 degrees. The participants would therefore first inspect the front, then the back and

then continued with the edges.

To avoid this problem it might be best to prevent placing images at those edges alto-

gether. The two interfaces could be redesigned as follows:

The Ring interface could be split into two slightly less curved half-circles or bands. Dur-

ing scrolling images would transition from one band to the other seamlessly. Another, more

simplistic idea would still show the illusion of a full ring, but images would avoid the edges

when scrolling and directly transition to the back or the front of the ring. With this redesign

all images would be visible all the time.

A redesign of the Globe is more difficult. The same approach would not work, as images

that disappear on the right side would immediately show up on the left side again. This

could cause very irritating visual effects for users. As an alternative, two views of the same
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Globe could be visualized. One would show the front, the other would show the back of it.

When users scroll one of the views the other one would be scrolled accordingly. A downside

of this visualization could be that users perception could be overwhelmed and therefore only

look at one of the globes. This would render the other one useless.

5.10 Results - Questionnaires

The questionnaires followed the same style as used in the tablet user study. This is also

true for the asked questions. A mean is calculated for the questions of both user study days,

to level out day-dependent preferences. The mean scores for each question and interface

can be seen in Figure 5.7. For each question a Kruskal-Wallis test was performed, which

showed no statistical significant difference except for Effort (�2(3) = 9.3, p = 0.026) and

Frustration (�2(3) = 8.4, p = 0.039). Pairwise comparisons using Dunn’s procedure [Dun64]

with a Bonferroni correction for multiple comparisons showed significant differences for Effort

between Grid (Mdn = 5.0) and ImagePane (Mdn = 7.0)(p = 0.029) and for Frustration

between Grid (Mdn = 5.0) and Globe (Mdn = 7.0)(p = 0.036).

Figure 5.7: Mean rating of questionnaires (lower is better but for Fun, Support of

interface and Support of color sort (Error bars: +/- SE).



CHAPTER 5. MOBILE IMAGE BROWSING ON SMARTPHONES 74

5.11 Conclusions - Tablet and Smartphones Studies

In the tablet user study of chapter 4 a trend was already visible that the Ring and Globe in

fact perform very similarly. This trend continued in the smartphone user study and was also

supported by the rather strong performance of the Grid interface. As noted before, users

might need more training to be able to use the features of the 3D interfaces (especially the

ring) to their maximum. In case of the Grid, participants already knew how to use it from

their experiences with their own smartphones. Therefore, the learning curve was rather flat.

Furthermore, they were not mentally burdened to learn a new interaction technique and

could focus completely on solving their task.

At the same time, the quite equal geometric mean search times for all target groups with

the ImagePane have to be considered. It seems to have the ability to produce good results

regardless of where the target image is placed or which dominant color it has. It may also

utilizes the advantages of the color sorting to the possible maximum since it exposes the

sorting completely to the user right at the start without any need for interaction.

It also became clear that user simulations and real user studies can produce quite dif-

ferent results. When only looking at the results of the simulation, the ImagePane would

be by far the best performing smartphone image browsing interface. The following user

study could not confirm this result at all. The problem with user simulations is that they

assume an optimal environment that can rarely be realized in reality. Also, not all users

are equal and have perfect understanding of the interface and color sorting. In the user

studies it was often noticed that participants had difficulties for deciding on the dominant

color in an image. As a consequence, they looked at the wrong area and wasted precious time.

An area where simulation and user study agreed was the linear increase of search time

and interaction effort in case of the Grid interface. The lower the target image was placed

in the Grid the longer it took participants to find it. This was not at all the case with the

other interfaces.
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An additional idea that was discovered during the user studies concerns a difficulty

rating for images. In the data there are strong deviations in search time between images of

the same target group, although they were located next to each other. This was true for

a specific set of images across multiple participants. It seems that images differ in terms

of the search difficulty depending on the content itself and by what kind of images they

are surrounded with. It could be advantageous to do some work on how to automatically

calculate a difficulty rating for images in such scenarios. Such a difficulty rating could be

used in future KIS-like test setups and give interesting insights in the way interfaces perform

on different image difficulty levels.



CHAPTER

6 Mobile Video Brows-

ing with the Keyframe-

Navigation-Tree

As discovered in chapter 3 users typically have only a low number of videos on their smart-

phones and tablets. Nevertheless, the need to find important scenes inside a single video still

exists. Especially long videos can be a problem. Therefore, in this chapter the Keyframe-

Navigation-Tree Video Browser (KNT-Browser) is introduced.1 It uses a novel approach of

(sub-)shot detection and shot visualization to help users navigate inside videos faster and

more efficient.

6.1 Sub-Shot Detection

In contrast to traditional shot detection approaches the KNT-Browser utilizes a method that

works on a sub-shot level [LXSS14]. This has the advantage that it also works for videos

with long shots, e.g. extensive camera pans over a landscape.

Typically, keyframe selection approaches are based on shot boundary detection. A shot

is generally a group of continuous video frames with consistent visual characteristics such

as color, texture, and motion, captured from a single camera at a time. The “gap” between
1Please note that this chapter is adapted from [HSX15a]
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two neighboring shots is called a shot boundary. Furthermore, the transitions between shots

can be classified into two rough groups: hard cuts and gradual transitions. On one hand,

a hard cut is an abrupt shot change that occurs between two continuous frames. Gradual

transitions on the other hand occur over multiple frames, like fade-in/out, dissolve and wipe

animations, as described by Hanjalic [Han02] and Lienhart [LPE97].

To handle video sequences of any kind, a very general information theoretic measure,

the Jensen-Shannon Divergence (JSD) [XPCL+10], for computing the difference between

video frames is used. As a matter of fact, any general metric (such as the widely used f -

divergences [LXSS14]) that is computed efficiently, can be used for this purpose. As for

the computational mechanism of the keyframe selection, a simple and effective shot-based

approach is utilized. In this approach, a video sequence is divided into non-overlapping

shots. Considering the possibilities of gradual transitions between neighboring shots, a shot

is then possibly divided into sub-shots. Finally, one frame is chosen for each (sub-)shot.

Here D(fi||fi+1) is used to represent the difference between the i and i + 1 video frames,

calculated based on their corresponding normalized intensity histogram distributions, fi and

fi+1. In practice, the distance between video frames is the sum of correspondences for the

three RGB channels.

The computing procedure for the keyframe selection can be described as follows (further

details can be found in [LXSS14, XLY+12, XLL+14, XPCL+10]). The Ds between each pair

of two consecutive video frames are obtained first. In order to locate D spikes indicating the

existence of shot boundaries, a ratio � = D
Dw

, where Dw is a local average of D on a w size

temporal window, is used. A shot boundary is located when � is greater than a pre-defined

number �⇤. Next, a shot is grouped into several sub-shots if the content change of this shot is

significant enough. The gradient of Dw, calculated as �(j) = Dw(fj ||fj+1)� Dw(fj�1||fj),
is employed to detect a significant content change. To prevent the use of small outliers

of �, the local average of � on a temporal window, denoted as �w, is actually used for

this sake. Within a shot, if |�w(j)| is greater than a pre-determined number �⇤
w, then a

significant content change inside this shot appears around the frame fj . The left and right

closest frames to fj , fm and fn that satisfy �w(fm) ' 0 and �w(fn) ' 0, are respectively
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located as the beginning and end of the significant content change. In fact, fm and fn are

respectively the left and right boundaries of a sub-shot [fm, fn] with the significant content

change for this shot. In this way, a shot is segmented into several sub-shots according to

the boundaries of all the sub-shots with significant content changes. For a sub-shot with

a significant content change, the frame being most similar to all the others is selected as a

representative keyframe. For a sub-shot without significant content change, the center frame

of it is used for this purpose.

6.2 Interface Design

The design of the interface that can be seen in Figure 6.1 is based around the idea of frame

stripes as proposed by Schoeffmann et al. [STB10] (also known as MO-images introduced by

Mueller-Seelich and Tan [MST00]). Frame stripes are generated by taking the center pixel

column of every frame and adjacently visualizing them in a horizontal stripe-like manner.

They give users an idea about the structure (and to some degree about the content) of a

video while being very compact.

The idea is extended in the KNT-Browser. Instead of visualizing every frame, only the

representative frame of a sub-shot is visualized. The resulting stripe will therefore be called

shot-stripe. Moreover, instead of using only a slice of one pixel width, the slices are made

wider to give users a better idea about the content of the sub-shot.

Furthermore, the KNT-Browser offers not one but three shot-stripes. Each of the shot-

stripes operates with another slice width. This enables users to switch seamlessly between

different visualizations depending on their current needs. The different shot-stripes are de-

fined small, medium and full.
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Figure 6.1: Interface of the KNT-Browser. Top: preview player window. Bottom:

three shot-stripes with different level of detail.

The small shot-stripe uses 20% of the frames’ original width. It is meant to give a first

insight into the content of a video while providing good overview.

The medium shot-stripe shows about one third of the frames’ actual width. It is a

compromise between presenting more content and slightly increased space requirements.

Users can fall back to this type if they are not able to find what they are looking for by

using the small shot-stripe.
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Finally, the full shot-stripe visualizes the entirety of the frames. It offers the best view

of the sub-shots content but requires considerably more space. This stripe should be used

for very detailed inspection.

In addition to the shot-stripes, the KNT-Browsers interface also provides a big preview

player. It is meant to be used for very thorough inspection of the content inside a sub-shot.

All interface controls (preview player and shot-stripes) are connected and in sync to each

other. That means when users operate with one of them, the changes are automatically

reflected in the other controls. When users interact with a stripe (scrolling or selecting) the

other stripes and the player reposition their video position accordingly. This is visualized

with a red line that crosses all three shot-stripes. It is meant to represent the concept of a

VCR-like playhead (see Figure 6.2).

The idea of browsing at different granularity levels is inspired by works shown by Co-

barzan and Schoeffmann [CHDF14, SC13]. They investigated users’ navigation behavior

with common video players and discovered that for KIS tasks users typically navigate in

a coarse-to-fine grained manner. First, users try to narrow down the search to a specific

temporal area in the video. They then continue by switching to a closer inspection of that

predetermined area. The KNT-Browser supports this natural search behavior.

Figure 6.2: The three shot-stripes of the KNT-Browser in greater detail.
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6.3 Evaluation

For the evaluation the KNT-Browser was implemented using an Apple iPad Air with iOS

7 and Objective-C as programming language. To be able to compare it to the standard

interface also a standard video player was implemented, like it is typically preinstalled on

those devices. It features a seeker-bar as well as a play/pause button and a label with

the current timecode (see Figure 6.3.1). It is identical to the default video player that is

preinstalled on iOS 7 devices.

6.3.1 User Study

Figure 6.3: The default video

player interfaces that was used for

the evaluation.

The user study was designed around

the notion of KIS-like tasks in videos.

As dataset and search tasks the data

from the single run session of the Video

Browser Showdown competition (VBS) in

2014 [SB12] is used. It is structured

in ten different search tasks. Each

task has to be performed with one out

of ten videos. Moreover, each video

has an approximate duration of one

hour.

In total 20 participants (five females)

took part in the user study, aged from 18

to 40 (mean 28.15 years, s.d. 6.08). Ev-

ery participant performed five tasks with the

default video player interface and five tasks

with the KNT-Browser. To avoid learning

effects a latin-square principle with random

order is used.
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The study process was inspired from the last years VBS: for each task a 20 seconds

target clip is displayed on the screen, which the participants then have to find in a longer

video. Participants have a three minute time window available to complete each task. In

the case they miss the deadline the trial is aborted and marked as timed out in the log

data. In contrast to the VBS no kind of scoring was used that is visible to the user. It

was decided to avoid giving them feedback about their performance to prevent influencing

their search behavior in any way. Instead, the search time and trial success are logged in

the background. In accordance with the VBS a tolerance of ±5 seconds at the beginning

and the end of the target segment is granted. A test session typically lasted for about half

an hour per participant.

After users had finished five trials with one interface, they had to fill out a questionnaire

with Likert-scale ratings about the subjectively perceived workload of the interface, accord-

ing to the NASA Task-Load-Index (TLX) [HS88]. They then continued with five new trials

with the seconds interface.

6.3.2 Analysis of Trial Times

Only successful trials were used for the analysis of trial times, e.g., trials where participants

found the right video sequence in time. In a first step outliers were removed from the gath-

ered data (± 2 s.d.). The remaining trial times were positively skewed for both interfaces.

Therefore, a logarithmic transformation was performed to achieve a close to normal data

distribution before the data was analyzed. Figure 6.4 (left) shows geometric means for the

two tested interfaces (i.e., the antilog of the mean of the log-transformed data): 28.11 sec-

onds for the KNT-Browser and 44.18 seconds for the default video player. A dependent

paired-samples t-test showed that the difference between the interfaces is statistically sig-

nificant (t(19) = �3.937, p < 0.005). Furthermore, the variance of search time was much

smaller for the KNT-Browser than for the default video player, which indicates that the

performance of the KNT-Browser is less dependent on the type of content.

When comparing these results to the average task solve time achieved by sophisticated

video browsing tools in the VBS 2014 competition (20.58 seconds in the Visual KIS/Experts

run [Sch14]), we can see that the achieved performance in this user study (mainly with
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novices) is quite remarkable. With the KNT-Browser the users were even faster than the

experts in the VBS 2013 competition (also with sophisticated tools) [SAB+14], who required

40.5 seconds on average to solve KIS tasks in different but similarly long videos. For the

same data set novices in a baseline study with a common video player on a desktop PC

required 57.9 seconds on average [SAB+14].

Figure 6.4: KNT-Browser vs. default player - Left: geometric mean trial times (error
bars: 95% confidence interval) Middle: erroneous trials Right: timed out trials.

6.3.3 Errors and Timeouts

Also the number of errors were investigated that occurred with each interface. From a total

of 100 search tasks performed with each interface (each of the 20 users solved 5 tasks with

one interface), 22 were not correctly solved with the default player, whereas with the KNT-

Browser only ten tasks were erroneous (see Figure 6.4 middle). A closer inspection revealed

that almost half of the erroneous trials were caused by one specific task, which required

finding a segment that reappeared in similar form in other locations of the corresponding

video.

The number of timeouts (i.e., where a user needed more than three minutes for a task)

was quite balanced between both interfaces. From a total of 200 trials with both interfaces,

only five could not be solved with the default player, whereas seven could not be solved
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with the KNT-Browser (Figure 6.4 right). The timeouts were clearly task-dependent, as all

12 timeouts were almost uniformly caused by three specific tasks.

Figure 6.5: Perceived workload rating (error bars: ±s.e. of the mean)

6.3.4 Subjective Rating

Statistical analysis (Wilcoxon signed-rank tests) of the subjective evaluations of the inter-

faces showed that the KNT-Browser performed significantly better in all seven categories

of the NASA Test-Load-Index [HS88], as shown in Figure 6.5. More specifically, all study

participants found that the KNT-Browser better supports KIS-like tasks in videos (“Per-

formance” in the figure, Z = �3.920, p < 0.0005), that is less frustrating than the default

player (Z = �3.921, p < 0.0005), and that it is more fun to use than the default player

(Z = �3.920, p < 0.0005). Furthermore, the vast majority found that the KNT-Browser

requires less effort (Z = �3.659, p < 0.0005), less mental demand (Z = �2.576, p = 0.01),

less physical demand (Z = �2.535, p = 0.011), and produces less temporal pressure

(Z = �2.240, p = 0.025) than the default player.
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6.3.5 Preferred Interface

In the questionnaires at the end of a test session the participants were asked about their

preferred interface. The vast majority, more precisely 17 out of 20 users (85%), voted for

the KNT Browsing interface, whereas only three preferred the Video Player.

6.4 Summary

As the results of the evaluation showed, the KNT-Browser with its approach to navigation

interaction and shot detection, can improve the search experience considerably. It provides

a good insight and overview of the contents of a single video. At the same time the three

shot-stripes with different granularity levels enable users to also examine shots and sub-shots

in great detail.

Moreover it utilizes a novel segmentation method on a sub-shot level. The method has

the advantage that it is usable for several different domains. It works with videos containing

very long shots (recordings of landscapes) as well as videos with very short or only a single

shot (medical domain). Regardless of the domain it can deliver good content summarization.

The KNT-Browser succeeded in quantitative measures (search time, errors) as well as

in qualitative regards (workload inquiries). The majority of study participants (85%) also

stated that they preferred it over the default video player. The insights of its evaluation

influence the design of new video browsing tools. At the time this thesis is written two of

them are in prototype stages but not yet evaluated, which is reserved for future work.



CHAPTER

7 Discovering Limits:

Mobile OpenCV Perfor-

mance

During the development of the before presented image and video browsing concepts, the de-

sign process always involved balancing the processing demands with available features. As

it was reported, today’s smartphones and tablets indeed can offer great performance, but

especially processing needs of complex content analysis methods can be a problem. That is

the reason why content-related processing in the earlier presented interfaces was done offline.

Nevertheless, the idea of on-the-fly and mobile analysis of content directly on the de-

vices is still very attractive. However, it is essential to be conscious about which methods

are feasible in a mobile environment and to carefully consider the relation of cost and ben-

efit. Otherwise, user interaction and experience can seriously suffer and render the whole

approach useless in the real world.

As a consequence two performance evaluations were performed that focused specifically

on the given problem. For this, a popular set of functions and algorithms provided by the

OpenCV library were tested with a collection of popular smartphones and tablets. OpenCV

is a freely available open source library for computer vision applications and it is widely

used for content analysis purposes. Implementations are available for Windows, Linux, Mac

OS X as well as iOS and Android.
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The given figures should be interesting for both, research and product development. In

the current literature there exists a lack of such evaluation results on which both fields can

base their considerations for future research and implementations.

In this chapter the results of the more recent study are reported, as it includes a similar

setup of test cases and covers iOS as well as Android devices1. As we have seen in chapter

3, these two are the dominant mobile platforms. For further reference, the results of the

first performance evaluations can be found in Appendix A.

7.1 Android Vs. iOS

The following set of measurements include a broad range of Android and iOS devices in

direct comparison. In addition to measuring the execution time of OpenCV functions,

battery usage is also investigated. It is included in response to feedback that was received

regarding earlier OpenCV experiments. Battery performance is of great importance to any

type of mobile device. Moreover, keypoint detection and descriptor extraction is measured

separately. Furthermore, the measurements focus on single core execution performance.

7.1.1 Setup

The experiment is grouped into two phases with the following setup:

• Phase 1: grayscaling, image blurring, face and edge detection;

• Phase 2: keypoint detection and descriptor extraction.

For both phases a set of 250 images2 was prepared, drawn from the INRIA Holiday

dataset [JDS08]. All images have a resolution of about three mega pixel but differ in their

orientation (portrait vs. landscape). Current and future computer vision applications will

use heterogeneous data from multiple sources, including media captured directly with the
1Please note that the content of this chapter is adapted from [CHSP15]
2The complete file listing can be downloaded at http://hudelist.org/research/phdthesis/

250InriaListing.txt
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devices as well as media coming from other sources. Therefore, it makes sense to introduce

slight variations in the dataset. On average the images have a resolution of 2547 vertical

and 2016 horizontal pixels. Furthermore, in order to cover the variety of image and video

capture capabilities of older and newer devices three subsets are created:

• 3MP: all 250 images in their original size of about three mega pixel (avg.: 2456x2107).

• 3MP50: all 250 images reduced to 50% in their original resolution (avg.: 1228x1053).

• 3MP25: all 250 images reduced to 25% of their original resolution (avg.: 614x526).

The rest of the experiment setup is similar to the earlier study. In phase one and two

function calls are measured with each image of a dataset five times in a row. The mea-

surement times are averaged in order to even out possible interventions by the OS. The

averaged times for each image are again averaged to get an overall performance measure for

each specific function.

The devices that were used for the experiment included the (at that time) flagship An-

droid and iOS devices. The latest Nexus and Galaxy product lines were included as well as

different generations of Apple’s iPads and iPhones. A short overview of the device specifica-

tions can be found in Table 7.1. The CPUs on the iPad Air and the iPhone 5S have a 64-bit

architecture while all the other devices have a 32-bit CPU architecture. The System-On-

Chip (SoC) information is presented in Table 7.2. All Android devices use Android version

4.4.2 except for the GalaxyNote 10.1, which uses version 4.3. All iOS devices use iOS version

7.1.2. Moreover, on all devices OpenCV release 2.4.9 was installed.

7.1.2 Results

In the following, completion time as well as battery usage are reported. After that, the results

are discussed. The keypoint detection and descriptor extraction operations are measured

independently. The battery usage measurements were performed with 1% granularity steps

for the Android devices and with 5% granularity steps for iOS devices. The steps are higher

for iOS because Apple’s API does not provide more detailed information. This means that
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Device CPU
GHz/cores

Memory Screen Resolution Battery

Galaxy Note 10.1
(2014)

1.95/8 3 GB 10.1" 2560⇥1600 8220 mAh

Galaxy Note 3 2.3/4 3 GB 5.7" 1920⇥1080 3200 mAh
Galaxy S4 1.9/4 2 GB 5.0" 1920⇥1080 2600 mAh
Nexus 7 (2013) 1.5/4 2 GB 7.0" 1920⇥1200 3950 mAh
Nexus 7 1.2/4 1 GB 7.0" 1280⇥800 4325 mAh
Nexus 5 2.3/4 2 GB 4.95" 1920⇥1080 2300 mAh
iPad Air 1.4/2 1 GB 9.7" 2048⇥1536 8820 mAh
iPad 4 1.4/2 1 GB 9.7" 2048⇥1536 11560 mAh
iPad 3 1/2 1 GB 9.7" 2048⇥1536 11560 mAh
iPad Mini 1 1/2 512 MB 7.9" 1024⇥768 4382 mAh
iPad 2 1/2 512 MB 9.7" 1024⇥768 6930 mAh
iPhone 5S 1.3/2 1 GB 4.0" 1136⇥640 1560 mAh
iPhone 5 1.3/2 1 GB 4.0" 1136⇥640 1440 mAh
iPhone 4s 0.8/2 512 MB 3.5" 960⇥640 1432 mAh

Table 7.1: Android and iOS devices specification breakdown.

Device CPU SoC
Galaxy Note 10.1 (2014) Samsung Exynos 5420

Galaxy Note 3 Qualcomm Snapdragon 800
Galaxy S4 Qualcomm Snapdragon 600

Nexus 7 (2013) Qualcomm Snapdragon S4 Pro
Nexus 7 Nvidia Tegra 3 T30L
Nexus 5 Qualcomm Snapdragon 800
iPad Air Apple A7
iPad 4 Apple A6X
iPad 3 Apple A5X

iPad Mini 1 Apple A5 (2nd Gen.)
iPad 2 Apple A5

iPhone 5S Apple A7+M7
iPhone 5 Apple A6

Table 7.2: Android and iOS System on Chip information.
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there is a ±1% error margin for the Android devices and a ±5% error margin for the iOS

devices since it is possible that a previous test has ended just under the threshold and part

of it’s battery consumption gets counted for the following test. The tests were started on

all devices with the battery fully charged. When the battery was completely depleted (the

device turned itself off) it was recharged to 100%. After that, the device continued by

re-running the test at which it had turned off.

Common OpenCV Operations The same common OpenCV operations of the earlier

iOS-centric measurements are evaluated: grayscaling, blurring, face detection, RGB and

HSV histograms and edge detection. Also, the same configuration for each of the functions

was used. The result values are presented in Table 7.3 and Table 7.4 for the 3MP and 3MP50

datasets.

Blurring is performed using the GaussianBlur(...) function with a kernel size of 21⇥21

and sigma set to 8.0 in order to produce still recognizable result images (3MP avg. reso-

lution: 2456x2107, 3MP50 avg. resolution: 1228x1053, 3MP25 avg. resolution: 614x526).

For face detection a trained CascadeClassifier is used and its detectMultiScale(...) function.

Before the actual detection, the images are grayscaled. The grayscaling itself is not included

in the time measurement. The other used parameters are set as follows: scaleFactor set to

1.1, minNeighbors set to 2 and minimum size set to 30⇥30.

The RGB histograms that are created use 256 bins with uniform set to true and accu-

mulate set to false. The range of each bin is between 0 and 255. Also, the HSV histograms

generate 30 hue levels and 32 saturation levels with default ranges. Furthermore, uniformity

is set to true and accumulation is set to false.

To detect edges with Canny the images are first grayscaled and then blurred. For

blurring, a kernel size of 5⇥5 and a sigma of 1.2 is used (both operations are not included

in the actual time measurement).The Canny(...)-function is measured with thresholds one

and two set to 0 and 50 respectively.

For a visual aid when analyzing the data in Table 7.3 and Table 7.4, please refer to

Figure 7.1 and Figure 7.2. Both use a logarithmic scale for representing the measured
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Device Grayscale Gaussian Face RGB HSV Canny Edge
Blur Detection Histogram Histogram Detection

Galaxy Note 10.1 8.35 592.62 2471.53 11.64 6.00 145.01
Galaxy Note 3 10.05 680.84 3297.80 19.33 6.40 153.25

Galaxy S4 14.55 886.78 4261.88 28.08 9.96 205.38
Nexus 7 (2013) 14.60 1014.20 3439.15 30.03 9.22 240.46

Nexus 7 11.43 1501.77 3273.17 27.55 20.56 193.18
Nexus 5 7.94 840.87 3494.73 25.19 7.65 144.22
iPad Air 12.95 1260.53 7930.91 69.84 25.06 282.01
iPad 4 21.28 2464.97 10400.87 61.26 33.38 384.51
iPad 3 51.97 4604.35 16556.63 81.00 87.37 797.74

iPad Mini 1 31.26 2769.81 9954.92 47.69 52.92 493.89
iPad Mini 2 13.62 1368.43 8771.00 79.85 27.76 328.01

iPad 2 30.51 2868.00 9842.43 47.09 52.20 488.23
iPhone 5S 8.12 1106.79 6338.24 42.84 15.98 179.60
iPhone 5 13.27 1705.18 6615.14 39.27 21.05 245.03

Table 7.3: Common Operations (values in ms) - 3MP images.

values of common operations in the case of the 3MP and 3MP50 datasets. Interestingly,

no clear winner can be determined between Android and iOS. Furthermore, in some cases

unexpected results are recorded, as for example the iPhone 5 beats its successor (iPhone 5S)

in RGB histogram generation, or the iPhone 5S beating the iPad Air, which uses the same

processor but with slightly increased clock rate.

Figure 7.1: Measured results of common operations in the case of the 3MP dataset.
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Device Grayscale Gaussian Face RGB HSV Canny Edge
Blur Detection Histogram Histogram Detection

Galaxy Note 10.1 2.36 135.85 556.21 4.08 1.82 37.20
Galaxy Note 3 3.33 151.62 734.67 7.90 2.80 44.07

Galaxy S4 3.99 181.88 933.57 9.89 4.06 61.18
Nexus 7 (2013) 4.63 213.22 780.29 8.84 4.30 61.81

Nexus 7 3.33 358.98 798.09 7.11 5.36 46.60
Nexus 5 2.55 220.05 867.93 8.04 3.17 65.85
iPad Air 3.32 270.05 1815.28 19.26 6.17 69.23
iPad 4 6.20 534.86 2666.15 16.02 9.13 98.01
iPad 3 13.35 1077.73 3936.46 20.48 21.95 196.59

iPad Mini 1 13.23 1074.42 3971.17 19.84 21.88 199.14
iPad Mini 2 3.43 289.37 2376.85 22.43 6.88 79.66

iPad 2 12.84 1076.47 3930.68 19.64 21.59 196.88
iPhone 5S 3.43 288.90 2858.57 16.82 6.60 73.12
iPhone 5 6.66 573.81 2951.05 16.91 9.60 102.293

Table 7.4: Common Operations (values in ms) - 3MP50 images
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Figure 7.2: Measured results of common operations in the case of the 3MP50 dataset.

As it can be seen in the results, the most demanding functions are face detection, Gaus-

sian blur and Canny edge detection, while the least demanding are HSV histogram generation

and grayscaling. The corresponding battery drop levels for completing the considered test

sequences of each function for the 3MP and 3MP50 datasets are presented in Table 7.5. As

expected, there is a strong correlation between battery consumption and the time needed
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Device Grayscale Gaussian Face RGB HSV Canny Edge
Blur Detection Histogram Histogram Detection

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2
Galaxy Note 10.1 1 0 2 2 40 9 1 0 0 0 3 1
Galaxy Note 3 0 0 13 4 63 14 2 0 1 1 5 1

Galaxy S4 1 0 17 3 86 19 3 0 0 1 5 1
Nexus 7 (2013 ) 0 0 13 2 86 20 2 0 1 0 5 1

Nexus 7 0 0 17 0 83 18 3 1 2 0 5 1
Nexus 5 1 0 15 5 89 21 2 1 1 0 4 1
iPad Air 0 0 10 0 65 15 0 0 0 0 5 0
iPad 4 0 0 20 5 75 20 5 0 0 0 5 0
iPad 3 5 0 30 5 >100 35 5 0 0 0 10 0

iPad Mini 1 5 0 20 5 80 40 0 0 5 0 5 0
iPad Mini 2 0 0 10 5 70 15 0 0 0 0 5 0

iPad 2 0 0 20 5 75 35 0 5 0 0 5 0
iPhone 5S 0 0 10 5 90 35 0 5 0 0 5 0
iPhone 5 0 0 15 10 >100 45 0 0 5 0 5 0

Table 7.5: Battery demand (in %) for operations in the common group after complet-
ing the test sequence of 250 images from the 3MP (D1) and 3MP50 (D2) datasets.
Entries of ">100" indicate that a single full charge was not sufficient to complete the
test sequence.

to complete the tests. The largest battery drain can be observed for face detection. This

is true for all devices. Moreover, in the case of the iPad 3 and the iPhone 5 a full battery

charge is not sufficient for completing the face detection test for all the images in the 3MP

dataset.

Keypoint Detection/Descriptor Extraction Next, keypoint detection and de-

scriptor extraction was examined. This time, detection and extraction were measured sep-

arately in accordance with response to feedback that was received to the first performance

measurements. The following algorithms are included: ORB, BRIEF, BRISK, SIFT, SURF,

FREAK and FAST. In the case of BRIEF and FREAK GoodFeaturesToTrack was used for

keypoint detection followed by descriptor extraction.
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Figure 7.3: Execution times of ORB (left) and BRISK (right) keypoint detection and

descriptor extraction.

In Figures 7.3 and 7.4 the measurement values are visualized corresponding to keypoint

extraction as well as descriptor computation for ORB, BRISK, FREAK and FAST for the

3MP dataset. Again, the rather bad performance of the iPad 3 in comparison with its

predecessor, the iPad 2 is visible.

Within the Android devices, the keypoint detection in case of ORB clearly outperforms

the iOS devices. BRISK shows similar results across all devices with the exception of the

iOS devices mentioned earlier. The same is true in the case of FREAK with the observation

that the Galaxy Note 10.1 and Nexus 5 provided the fastest results. Moreover, keypoint

detection with FAST required less time on all the Android devices.
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Figure 7.4: Execution times of FREAK (left, keypoint detection & descriptor extrac-

tion) and FAST (right, keypoint detection).

In the following the results regarding SIFT, SURF and BRIEF are discussed. The mea-

surements in those cases also include the time needed to detect keypoints as well as the

time needed to extract the corresponding descriptors. It is important to note that due to

patent issues, SIFT and SURF are not included in the official release package of OpenCV

for the Android platform. They are relocated into the nonfree module of the library. In

order to perform the measurements it is necessary to make a build of this nonfree module

for Android native projects. One option is to rebuild the whole OpenCV library. For this

experiment however, only the missing nonfree module3 was rebuilt (using the Android NDK,

Revision 9c - December 2013).

The exact measured values for the 3MP, 3MP50 and 3MP25 datasets are listed in Table

7.6, Table 7.7 and Table 7.8. Although in the case of BRIEF the Android devices achieve

better results, in case of SIFT and SURF the measured values are considerably worse than

in comparison to the iOS devices.

In case of the 3MP dataset, the SIFT measurements could not be performed on any of the

devices because the test applications crashed on both Android and iOS with an insufficient

memory error message (therefore they are omitted from Table 7.6). This also happened in

3Following the instructions at http://tinyurl.com/oblle6l
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the case of the 3MP50 dataset for the iPad Mini 1 and iPad2. The corresponding values are

marked as ‘�’ in Table 7.7 and Table 7.9, which shows battery drain results in the case of

BRIEF, SIFT and SURF for the three considered datasets. Please note that for the 3MP

dataset, the SURF measurements needed more than one full charge to complete on all tested

devices.

Device
BRIEF SURF

Keypoints Descriptors Keypoints Descriptors

Galaxy Note 10.1 488.78 42.97 82662.90 184723
Galaxy Note 3 677.24 52.20 58601.10 134267.00

Galaxy S4 801.14 75.76 74455.90 173836
Nexus 7 (2013) 824.41 73.78 58248.60 136172.00

Nexus 7 811.50 71.41 45270.00 97972.20
Nexus 5 582.38 48.87 63328.40 148495.00

iPad Air 901.05 54.38 7115.26 20084.18
iPad 4 1134.90 79.62 6552.49 17761.25
iPad 3 3116.00 177.17 12447.22 35201.64

iPad Mini 1 1879.90 126.21 8810.79 22985.91
iPad Mini 2 952.29 56.97 7735.29 21879.85

iPad 2 1866.40 123.42 8586.47 22650.45
iPhone 5S 569.57 36.58 6631.87 18658.79
iPhone 5 729.66 56.50 5120.15 13744.48

Table 7.6: Average execution times (in ms) for keypoint detection and descriptor

extraction when testing 250 images of the 3MP dataset.
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Device
BRIEF SIFT SURF

Keypoints Descriptors Keypoints Descriptors Keypoints Descriptors

Galaxy Note 10.1 126.26 16.82 18553.60 20168.90 24220.60 51071.20
Galaxy Note 3 157.51 21.18 21520.80 27542.70 15096.30 33957.30

Galaxy S4 211.50 30.13 26907.70 33548.60 20023.70 46063.10
Nexus 7 (2013) 225.88 33.10 28082.10 33697.40 15718.30 34687.50

Nexus 7 220.16 33.97 38399.30 47780.40 12494.10 27438.70
Nexus 5 180.35 25.91 27057.40 34179.10 18131.50 41822.00

iPad Air 226.52 16.49 3276.46 4780.03 1890.82 5106.70
iPad 4 286.16 25.47 4883.35 6847.57 1846.23 4902.68
iPad 3 756.95 61.63 11560.26 15891.07 3449.07 9811.72

iPad Mini 1 756.18 62.07 � � 3492.48 9879.97
iPad Mini 2 240.21 17.35 3548.15 5186.26 2236.38 6059.69

iPad 2 751.41 60.96 � � 3436.40 9795.54
iPhone 5S 218.44 15.75 4209.18 6161.39 2670.63 7242.44
iPhone 5 304.46 26.66 5191.81 7302.17 2085.50 5567.79

Table 7.7: Average execution times (in ms) for keypoint detection and descriptor

extraction when testing 250 images of the 3MP50 dataset.

Device
BRIEF SIFT SURF

Keypoints Descriptors Keypoints Descriptors Keypoints Descriptors

Galaxy Note 10.1 33.59 7.89 4833.04 5371.13 6201.35 12579.20
Galaxy Note 3 32.55 8.00 4757.97 6533.47 4156.58 8940.18

Galaxy S4 47.74 11.77 6283.44 8221.01 5253.89 11394.90
Nexus 7 (2013) 50.72 12.12 7233.23 9301.98 4043.44 8614.13

Nexus 7 50.33 16.41 9445.54 12471.60 3250.60 6820.61
Nexus 5 39.55 9.75 5940.75 8033.79 4888.02 10580.00

iPad Air 58.52 5.76 914.51 1407.81 587.21 1447.07
iPad 4 76.20 9.38 1185.85 1767.18 564.72 1360.12
iPad 3 187.33 26.09 2874.33 4191.65 905.31 2406.50

iPad Mini 1 186.45 26.56 2955.26 4310.72 919.02 2428.89
iPad Mini 2 61.80 6.09 956.89 1475.02 623.83 1540.25

iPad 2 186.10 25.96 2888.90 4224.87 899.57 2397.98
iPhone 5S 55.33 5.43 1127.66 1742.89 677.56 1674.53
iPhone 5 80.94 9.82 1300.93 1933.76 514.59 1267.40

Table 7.8: Average execution times (in ms) for keypoint detection and descriptor

extraction when testing 250 images of the 3MP25 dataset.
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Device
BRIEF SIFT SURF

D1 D2 D3 D1 D2 D3 D1 D2 D3

Galaxy Note 10.1 9 2 1 � 55 15 >100 >100 30

Galaxy Note 3 15 3 1 � 93 19 >100 98 24

Galaxy S4 18 5 2 � >100 25 >100 >100 33

Nexus 7 (2013) 15 4 1 � 94 18 >100 >100 33

Nexus 7 20 6 1 � >100 35 >100 >100 26

Nexus 5 15 4 1 � >100 25 >100 >100 34

iPad Air 5 5 0 � 60 15 >100 55 15

iPad 4 10 5 0 � 80 20 >100 45 15

iPad 3 25 10 0 � >100 45 >100 100 25

iPad Mini 1 10 5 5 � � 55 >100 >100 25

iPad Mini 2 10 0 0 � 70 15 >100 60 15

iPad 2 15 5 0 � � 50 >100 100 25

iPhone 5S 10 5 0 � >100 35 >100 >100 35

iPhone 5 10 5 0 � 25 40 >100 >100 30

Table 7.9: Battery drop levels (values in %) for the 3MP (D1), 3MP50 (D2) and

3MP25 (D3) datasets for keypoint detection and descriptor extraction.

7.1.3 Discussion

In general Android devices showed better performance in this experiment setup. The reasons

for this are not completely clear. One reason could be that this difference is mainly caused by

more powerful hardware on the Android side. Apple usually couples their soft- and hardware

very tightly and optimizes their experience very thoroughly. As a result their hardware-wise

processing requirements are lower. In this experiment however raw processing power was

key and therefore it surfaced the gap clearly. Another reason for the results might be found

in the OpenCV implementations themselves. Different compiler implementations were used

for building the OpenCV library for both architectures.
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7.2 Conclusions

As the figures of both experiments show clearly, developers and researchers need to care-

fully consider their implementation decisions. For example, processing keypoint detection

and descriptor extraction with SIFT, SURF and BRISK requires a lot of time which users

may not be willing to accept. If the application requires to process large amounts of image

data it is recommended to use a client-server solution. The additional time introduced by

network latency and offloading the work to a server may be the better choice, depending on

the circumstances. On the other hand, should the application require processing of only one

or a couple of images without the need for immediate feedback, it can be reasonable to use a

local solution that runs directly on the mobile device. These recommendations are of course

only valid for the single-core scenario, as it was not evaluated how the operations would

perform when parallelized. Even more performance potential could lie in the inclusion of

the GPU in the process. Technologies like OpenCL4 or Metal5 now make it easier than ever

to use such resources.

Furthermore, the version of OpenCV (version 2.4.9) that was used in the experiments

seems to have some memory issues in their SIFT and SURF implementations. As reported,

it was not possible to execute them with images equal or above three megapixel in resolution,

even not on a device with 3 GB RAM. Since a resolution of three megapixel is already quite

conservative for the time this thesis is written, users either need to shrink down the images

prior to the analysis (accepting a penalty of precision) or implement a client-server solution.

4
https://www.khronos.org/opencl

5
https://developer.apple.com/metal



CHAPTER

8 Novel Video Browsing In-

terfaces

In addition to the earlier already evaluated interface ideas this chapter contains interface

concepts that have been published as demonstrations only1. Some of them use rather simple

approaches while others utilize results of content analysis.

8.1 3D Filmstrip

Although the majority of movies and videos today are stored and played digitally, people

when asked to describe the concept of film or video often think about an old celluloid stripe

of images that was used in analog projectors and film cameras - a film strip. Therefore, the

following interface concept utilizes this mental image to its advantage: a 3D Filmstrip video

browser [HSB13a].

The interface projects a 3D strip into the landscape of a movie theatre. The strip is

arranged in a way so that it forms rows and continues to the back (see Figure 8.1). To see

more of the strip it is tilted slightly to the front in its default orientation. The strip itself

is divided up into screens of equal size, similar to the individual images of a real film strip.

When a video is loaded it is first uniformly cut into ten second segments and each screen

on the strip a video segment is assigned. As representative keyframe of a video segment

the first frame of the segment is extracted and displayed. To avoid confusion of users the
1Please note that the content of this chapter is adapted from [HSB13a], [HSB13b] and [HSX15b]
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segments are assigned to the screens in chronological order: the first segment is assigned to

the screen at the front left and the last segment is assigned to the screen at the end of the

strip. Therefore, the length of the film strip is dependent on the length of the actual video.

Figure 8.1: Initial view of the 3D Filmstrip.

In its default state the interface gives a good overview of the first 14 video segments,

which means that approximately the first two minutes of a video are covered. To browse

later parts of the video user can perform a downward drag gesture on the touchscreen. Users

have to tap and hold anywhere on the screen with a single finger and drag it on the screen

downwards. In this way users are able to scan through the whole strip. To scroll back to

the earlier parts of the video the same motion in re is intuitive in the same way. Users just

have to push the strip away from them. This is done by dragging the finger up (or away

from users bodies).
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It is also possible to change the angle at which the filmstrip is tilted. It can be done by

placing two fingers at the same time on the screen and dragging them up- or downwards.

See Figure 8.2 (right) for a result of an tilting operation, where the angle was increased to

see more of the back of the strip.

Users are also able to manipulate the positions of the screens directly on the filmstrip.

The screens can be scrolled sideways to the left or the right on the strip. For this, user have

to place a single finger on any screen on the strip and drag it to the left or to the right.

The screens then scroll accordingly. Screens that are pushed across the start of the filmstrip

are added to the end of the film strip at the back. In accordance, screens that are pushed

over the end of the filmstrip at the back are added to the start of the filmstrip at the front.

Moreover, when screens change rows they are automatically adjusted so that they do not

appear mirrored.

The default configuration of ten second segments might not be optimal for all kinds of

videos. Therefore, users can customize the segmentation to their needs. For very long videos

it might be useful to first work with rather long segments (e.g. 30 seconds, 1 minute, etc.)

and then users refine their search by decreasing segment durations again. This feature can

be controlled by applying pinch-gestures. To increase the segment duration (by two) users

have to apply pinch out gestures. The strip is then refreshed with the new configuration,

which can be seen in Figure 8.2 (left). To decrease segments duration by half users can use

pinch in gestures.

Finally, users are also able to play the content of the of the visualized segments. To do

this, users need to tap on one of the screens. The tapped screen then starts to play the

video segment inside its dimensions. An additional tap on the screen pauses the playback

of the segment. Fullscreen playback of video segments is also available. It can be activated

by double tapping on a screen.
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Figure 8.2: 3D Filmstrip after zoom-out operation (left) and zoom-in operation and
tilting (right).

8.2 The ThumbBrowser

Smartphones and tablets are usually operated in a portrait-like orientation. Unfortunately,

this way of holding the device is sub-optimal for watching videos. Videos are optimized for

a landscape orientation. When displayed on screens in portrait orientation only a small part

of it can be used for the actual content. This is especially problematic on the already small

screens used by mobile devices.

As a consequence, smartphones and tablets are typically turned to landscape orienta-

tion. Their preinstalled video players then switch to a fullscreen playback that uses all of the

available screen space. However, interacting in this orientation becomes quickly uncomfort-

able. Especially on a tablet the interaction with a horizontal seeker bar or playback buttons

in the middle of the screen is unnecessary complicated. Users can barley reach the controls

as they are too far away from their thumbs. They have to release the secure two-handed

grip and use one hand for the interaction while holding the device with the other. Holding

the device in such a way is tiring and unstable.

The solution is to provide users an interface that adapts to the landscape orientation.

This idea is far from new. On-screen keyboards are a good example for this. The keyboard

is split into two halves that are positioned on the left and the right edges of the screen so

that the thumbs have no problem reaching them. Two examples can be seen in Figure 8.3.
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Figure 8.3: Split keyboards on iOS (left) and Windows 8 (right).

Nevertheless, video players have not picked up this idea yet, although watching video is

one of the best reasons to hold devices in landscape orientation. Therefore, in the following

a video player is proposed that focuses on usage in landscape mode: the ThumbBrowser.

Users are able to operate it with their thumbs only, without the need to adjust hand position.

Furthermore, it incorporates hierarchical browsing features, bookmarking and, in a current

unpublished extension, on-the-fly background analysis of face occurrences and color signa-

tures of all shots of a video. An interim milestone was presented at the ACM International

Conference on Multimedia 2013 and shortlisted for the best demo award [HSB13b].

8.2.1 Interface

In normal playback mode all available screen space is utilized for the video and no controls

are shown so that users can concentrate on the content. To use the interface controls users

have to place their right or left thumb on the screen. This activates, dependent on the

thumb used, different interface controls. The right thumb activates a vertical seeker control

to quickly scan through the video and jump to any position. The left thumb activates a

radial menu that offers functionality for play/pause, fast forward and fast rewinding. For

an image of the interface please see Figure 8.4.

The vertical seeker control consists of a vertical timeline and a magnifying glass with

additional information areas, as can be seen in Figure 8.4 on the right side. The top of
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Figure 8.4: The default view of the initial version of the ThumbBrowser with its two
main controls: a radial menu for the left thumb and a vertical seeker control for the
right thumb.

the timeline is mapped to the beginning of the video, the bottom to the end of the video.

A small marker on the timeline tells users their current video position. The magnifying

glass follows the position of the thumb as the user drags it up or down the timeline. When

users make horizontal movements the magnifying glass follows the thumb so that its blue

handle always stays directly below it. The magnifying glass shows users the corresponding

frame that resides at its current location on the timeline. This enables users to quickly scan

through the content of the video. In the top bar of the control, a label shows the time code

of the current position of the magnifying glass.

Should users decide that they want to navigate the video to the current position of the

magnifying glass, they can lift their right thumb. This triggers the video player to seek

directly to the selected position. In parallel, the whole control is faded out. In the case that
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users do not want to seek to a certain position, they can drag the magnifying glass all way

to the right and lift their thumb. This cancels the seek process and hides the control. The

abortion is also visually indicated by a red colored area in the top bar (see Figure 8.5).

Figure 8.5: Squeezing-effect of the timeline (left) and visual indication for aborting a
jump (right).

The radial menu on the left side of the screen offers in total five options: play/pause, fast

forwarding, fast rewinding, timeline zoom, video bookmark. To activate an option, users

have to place their left thumb on the screen and drag their finger over the respective option.

Furthermore, during fast forwarding and fast rewinding the vertical seeker control is also

displayed for orientation reasons.

The timeline zoom option (indicated by a magnifying glass in the menu - see Figure 8.4)

is intended to give users finer control over the vertical seeker control. The problem arises

when users want to navigate in long videos. Since the complete length of a video has to be

mapped to the area of the timeline, the longer the video is, the harder it gets to navigate

on a fine granularity level (e.g., second by second). Users might have the feeling, that the

content they are looking for should be around four minutes into the video but they now

have problems further examining the video at that time range. For such a case the interface
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offers timeline zooming. When activated it remaps the timeline to an area of +/- 20 seconds

around the current position of the magnifying glass. This makes navigation on a detailed

level much easier. To make it clear to users that they have activated this mode the top and

bottom part of the timeline gets squeezed in an animation (as can be seen in Figure 8.5).

When the video continues to play the mentioned zoom-window of the timeline is adjusted

accordingly, so that the current position is always located in the center of it. The zoom

process can also be repeated to get even finer navigation control. Users can also return to

an earlier zoom level by choosing an available zoom out option.

The ThumbBrowser records every seek process in the video to give users a way to re-

turn to the last position. This functionality is helpful when users just want to check what

happened earlier in the video (for reference) and then try to return to their original playing

position to continue watching. To activate this feature, users need to swipe into the screen

from its left edge. Moreover, users can manually add bookmarks by using the apropriate

option of the radial menu (indicated by a star symbol - see Figure 8.4).

8.2.2 ThumbBrowser V2

Based on the feedback received at the ACM Conference on Multimedia 2013 with the origi-

nal version, a set of improvements was implemented. The first improvement focused on the

extended vertical seeker control. While it was received well for its hierarchical approach to

scan through portions of the video in great detail very quickly, some had trouble with the

physical interaction pattern. Therefore, the visualization of the zoom process is redesigned.

In contrast to the original version the view of the extended seeker control is now changed

to a scrollable vertical strip of keyframes (see Figure 8.6). Two markers on the timeline rep-

resent the current position in the video (black) and the position of the keyframe strip (blue).

Initiating a seeking process can be performed by tapping on one of the frames. When users

start the playback of the video the strip is scrolled accordingly in a way so that the videos

current playback position is always in the middle of the filmstrip.
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Figure 8.6: The new controls of the improved ThumbBrowser: Extended timeline as
well as strip-like visualization (left) and the new bookmark pane (right).

Moreover, in the new version of the ThumbBrowser a bookmark control element was

added. It can be displayed by swiping with the left thumb into the screen (see Figure 8.6).

It provides an additional button for creating a new bookmark at the current position. Fur-

thermore, a scrollable list of all available bookmarks is displayed. Each entry of the list

shows the frame of the bookmark, the timecode and the date when the bookmark was cre-

ated. To navigate to one of the bookmarks users just have to tap it. It is also possible to

delete a bookmark by swiping a finger across an entry to the left.

The last improvement concerns adding simple means of content analysis to further en-

hance the search experience of users. Face detection is added to the interface for search

scenarios where users want to find scenes with or without people. For example, if users want

to find an interview in a documentary about nature or animals this feature offers visual aid.

In such videos people only appear in a few places. On the other hand, it could also help

to find landscape scenes in videos where a lot of people appear, like in news videos. The

detection happens in the background and starts when a video is opened the first time. The

actual user interaction is never interrupted for this. Found places are added on-the-fly as

they are detected. The found positions are also cached so that the process does not have to

start fresh every time the video is re-opened. Found places are visualized in the timeline of

the extended seeker control. Small blue markings on the left side indicate that faces where
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found at a position. The more pronounced the marking is, the more faces were found.

Moreover, frames of the video are sampled in a uniformly way and their dominant color

is extracted. The detected color is then displayed as a small marking on the right side of

the timeline. This helps to find scenes in the video with a distinct color setting, like an-

nouncements, outdoor scenes or similar. To see an example of this visualization please refer

to Figure 8.7.

Figure 8.7: Markings on the new timeline indicating occurrences of faces (left side of
the timeline) and dominant color (right side of the timeline).

8.2.3 Further Development

Partly inspired by the original version of the ThumbBrowser, in a recently published study by

Hürst and Hoet [HH15] a storyboard-based video browser is compared to a thumb-optimized

version. Unfortunately, despite positive comments and ratings by users the thumb-optimized

browser could not showcase a significant improvement over the storyboard design. The

authors also note, that only few of their participants actually took advantage of the thumb-

orientated controls and instead used them traditionally, with one hand holding the device,

interacting with the other one. As often the case, it might just be that users were already
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too accustomed to the traditional way video browsers are operated. It would be interesting

to have study participants take part of an extensive training and then only allow them to

operate the interface in the intended way. In future work, these findings will be considered

and further explored. Furthermore, it might also be advantageous to adapt the interface for

smartphone screens, as usage patterns could be totally different.

8.3 The Multi-Stripe Video Browser

Based on the work of the earlier described KNT-Browser a new mobile video browser for

taking part in the 2015 Video Browser Showdown2 (VBS) was designed: The Multi-Stripe

Video Browser (MSV-Browser) [HSX15b]. The VBS is an annual live video search compe-

tition. It gives researchers an opportunity to evaluate and demonstrate their video search

tools.

The browsing system consists out of two parts: a server part and a mobile part. The

server part performs content analysis for the following features: detection of shot and sub-

shot boundaries, color analysis, motion analysis, keypoint analysis, face detection and selec-

tion of so called templates, which will be described in detail later.

The mobile part consists of an app written for the Apple iPad. It features a browsing area

and a filtering area. Most prominent element of the interface are the two navigation bars at

the lower half of the screen. The bars follow the same principle that was used in the KNT-

Browser. Each displayed keyframe represents a detected sub-shot. In this implementation

however, the middle navigation bar was removed. In the evaluation of the KNT-Browser it

became clear that the middle bar was rarely used by study participants. Therefore, it made

sense to reduce the configuration to an overview navigation bar with slim slots but good

overview and a detail navigation bar with full-size keyframes.
2
http://www.videobrowsershowdown.org



CHAPTER 8. NOVEL VIDEO BROWSING INTERFACES 111

8.3.1 Analysis Component

As mentioned the analysis of videos is performed in an offline manner. No network con-

nection between the server and the mobile application is necessary. In a first step, shots

and sub-shots are detected by looking at changes in terms of motion and in terms of color

changes. For this, the method shown by Luo et al. [LXSS14] was used. After that, the

frames of the individual shots are further investigated. Each frame is partitioned into nine

spatial areas of equal size. For each of the areas a color histogram is generated and the

keypoint density is detected. The color histogram that was used is based on the HSV color

space and supports 19 bins (16 colors as well as white, gray and black). Furthermore, the

density of keypoints is computed based on Shi-Tomasi corner detection [ST94]. This is

performed for all frames of a shot. The color and keypoint features are averaged for the

corresponding area for all frames of the shot, which generates a summarized description of

a shot in terms of color and keypoints.

The shots are moreover analyzed regarding motion. For each shot a motion histogram

is generated. It consists out of eight bins using four different motion directions (90 degree

each) as well as the corresponding average motion speed. Furthermore, the presence and

the count of faces in shots are detected. For this, the face filter that is part of Apples Core

Image framework was utilized. It was used in its default configuration. The videos are also

analyzed for occurrence of prominent concepts or templates. The detected templates are

used to provide unexperienced users a faster way to browse and filter multiple videos.

Finally, saliency detection is applied on the representative shot keyframes in the navi-

gation bars. For this, the method shown by Achanta et al. [AHES09] is applied. It ensures

that the most important part of a keyframe will be visible when visualized in the overview

navigation bar, as only a narrow stripe will be visible. All of the gathered shot information

of a video is recorded into a metadata-file. It is uploaded to the tablet together with the

(size-reduced) video files.
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8.3.2 Mobile Component

The mobile component is implemented as an iPad app that loads the appropriate videos and

the corresponding metadata files generated by the server component. The interface can be

divided into three areas as can be seen in Figure 8.8. Area A is focused on previewing content

as well as providing typical video player controls. It also contains buttons for configuration

of the VBS server data and submitting the video and timecode that is currently displayed

in the preview window.

Figure 8.8: Main interface of client app with interface areas highlighted.

Area B focuses on filtering-controls. As soon as the user sets any option the app filters

all video sequences for matches and displays the results. The filtering process is visualized

via a short period of dimming and locking the interface, as well as a flashing message in the

status bar at the bottom (see Figure 8.8).

The region all way to the left of area B in Figure 8.8 contains controls used for setting

a custom color layout for the nine spatial areas earlier described (color layout grid). To set
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a color for one or multiple areas users have to tap on the areas and then choose color from

the palette on the right. Furthermore, it is possible to reset a setting with the appropriate

option in the palette. In a similar fashion the keypoint density can be set for each of the nine

areas, by choosing a density option below the color palette: high (H), medium (M) or low (L).

Moreover, three buttons below the color layout grid can be used to set different values

for color and keypoint density of up to three successive video sequences. Only pairs or triples

of video sequences that match the filtering criteria in that order will then be displayed.

Below the color layout grid the motion filtering control is available. It consists out of a

quadrisected circle for setting options of upwards, downwards, left and right motion, and a

bar that can be set to set the amount of no (still) motion. User can set a motion filter by

simple drag gestures.

To the right of the motion filter controls two sliders and two buttons allow users to set

the filtering accuracy/threshold (T), face count (F), apply a preset to filter for zoom motions

(button with four arrows pointing to the corners) and to access the template gallery (button

with icons).

The template gallery button enables users to switch to a view where all available tem-

plates can be browsed (see Figure 8.9). Each thumbnail in the gallery represents a detected

template. Furthermore, a counter below the thumbnail informs users about how often the

template was found in the video collection. A single tap on one of the thumbnails returns

users to the detail view of the interface, preloaded with all video segments that match the

chosen template.

Area B also offers users a button that activates filtering via a captured photo (at the

left middle side of Figure 8.9). Pressing the button switches the view to a view finder for

taking the photo. After that, it is possible to crop the taken image. The cropped image

is then analyzed regarding its color layout. When complete the view switches back to the

detail view, preloaded with matching video shots.

Area C focuses on browsing the found video shots by utilizing two navigation bars based

on the work done in the KNT-Browser. Furthermore, users have the option to initiate sim-

ilarity filtering. This can be activated by long pressing on one of the keyframes. A then
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Figure 8.9: Template gallery of the MSV-Browser.

appearing popup-menu provides a button to activate filtering for similar video shots in com-

parison to the selected one. The video shots are compared in terms of their color layout

values, keypoint density and movement data.

Finally, it is also possible to switch the view into an overview mode. It can be activated

by simply turning the device to portrait orientation (see Figure 8.10). In this mode each

video gets its own navigation bar. The list of navigation bars can be scrolled horizontally

via drag gestures. This mode can be especially useful after a filtering operation. Since more

keyframes are visible the results can be processed by users even faster. When a keyframe

of any navigation bar is tapped the interface returns to the default detail view with the

touched keyframe visible in the preview player as well as appropriately positioned navigation

bars. It is possible to return to detail view by simply turning the device back to landscape

orientation.
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Figure 8.10: MSV-Browser’s overview mode activated by turning the device to por-
trait orientation.



CHAPTER

9 Conclusions

Smartphones and tablets will accompany our life for a while. The same is true for the desire

of people to capture and enjoy images and videos. Steve Jobs once said in an interview at

the D8 conference, that he expects a future of computing similar to todays ratio of trucks

and cars:

"When we were an agrarian nation, all cars were trucks, because that’s what you needed

on the farm. But as vehicles started to be used in the urban centers, cars got more popular.

Innovations like automatic transmission and power steering and things that you didn’t care

about in a truck as much started to become paramount in cars. ... PCs are going to be like

trucks. They’re still going to be around, they’re still going to have a lot of value, but they’re

going to be used by one out of X people." [D10]

With such expectations also the need for improving the image and video experience on

those smart devices will probably not diminish. For that, we need to understand the needs

and expectations better and continue to perform research in this area. The work in this

thesis tried to give a couple of indications of how better image and video browsing could

look like.

In Chapter 3 it was discovered that users approximately store between 100 and 400 im-

ages on their devices in average. Furthermore, they store more on their smartphone than on

their tablets. This is interesting, as they seem to buy tablets with higher storage capabilities
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in comparison with smartphones. Also, they generally do not organize or backup their mo-

bile image and video collections in any way. Interestingly, women seem to store significantly

more images on their smartphones than men. Also, it looks like the software environment

has an influence on the image count, as iOS users store significantly more images on their

smartphones than Android users. Some expectations of us were confuted, as we could not

see any relation between storage capabilities and image count or between capture frequency

and image count. Furthermore, users store only a very limited number of videos locally on

their smartphones and tablets. Being ware of these insights, new image and video browsing

concepts are shown in the following chapters that respect these figures.

Chapters 4 and 5 report about two large user studies investigating new image browsing

interfaces for tablets and smartphones. The first concentrates on finding out if there are

indications whether the used shape of 3D color sorted interfaces matters in terms of users’

search performance. Interestingly, in the test users were as fast with a 3D globe as they were

using a 3D ring. The second study focuses on transitioning the 3D interfaces from tablets

to smartphones as well as comparing them with two additional 2D color sorted interfaces:

a typical image grid and an image pane. Contrary to earlier studies on tablets, the 3D

interfaces could not deliver significant improvements in search time. This could imply that

the utility of such interfaces is related to the available screen space. Furthermore, the rather

simple idea of the image pane could provide equal access times to images, regardless of their

sorting position.

Mobile video browsing is the focus of Chapter 6 by presenting the KNT-Browser. It

focuses on improving the browsing and search experience in a single video. For this, the

notion of sub-shots is introduced. Interface-wise it provides easy navigation through three

stripes of keyframes that represented detected sub-shots in the video at different levels of de-

tail. In the evaluation the KNT-Browser successfully outperformed the default video player

at KIS-like tasks significantly in terms of search time. It also produced about 50% less

erroneous trials than the default video player. Moreover, the KNT-Browser also succeeded

in the questionnaires as it performed significantly better in all categories of the NASA TLX

workload index and it was the preferred interface for most of the study participants.
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Evaluating content analysis performance on smartphones and tablets is described in

Chapter 7. At that time state-of-the-art iOS and Android devices were tested in two exper-

iment setups. Popular analysis functions of the OpenCV library were benchmarked on how

well they performed in terms of execution time and battery requirements. It has been shown

that mobile devices can reach up to 80% of the performance shown by a consumer grade

laptop. Nevertheless, the utilized methods have to be chosen wisely. In very demanding

cases (e.g., batch detection of SIFT keypoints) it is recommended to consider a client-server

approach, as network latency could undercut local execution time.

Finally, a short digression into published but not yet evaluated work was discussed in

Chapter 8. With the 3D Filmstrip an engaging new way how to visualize video content was

presented by using the metaphor of a traditional celluloid film strip. The ThumbBrowser

was introduced with a new more natural and more comfortable way of watching and brows-

ing videos in landscape orientations. It focuses on being used with the left and right thumbs.

Furthermore, in a later iteration, it features background and on-the-fly analysis of faces and

dominant color. In the end the Multi-Strip Video Browser was presented. It features vari-

ous ways how to filter and browse whole video collections via color layout, keypoint density,

motion and shot similarity.

9.1 Future Research

The ideas for future research that came up during the work on this thesis are extensive.

Some of the most promising ones will be discussed here.

• Utilizing 3D visualizations in the browsing domain still has huge potential. Only few

works focus on using it for video browsing. It could be used to better visualize the

different aspects of video by exploiting the third dimension.

• As it was already discussed in chapter 8, currently an improved version of the Thumb-

Browser is in work that will incorporate keyframe analysis features. It would also be
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interesting to evaluate it not only with entertainment content but also with videos of

special domains, like security footage or medical recordings.

• During the lifespan of the NGVB project other researchers of the field proposed using

concept recognition for image browsing on smartphones. As most of the projects

prototypes use color sorting it would be interesting to make a comparison between

the color sorting, concept sorting and a combination of both.

• Furthermore, new device types are coming up that could also be important for the

field of image and video browsing. Some manufacturers have started to equip their

smartphones with mini projectors and researchers are already exploring how this tech-

nology could be used in new ways [Kau14]. It is easy to imagine that this could also

be used for new ways of image and video browsing.

• Currently, multiple manufacturers extensively push smart watches. They are intended

to provide unobtrusive notifications and most of them are currently tightly coupled to

a smartphone. Nevertheless, in most of their demonstrations images also play a role

(e.g., favored images are automatically synced between Apple Watch and iPhone).

How this will further develop in the future remains to be seen.

• Another push is currently visible for augmented and virtual reality glasses. Microsoft

announced recently their own headset for augmented reality (HoloLens1) and show-

cased purposes for entertainment as well as work. Oculus Rift2 and Sony’s Morpheus3

virtual reality glasses enable a level of immersion that was not possible until now. Such

hardware could be used to enable completely new ways of interacting with images and

videos.

1
http://www.microsoft.com/microsoft-hololens/en-us

2
https://www.oculus.com

3
http://www.bbc.com/news/technology-31723030
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9.2 Closing Words

Niépce and Muybridge (Figure 9.1) would probably never have thought, that there will be

a time, when people will own so many images and so many and long videos, that it causes

headaches to actually find something again. For pioneers it is often difficult to envision what

implications their inventions will have for the future.

Figure 9.1: Joseph Nicéphore Niépce (left) and Eadweard Muybridge (right).

Today, we live in such a world. Never before is so much content produced and consumed,

for entertainment as well as for work. Technology will have to advance in order to be able

to cope with such loads of content in an effective and efficient way.



APPENDIX

A OpenCV Performance

Analysis on iOS

In this first step of evaluating the OpenCV performance the focus is on iOS devices1. Func-

tion calls that users typically utilize in their projects were chosen and set up. Furthermore,

a representative dataset was prepared. First the experimental setup will be reported. After

that the results of the measurements as well as a first short discussion follow.

A.1 Setup

The tested OpenCV operations are grouped into three measurement phases. In the first

phase typical operations used in the computer vision area are tested, like blurring an im-

age using Gaussian blur, detecting faces and detecting edges. In the next phase functions

calls to common keypoint detection and descriptor extraction operations are grouped, like

SIFT [Low04] and SURF [BETG08]. The last phase consists out of operations that match

descriptors extracted from two consecutive frames of a video.

For the measurements of the first two phases, 5000 images2 were randomly drawn from

the MIRFLICKR25000 dataset [HL08]. The images differ in resolution and have an average

of 463 horizontal and 397 vertical pixels. Each OpenCV-function call is tested with each of

these images five times in a row. The measured times are then averaged. This is done in
1Please note that the content of this chapter is adapted from [HCS14]
2At http://www.hudelist.org/research/phdthesis/5000MIRFLICKRListing.txt you can

download a filename-listing of all used images.
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order to even out measurement differences caused by unpredictable interventions of the OS.

The time measurements for each of the images are then summed up and averaged to get an

overall performance measure for each applied OpenCV-function.

The last phase, which concentrates on descriptor matching, uses a different dataset than

the phases before. The first 5000 frames of the test video 031 of the Video Browser Show-

down 20133 [SAB+14] are extracted (a recording of a Dutch news journal). The video is

encoded in H.264 with an average bitrate of 619.7 kBit/s and a resolution of 640 x 360

pixels. The tested matching approaches differ in terms of the used descriptors, but all use

the same brute force matcher that is part of the OpenCV framework, called BFMatcher. In

this phase, only the actual matching process is measured, not the keypoint detection and

descriptor extraction. Each matching approach has to find matches between two consecutive

frames, starting with the first and second frame in the video, continuing with the second and

third frame, until the end of the video. Similar to the earlier phases, each matching process

of a frame pair is repeated five times and the measured times are averaged. The mean of

the averaged times of all frame matches are then computed to get the overall measurement

for each matching approach.

For the experiment, different generations of Apple’s iPads and iPhones were used, in-

cluding their (at that time) latest and fastest units, the iPad Air and the iPhone 5S. To

compare the performance to a standard PC, the performance of a MacBook Pro 13" with

Retina Display (late 2012 version) with an Intel Core i5 at 2.5 GHz, 8 GB of RAM and inte-

grated Intel HD Graphics 4000 was measured additionally. For a listing of the specifications

of the devices please see Table A.1. On all of the mobile devices the latest available OS

version at that time was used: iOS 7.0.4. The MacBook Pro used Mac OS X 10.8 Mountain

Lion. Moreover, version 2.4.7 of the OpenCV framework was installed and used on all of

the devices.

3
http://www.videobrowsershowdown.org
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Device CPU CPU CPU
Clock Cores Architecture

MBP 13" (2012) 2.5 GHz 2 Intel Core i5 3210M (64 Bit)
iPad Air 1.4 GHz 2 Apple A7 (64 Bit)
iPad 4 1.4 GHz 2 Apple A6X (32 Bit)
iPad 3 1 GHz 2 Apple A5X (32 Bit)
iPad Mini 1 1 GHz 2 2. Gen. Apple A5 (32 Bit)
iPad 2 1 GHz 2 Apple A5 (32 Bit)
iPhone 5S 1.3 GHz 2 Apple A7+M7 (64 Bit)
iPhone 5 1.3 GHz 2 Apple A6 (32 Bit)
iPhone 4s 800 MHz 2 Apple A5 (32 Bit)

Table A.1: Specification breakdown

A.2 Results

First, common OpenCV operations like grayscaling and blurring are reported. After that,

the sub-chapter continues by reporting the performance of keypoint detection and descriptor

extraction operations. Finally, the results of the descriptor matching phase are reported.

A.2.1 Common OpenCV Operations

In this part it is evaluated how long it takes to:

• Grayscale an image

• Blur an image with Gaussian Blur

• Detect faces in an image

• Calculate the RGB and HSV histograms

• Detect edges using Canny edge detection [Can86]

For Gaussian Blur the GaussianBlur(...) function is used with a kernel size of 21 ⇥ 21

and a sigma of 8.0 to produce recognizable blurred result images (average image resolution:

463 ⇥ 397 pixel). The face detection is realized by using a trained CascadeClassifier and

its detectMultiScale(...) function. Images are converted into grayscale before the actual
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detection takes place. A scaleFactor of 1.1, minNeighbors of 2 and a minimum size of 30 ⇥
30 are used. The RGB histograms are calculated with a size of 256 bins, a range from 0 to

256 and the uniform-flag set to true and accumulate set to false. The HSV histograms are

calculated with 30 hue levels and 32 saturation levels with the standard ranges. The default

values for uniformity (true) and accumulation (false) are used. For the edge detection using

Canny the image is first grayscaled and then blurred with a kernel size of 5 ⇥ 5 and a sigma

of 1.2. The Canny(...)-function is then measured with thresholds one and two set to 0 and

50 respectively. For a breakdown of the measurement results please see Table A.2.

Device Grayscale Gaussian Face RGB HSV Canny Edge
Blur Detection Hist. Hist. Detection

MBP 13" (2012) 0.26 3.97 134.27 0.40 0.30 3.10
iPad Air 0.32 42.31 214.10 2.48 0.89 9.34
iPad 4 0.58 80.66 282.30 2.47 1.26 15.49
iPad 3 1.18 153.64 502.37 2.88 3.10 26.22
iPad Mini 1 1.17 151.19 505.66 2.94 3.17 26.14
iPad 2 1.15 153.30 500.07 2.91 3.14 26.11
iPhone 4s 1.30 190.00 620.62 3.55 3.84 32.10
iPhone 5 0.61 86.32 296.73 2.63 1.35 16.39
iPhone 5S 0.34 45.28 235.56 2.49 0.92 9.73

Table A.2: Average execution times in ms of operations applied to an image (common
group).

A.2.2 Keypoint Detection/Descriptor Extraction

For keypoint detection and descriptor extraction, several popular algorithms that are built-

in in the OpenCV framework are evaluated. The measurement results of Table A.3 include

the time needed to detect keypoints as well as to extract descriptors based on the detected

keypoints. The algorithms that are evaluated in this phase are ORB [RRKB11], BRIEF

[CLSF10], BRISK [LCS11], SIFT, SURF, FREAK [AOV12], and FAST [RD06]. In case of

BRIEF and FREAK the descriptor extraction process is combined with GoodFeaturesTo-

Track [ST94] to detect keypoints.
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Device ORB BRISK FREAK FAST BRIEF SIFT SURF
MBP 13" (2012) 10.73 248.14 17.04 1.07 1.87 172.71 341.32
iPad Air 52.37 775.70 46.49 7.72 3.64 877.09 805.50
iPad 4 80.30 1167.24 84.48 15.03 6.89 1378.78 842.3.0
iPad 3 162.99 2155.05 184.84 24.74 17.32 3518.18 1606.63
iPad Mini 1 162.96 2156.24 185.66 24.86 17.63 3586.21 1627.40
iPad 2 162.23 2150.66 184.24 24.70 17.20 3515.13 1599.75
iPhone 4s 200.54 2673.05 222.74 30.59 20.77 4320.10 1980.38
iPhone 5 84.41 1232.42 89.92 16.11 7.42 1474.19 804.29
iPhone 5S 55.15 829.54 49.04 8.22 3.76 1028.17 1024.97

Table A.3: Average execution times in ms of operations applied to an image (keypoint
detection/extraction group).

Device SIFT SURF BRISK BRIEF
MBP 13" (2012) 51.98 33.98 2.11 15.69
iPad Air 254.24 163.93 3.23 23.63
iPad 4 394.12 204.11 6.68 37.78
iPad 3 1671.09 746.41 14.38 76.103
iPad Mini 1 1643.27 756.31 14.47 76.08
iPad 2 1610.51 744.96 14.72 75.89
iPhone 4s 1888.81 918.46 17.94 94.405
iPhone 5 421.38 243.62 8.43 40.46
iPhone 5S 390.00 223.53 3.74 32.52

Table A.4: Average execution times in ms of operations applied to an image (keypoint
matching group).

A.2.3 Descriptor Matching

In the matching phase the performance of SIFT, SURF, BRISK and BRIEF descriptors are

evaluated regarding how fast they can be matched for two successive frames of a video. For

each of the frames the preceding process of keypoint detection and descriptor extraction is

performed but excluded from the actual measurement. For the actual matching BFMatcher

is used, a brute force matcher. For a breakdown of all results please see Table A.4.
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A.3 Discussion

The comparison of smartphones and tablets with a regular consumer grade laptop revealed

some interesting results. From the start it was clear that the laptop would outperform the

mobile devices. Nevertheless, it can be seen that these devices are able to deliver up to 80%

of the laptops’ performance in selected scenarios. Functions like grayscaling, face detection

or canny edge detection perform rather well on those devices, given the constraints under

which they have to operate (see Figure A.1). Interestingly, histogram creation and Gaussian

Blur are not so fast on mobile devices in comparison to a traditional computer. Gaussian

Blur performed especially bad, with requiring ten times as long as the laptop on the fastest

mobile device in the setup. Furthermore, a rather strange behavior is visible regarding RGB

histogram creation. Typically, it requires significant more time than HSV histogram cre-

ation. However, on some older devices this constellation is reversed. Speculating about the

reasons for this is rather hard. It might be, that newer devices incorporate some hardware

optimization that speeds up the calculations required for HSV histograms.

Figure A.1: Results of common operations.

In terms of keypoint detection and descriptor extraction, the top devices can provide

up to 50% the performance of the laptop in case of BRIEF. Moreover, they can provide

up to 40% in case of SURF (see Figure A.2). Descriptor matching showed a rather good

performance on the iPad Air and on the iPhone 5S with BRISK and BRIEF descriptors.

The devices are able to provide about 65% of the performance the laptop computer (see

Figure A.3). In case of matching SIFT and SURF descriptors, the results are not that good

with only 20% of performance of the consumer grade laptop.
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Figure A.2: Top results of keypoint detection and descriptor extraction.

Furthermore, the very similar performance of iPad 3, iPad 2 and iPad Mini should be

noted. This can be seen in all the measurements that were performed. When examining

the CPUs of the devices it becomes clear that they all use very similar incarnations of the

same chip: a dual-core A9 processor with 1 GHz. The iPad 3 uses a slightly improved

version (A9X) but the improvements mainly concentrated on the integrated GPU (one vs.

four cores) that had to support the higher resolution Retina Display. In fact, this might

even had a slight negative effect on raw CPU performance, e.g. increased overhead. In

the measurements the iPad 3 is sometimes slightly outmatched by its predecessor. The the

increased GPU performance was not utilized, as only log data was displayed on the screens

during execution time.

Figure A.3: Results of the matching measurements.

In general it can be said that the tested devices are in fact absolutely potent enough

to run certain content analysis tasks, although users should expect increased waiting times.

Especially SIFT, SURF and BRISK should be applied with the user in mind. Moreover,
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face detection can have a notable impact. Asynchronous and background execution are a

must to avoid an unpleasant experience.



Bibliography

[AHES09] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient

region detection. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1597–1604, June 2009.

[AHSS12] David Ahlström, Marco A. Hudelist, Klaus Schoeffmann, and Gerald Schaefer.

A user study on image browsing on touchscreens. In Proceedings of the 20th

ACM international conference on Multimedia, MM ’12, pages 925–928, New

York, USA, 2012. ACM.

[AOV12] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 510–

517, 2012.

[BCD+12] R. Borgo, M. Chen, B. Daubney, E. Grundy, G. Heidemann, B. Höferlin,

M. Höferlin, H. Leitte, D. Weiskopf, and X. Xie. State of the art report on video-

based graphics and video visualization. Comp. Graph. Forum, 31(8):2450–2477,

December 2012.

[Bed01] Benjamin B. Bederson. Photomesa: A zoomable image browser using quantum

treemaps and bubblemaps. In Proceedings of the 14th Annual ACM Symposium

on User Interface Software and Technology, UIST ’01, pages 71–80, New York,

NY, USA, 2001. ACM.

[BETG08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up

robust features (surf). Computer Vision and Image Understanding, 110(3):346

– 359, 2008. Similarity Matching in Computer Vision and Multimedia.

129



BIBLIOGRAPHY 130

[BHH+10] Shelley Buchinger, Ewald Hotop, Helmut Hlavacs, Francesca De Simone, and

Touradj Ebrahimi. Gesture and touch controlled video player interface for

mobile devices. In Proceedings of the International Conference on Multimedia,

MM ’10, pages 699–702, New York, NY, USA, 2010. ACM.

[BZP10] Andrei Bursuc, Titus Zaharia, and Françoise Prêteux. Mobile video browsing

and retrieval with the ovidius platform. In Proceedings of the International

Conference on Multimedia, MM ’10, pages 1659–1662, New York, NY, USA,

2010. ACM.

[BZP12] Andrei Bursuc, Titus Zaharia, and Françoise Prêteux. Ovidius: A web plat-

form for video browsing and search. In Klaus Schoeffmann, Bernard Merialdo,

AlexanderG. Hauptmann, Chong-Wah Ngo, Yiannis Andreopoulos, and Chris-

tian Breiteneder, editors, Advances in Multimedia Modeling, volume 7131 of

Lecture Notes in Computer Science, pages 649–651. Springer Berlin Heidelberg,

2012.

[Can86] John Canny. A computational approach to edge detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, Nov 1986.

[CBH+12] C. Czepa, S. Buchinger, H. Hlavacs, E. Hotop, and Y. Pitrey. Towards an

energy-efficient attention-aware mobile video player with sensor and face detec-

tion support. In 2012 IEEE International Symposium on aWorld of Wireless,

Mobile and Multimedia Networks (WoWMoM), pages 1–6, June 2012.

[CHDF14] Claudiu Cobarzan, Marco A. Hudelist, and Manfred Del Fabro. Content-based

video browsing with collaborating mobile clients. In Cathal Gurrin, Frank Hopf-

gartner, Wolfgang Hurst, Hovard Johansen, Hyowon Lee, and Noel O’Connor,

editors, MultiMedia Modeling, volume 8326 of Lecture Notes in Computer Sci-

ence, pages 402–406. Springer International Publishing, 2014.

[CHSP15] Claudiu CobÃ¢rzan, Marco A. Hudelist, Klaus Schoeffmann, and Man-

fredJÃ¼rgen Primus. Mobile image analysis: Android vs. ios. In Xiangjian



BIBLIOGRAPHY 131

He, Suhuai Luo, Dacheng Tao, Changsheng Xu, Jie Yang, and Muhammad-

Abul Hasan, editors, MultiMedia Modeling, volume 8936 of Lecture Notes in

Computer Science, pages 99–110. Springer International Publishing, 2015.

[CLSF10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:

Binary robust independent elementary features. In Kostas Daniilidis, Petros

Maragos, and Nikos Paragios, editors, Computer Vision - ECCV 2010, volume

6314 of Lecture Notes in Computer Science, pages 778–792. Springer Berlin

Heidelberg, 2010.

[Coh73] J Cohen. Eta-squared and partial eta-squared in communication science. Hu-

man Communication Research, 28(473-490):56, 1973.

[D10] John Paczkowski All Things D. Apple CEO Steve Jobs Live at D8: All We

Want to Do is Make Better Products. http://allthingsd.com/20100601/

steve-jobs-session/, 2010. [Online; accessed 28-May-2015].

[dRSW08] Ork de Rooij, Cees G.M. Snoek, and Marcel Worring. Balancing thread based

navigation for targeted video search. In Proceedings of the 2008 International

Conference on Content-based Image and Video Retrieval, CIVR ’08, pages 485–

494, New York, NY, USA, 2008. ACM.

[Dun64] Olive Jean Dunn. Multiple comparisons using rank sums. Technometrics,

6(3):241–252, 1964.

[Fli14] Flickr. Camera Finder - Most Popular Cameras in the Flickr Community.

https://www.flickr.com/cameras, 2014. [Online; accessed 11-Sep-2014].

[Gan12] Roman Ganhör. Propane: Fast and precise video browsing on mobile phones.

In Proceedings of the 11th International Conference on Mobile and Ubiquitous

Multimedia, MUM ’12, pages 20:1–20:8, New York, NY, USA, 2012. ACM.

[Gan14] Roman Ganhör. Athmos: Focus+context for browsing in mobile thumbnail

collections. In Proceedings of International Conference on Multimedia Retrieval,

ICMR ’14, pages 65:65–65:72, New York, NY, USA, 2014. ACM.



BIBLIOGRAPHY 132

[GI12] Ai Gomi and Takayuki Itoh. Mini: A 3d mobile image browser with multi-

dimensional datasets. In Proceedings of the 27th Annual ACM Symposium on

Applied Computing, SAC ’12, pages 989–996, New York, NY, USA, 2012. ACM.

[Han02] A. Hanjalic. Shot-boundary detection: unraveled and resolved. IEEE Transac-

tions on Circuits, Systems, and Video Technology, 12(2):90–105, 2002.

[HCS14] Marco A. Hudelist, Claudiu Cobârzan, and Klaus Schoeffmann. Opencv per-

formance measurements on mobile devices. In Proceedings of International

Conference on Multimedia Retrieval, ICMR ’14, pages 479:479–479:482, New

York, NY, USA, 2014. ACM.

[HD12] Wolfgang Hürst and Dimitri Darzentas. History: A hierarchical storyboard

interface design for video browsing on mobile devices. In Proceedings of the

11th International Conference on Mobile and Ubiquitous Multimedia, MUM

’12, pages 17:1–17:4, New York, NY, USA, 2012. ACM.

[HGW07a] Wolfgang Hürst, Georg Götz, and Martina Welte. Interactive video browsing

on mobile devices. In Proceedings of the 15th international conference on Mul-

timedia, MULTIMEDIA ’07, pages 247–256, New York, NY, USA, 2007. ACM.

[HGW07b] Wolfgang Hürst, Georg Götz, and Martina Welte. A new interface for video

browsing on pdas. In Proceedings of the 9th International Conference on Human

Computer Interaction with Mobile Devices and Services, MobileHCI ’07, pages

367–369, New York, NY, USA, 2007. ACM.

[HH15] Wolfgang Hürst and Miklas Hoet. Sliders versus storyboards â€“ investigating

interaction design for mobile video browsing. In Xiangjian He, Suhuai Luo,

Dacheng Tao, Changsheng Xu, Jie Yang, and MuhammadAbul Hasan, editors,

MultiMedia Modeling, volume 8936 of Lecture Notes in Computer Science, pages

123–134. Springer International Publishing, 2015.

[HIT86] David C Hoaglin, Boris Iglewicz, and John W Tukey. Performance of some resis-

tant rules for outlier labeling. Journal of the American Statistical Association,

81(396):991–999, 1986.



BIBLIOGRAPHY 133

[HL08] Mark J. Huiskes and Michael S. Lew. The mir flickr retrieval evaluation. In

MIR ’08: Proceedings of the 2008 ACM International Conference on Multimedia

Information Retrieval, New York, NY, USA, 2008. ACM.

[HM08a] Wolfgang Hürst and Konrad Meier. Interfaces for timeline-based mobile video

browsing. In Proceedings of the 16th ACM International Conference on Multi-

media, MM ’08, pages 469–478, New York, NY, USA, 2008. ACM.

[HM08b] Wolfgang Hürst and Philipp Merkle. One-handed mobile video browsing. In

Proceedings of the 1st International Conference on Designing Interactive User

Experiences for TV and Video, UXTV ’08, pages 169–178, New York, NY, USA,

2008. ACM.

[HS88] S.G. Hart and L. Staveland. Development of nasa-tlx (task load index): Results

of empirical and theoretical research. In Human mental workload, pages 139–

183. P.A. Hancock and N. Meshkati (Eds.), Amsterdam: Elsevier, 1988.

[HSA14] Marco A Hudelist, Klaus Schoeffmann, and David Ahlström. Evaluating al-

ternatives to the 2d grid interface for mobile image browsing. International

Journal of Semantic Computing, 8(02):185–208, 2014.

[HSAL15] Marco A. Hudelist, Klaus Schoeffmann, David Ahlström, and Mathias Lux.

How many, what, and why? visual media statistics on smartphones and tablets.

In Proceedings of the IEEE International Conference on Multimedia and Expo

Workshops (ICMEW), ICMEW ’15. IEEE, 2015. to appear.

[HSB13a] Marco A. Hudelist, Klaus Schoeffmann, and Laszlo Boeszoermenyi. Mobile

video browsing with a 3d filmstrip. In Proceedings of the 3rd ACM Conference

on International Conference on Multimedia Retrieval, ICMR ’13, pages 299–

300, New York, NY, USA, 2013. ACM.

[HSB13b] Marco A. Hudelist, Klaus Schoeffmann, and Laszlo Boeszoermenyi. Mobile

video browsing with the thumbbrowser. In Proceedings of the 21st ACM Inter-

national Conference on Multimedia, MM ’13, pages 405–406, New York, NY,

USA, 2013. ACM.



BIBLIOGRAPHY 134

[HSL+10] Jochen Huber, Jürgen Steimle, Roman Lissermann, Simon Olberding, and Max

Mühlhäuser. Wipe’n’watch: spatial interaction techniques for interrelated video

collections on mobile devices. In Proceedings of the 24th BCS Interaction Spe-

cialist Group Conference, BCS ’10, pages 423–427, Swinton, UK, UK, 2010.

British Computer Society.

[HSST10] Wolfgang Hürst, Cees G.M. Snoek, Willem-Jan Spoel, and Mate Tomin. Keep

moving!: Revisiting thumbnails for mobile video retrieval. In Proceedings of the

International Conference on Multimedia, MM ’10, pages 963–966, New York,

NY, USA, 2010. ACM.

[HSX15a] Marco A. Hudelist, Klaus Schoeffmann, and Quing Xu. Improving interactive

known-item search in video with the keyframe navigation tree. In MultiMedia

Modeling, Lecture Notes in Computer Science. Springer International Publish-

ing, 2015.

[HSX15b] Marco A. Hudelist, Klaus Schoeffmann, and Quing Xu. Multi-stripe video

browser for tablets. In MultiMedia Modeling, Lecture Notes in Computer Sci-

ence. Springer International Publishing, 2015.

[Hud12] Marco A. Hudelist. 3d image browsing for mobile devices, 2012.

[Hud13] Marco A. Hudelist. Next generation image and video browsing on mobile de-

vices. In Proceedings of the 3rd ACM Conference on International Conference

on Multimedia Retrieval, ICMR ’13, pages 333–336, New York, NY, USA, 2013.

ACM.

[IDC14a] IDC. Smartphone OS Market Share, Q3 2014. http://www.idc.com/

prodserv/smartphone-os-market-share.jsp, 2014. [Online; accessed 5-Mar-

2015].

[IDC14b] IDC. Smartphone Vendor Market Share, Q3 2014. http://www.idc.com/

prodserv/smartphone-market-share.jsp, 2014. [Online; accessed 5-Mar-

2015].



BIBLIOGRAPHY 135

[IDC14c] IDC. Tablet OS Market Share 2014. http://www.idc.com/getdoc.jsp?

containerId=prUS25267314, 2014. [Online; accessed 5-Mar-2015].

[IDC15] IDC. Global smartphone shipments forecast from 2010 to 2018. https://www.

idc.com, 2015. [Online; accessed 19-Feb-2015].

[JDS08] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and

weak geometric consistency for large scale image search. In Andrew Zisserman

David Forsyth, Philip Torr, editor, European Conference on Computer Vision,

volume I of LNCS, pages 304–317. Springer, oct 2008.

[Jur04] Steve Jurvetson. Geek bling bling - motorola razr v3. http://www.flickr.

com/photos/44124348109@N01/1436702, 2004. [Online; accessed 4-Mar-2015

via Flickr; Creative Commons Attribution].

[Kau14] Bonifaz Kaufmann. Handheld Projectors in the Wild - The Human Factors.

PhD thesis, Alpen-Adria Universität Klagenfurt, 2014.

[KB04] Amir Khella and Benjamin B. Bederson. Pocket photomesa: A zoomable image

browser for pdas. In Proceedings of the 3rd International Conference on Mobile

and Ubiquitous Multimedia, MUM ’04, pages 19–24, New York, NY, USA, 2004.

ACM.

[KJZ14] Kolbeinn Karlsson, Wei Jiang, and Dong-Qing Zhang. Mobile photo album

management with multiscale timeline. In Proceedings of the ACM International

Conference on Multimedia, MM ’14, pages 1061–1064, New York, NY, USA,

2014. ACM.

[KKC12] Kwanghwi Kim, Sora Kim, and Hwan-Gue Cho. A compact photo browser for

smartphone imaging system with content-sensitive overlapping layout. In Pro-

ceedings of the 6th International Conference on Ubiquitous Information Man-

agement and Communication, ICUIMC ’12, pages 25:1–25:8, New York, NY,

USA, 2012. ACM.



BIBLIOGRAPHY 136

[KSFS05] Tim Kindberg, Mirjana Spasojevic, Rowanne Fleck, and Abigail Sellen. The

ubiquitous camera: An in-depth study of camera phone use. IEEE Pervasive

Computing, 4(2):42–50, April 2005.

[LCS11] S. Leutenegger, M. Chli, and R.Y. Siegwart. Brisk: Binary robust invariant

scalable keypoints. In IEEE International Conference on Computer Vision

(ICCV), pages 2548–2555, 2011.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vision, 60(2):91–110, November 2004.

[LPE97] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Video abstracting. Communications

of the ACM, 40(12):54–62, 1997.

[LR13] Mathias Lux and Michael Riegler. Annotation of endoscopic videos on mobile

devices: A bottom-up approach. In Proceedings of the 4th ACM Multimedia

Systems Conference, MMSys ’13, pages 141–145, New York, NY, USA, 2013.

ACM.

[LXSS14] Xiaoxiao Luo, Qing Xu, Mateu Sbert, and Klaus Schoeffmann. F-divergences

driven video key frame extraction. In IEEE International Conference on Mul-

timedia & Expo (ICME 2014). IEEE, 2014.

[MFF+09] Gregor Miller, Sidney Fels, Matthias Finke, Will Motz, Walker Eagleston, and

Chris Eagleston. Minidiver: A novel mobile media playback interface for rich

video content on an iphone. In Proceedings of the 8th International Conference

on Entertainment Computing (ICEC), volume 5709 of Lecture Notes in Com-

puter Science, pages 98–109. Springer, Berlin / Heidelberg, Germany, Septem-

ber 2009.

[MKK11] Britta Meixner, Johannes Köstler, and Harald Kosch. A mobile player for

interactive non-linear video. In Proceedings of the 19th ACM International

Conference on Multimedia, MM ’11, pages 779–780, New York, NY, USA, 2011.

ACM.



BIBLIOGRAPHY 137

[MST00] Heimo Mueller-Seelich and Ed Tan. Visualizing the semantic structure of film

and video, 2000.

[NW08] G. P. Nguyen and M. Worring. Interactive access to large image collections using

similarity-based visualization. J. Vis. Lang. Comput., 19(2):203–224, April

2008.

[PHBM09] Arto Puikkonen, Jonna Häkkilä, Rafael Ballagas, and Jani Mäntyjärvi. Prac-

tices in creating videos with mobile phones. In Proc. MobileHCI, pages 3:1–3:10.

ACM Press, 2009.

[RBSW01] Kerry Rodden, Wojciech Basalaj, David Sinclair, and Kenneth Wood. Does

organisation by similarity assist image browsing? In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’01, pages 190–197,

New York, NY, USA, 2001. ACM.

[RD06] Edward Rosten and Tom Drummond. Machine learning for high-speed corner

detection. In Ale˘ s Leonardis, Horst Bischof, and Axel Pinz, editors, Computer

Vision - ECCV 2006, volume 3951 of Lecture Notes in Computer Science, pages

430–443. Springer Berlin Heidelberg, 2006.

[RRKB11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alter-

native to sift or surf. In IEEE International Conference on Computer Vision

(ICCV), pages 2564–2571, 2011.

[RW03] Kerry Rodden and Kenneth R. Wood. How do people manage their digital

photographs? In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’03, pages 409–416, New York, NY, USA, 2003.

ACM.

[SA12a] K. Schoeffmann and D. Ahlstrom. Using a 3d cylindrical interface for image

browsing to improve visual search performance. In 13th Int. Workshop on Image

Analysis for Multimedia Interactive Services (WIAMIS), pages 1–4, May 2012.



BIBLIOGRAPHY 138

[SA12b] Klaus Schoeffmann and David Ahlström. An evaluation of color sorting for

image browsing. International Journal of Multimedia Data Engineering and

Management (IJMDEM), 3(1):49–62, 2012.

[SAB11] Klaus Schoeffmann, David Ahlstrom, and Christian Beecks. 3d image browsing

on mobile devices. 2013 IEEE International Symposium on Multimedia, 0:335–

336, 2011.

[SAB+14] Klaus Schoeffmann, David Ahlstrom, Werner Bailer, Claudiu Cobarzan, Frank

Hopfgartner, Kevin McGuinness, Cathal Gurrin, Christian Frisson, Duy-Dinh

Le, Manfred Del Fabro, Hongliang Bai, and Wolfgang Weiss. The video browser

showdown: a live evaluation of interactive video search tools. International

Journal of Multimedia Information Retrieval, 3:113–127, 2014.

[SAH14] K. Schoeffmann, D. Ahlstrom, and M.A. Hudelist. 3-d interfaces to improve the

performance of visual known-item search. IEEE Transactions on Multimedia,

16(7):1942–1951, Nov 2014.

[SB12] Klaus Schoeffmann and Werner Bailer. Video browser showdown. ACM SIG-

Multimedia Records, 4(2):1–2, 2012.

[SC13] K. Schoeffmann and C. Cobarzan. An evaluation of interactive search with

modern video players. In IEEE International Conference on Multimedia and

Expo Workshops (ICMEW), pages 1–4, July 2013.

[SCB14] Klaus Schoeffmann, Kevin Chromik, and Laszlo Böszörmenyi. Video navigation

on tablets with multi-touch gestures. In Proceedings of The Third International

Workshop on Emerging Multimedia Systems and Applications (EMSA) at the

IEEE International Conference on Multimedia & Expo (ICME 2014). IEEE, 7

2014.

[Sch10] Gerald Schaefer. A next generation browsing environment for large image repos-

itories. Multimedia Tools and Applications, 47(1):105–120, 2010.



BIBLIOGRAPHY 139

[Sch14] Klaus Schoeffmann. A user-centric media retrieval competition: The video

browser showdown 2012-2014. IEEE Multimedia Magazine, pages 1–5, 2014. to

appear.

[SFBJ08] Alan F. Smeaton, Colum Foley, Daragh Byrne, and Gareth J.F. Jones. ibingo

mobile collaborative search. In Proceedings of the 2008 International Conference

on Content-based Image and Video Retrieval, CIVR ’08, pages 547–548, New

York, NY, USA, 2008. ACM.

[SH98] Stephen J Sangwine and Robin EN Horne. The colour image processing hand-

book. Springer Science & Business Media, 1998.

[SHM+10] Klaus Schoeffmann, Frank Hopfgartner, Oge Marques, Laszlo Boeszoermenyi,

and Joemon M. Jose. Video browsing interfaces and applications: a review.

Journal of Photonics for Energy, pages 018004–018004–35, 2010.

[SOK06] Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and

trecvid. In Proceedings of the 8th ACM international workshop on Multimedia

information retrieval, MIR ’06, pages 321–330, New York, USA, 2006. ACM.

[ST94] J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

pages 593–600, Jun 1994.

[Sta14] Statista/IDC. Global market share held by tablet vendors from 2nd quarter

2011 to 4th quarter 2014. http://www.statista.com/statistics/276635/

market-share-held-by-tablet-vendors/, 2014. [Online; accessed 5-Mar-

2015].

[STB10] Klaus Schoeffmann, Mario Taschwer, and Laszlo Boeszoermenyi. The video

explorer: A tool for navigation and searching within a single video based on fast

content analysis. In Proceedings of the First Annual ACM SIGMM Conference

on Multimedia Systems, MMSys ’10, pages 247–258, New York, NY, USA, 2010.

ACM.



BIBLIOGRAPHY 140

[STF+12] G. Schaefer, M. Tallyn, D. Felton, D. Edmundson, and W. Plant. Intuitive

mobile image browsing on a hexagonal lattice. In Visual Communications and

Image Processing (VCIP), 2012 IEEE, pages 1–1, Nov 2012.

[Sui14a] Suite48Analytics. The Dispersed Photo Challenge Study. http://www.

suite48a.com/dispersed, 2014. [Online; accessed 9-Dec-2014].

[Sui14b] Suite48Analytics. The Multi-Device Photo Use Study. http://www.suite48a.

com/multi-device-1/, 2014. [Online; accessed 9-Dec-2014].

[SWS+00] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-

based image retrieval at the end of the early years. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(12):1349–1380, Dec 2000.

[TFF08] A. Torralba, R. Fergus, and W.T. Freeman. 80 million tiny images: A large

data set for nonparametric object and scene recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 30(11):1958–1970, Nov 2008.

[TGE11] Amrita Thakur, Michael Gormish, and Berna Erol. Mobile phones and infor-

mation capture in the workplace. In Ext. Abstracts CHI 2011, pages 1513–1518.

ACM Press, 2011.

[Tuk77] John W Tukey. Exploratory data analysis. Addison-Wesley series in behavioral

science: quantitative methods. 23 cm. 688 p, 1977.

[WLW00] JamesZ. Wang, Jia Li, and Gio Wiederholdy. Simplicity: Semantics-sensitive

integrated matching for picture libraries. In Robert Laurini, editor, Advances

in Visual Information Systems, volume 1929 of Lecture Notes in Computer

Science, pages 360–371. Springer Berlin Heidelberg, 2000.

[WSS+12] Marcel Worring, Paul Sajda, Simone Santini, David A. Shamma, Alan F.

Smeaton, and Qiang Yang. Where is the user in multimedia retrieval? IEEE

MultiMedia, 19(4):6–10, Oct 2012.

[XLL+14] Qing Xu, Yu Liu, Xiu Li, Zhen Yang, Jie Wang, Mateu Sbert, and Riccardo

Scopigno. Browsing and exploration of video sequences: A new scheme for key



BIBLIOGRAPHY 141

frame extraction and 3d visualization using entropy based jensen divergence.

Information Sciences, 278(0):736 – 756, 2014.

[XLY+12] Qing Xu, Xiu Li, Zhen Yang, Jie Wang, Mateu Sbert, and Jianfu Li. Key

frame selection based on jensen-rényi divergence. In 2012 21st International

Conference on Pattern Recognition (ICPR), pages 1892 – 1895. IEEE, 2012.

[XPCL+10] Q. Xu, P.-Ch.Wang, B. Long, M. Sbert, M. Feixas, and R. Scopigno. Selection

and 3d visualization of video key frames. In Proceedings of IEEE International

Conference on Systems Man and Cybernetics (SMC), pages 52 – 59, 2010.

[ZML+13] Jin-Kai Zhang, Cui-Xia Ma, Yong-Jin Liu, Qiu-Fang Fu, and Xiao-Lan Fu.

Collaborative interaction for videos on mobile devices based on sketch gestures.

Journal of Computer Science and Technology, 28(5):810–817, 2013.


