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Coordinated Unmanned Aerial
Vehicles for Surveillance of Targets

Abstract

This thesis investigates the coordination approaches of multiple mobile and
autonomous robots, especially resource-limited small-scale UAVs, for the
surveillance of pre-defined ground targets in a given environment. A key
research issue in surveillance task is the coordination among the robots to
determine the target’s time varying locations. The research focuses on two
applications of surveillance: (i) cooperative search of stationary targets, and
(ii) cooperative observation of moving targets. The objective in coopera-
tive search is to minimize the time and errors in finding the locations of
stationary targets. The objective of cooperative observation is to maximize
the collective time and quality of observation of moving targets.

The thesis presents a survey of the approaches in a larger domain of
multi-robot systems for the surveillance of pre-defined targets in a given
environment. This survey identifies various factors and application scena-
rios that affect the performance of multi-robot surveillance systems. The
thesis proposes a distributed strategy for merging delayed and incomplete
information, which is a result of sensing and communication limitations,
collected by different UAVs. An analytic derivation of the number of re-
quired observations is provided to declare the absence or existence of a
target in a region. This number of required observations is integrated in-
to an iterative use of Travelling Salesman Problem (TSP) and Multiple
Travelling Salesmen Problem (MTSP) for autonomous path planning of
UAVs. Additionally, it performs an exploration of the algorithmic design
space and analyzes the effects of centralized and distributed coordination
on the cooperative search of stationary targets in the presence of sensing
and communication limitations.

The thesis also proposes the application of UAVs for observing multiple
moving targets with different resolutions. A key contribution is to use the
quad-tree data-structure for modelling the environment and movement of
UAVs. This modelling has helped in the dynamic sensor placement of UAV's
to maximize the observation of the number of moving targets as well as the
resolution of observation.
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Chapter 1

Introduction

The application of autonomous mobile robots for the surveillance of an envi-
ronment has gained a lot of interest over the last three decades [112]. Au-
tonomous mobile robots have been utilized as surveillance agents in a variety
of applications such as area coverage, intruder detection, search and rescue,
building maps, localization of targets, and security [112, 126]. The advantages
of such robots for the surveillance of an environment are to limit the risks to
personnel, to reduce labor requirements, to reduce the cost, and to increase
the efficiency. However, apart from these benefits, a single autonomous robot
is resource-limited and cannot provide long-term and reliable surveillance in
complex environments [107]. The recent advances in sensing, embedded pro-
cessing, and wireless communication capabilities suggest the use of a team of
multiple autonomous and mobile robots. Such multi-robot systems provide
several advantages over the use of a single robot e.g., increased spatial cov-
erage [129], robustness due to sharing of information and data fusion [17, 58],
fault-tolerance due to information redundancy [121], lower cost of multiple sim-
ple robots rather than single powerful robot, reliability in case of single robot
failure [117], and teaming of specialized robots [88, 90].

Coordination among the individual team members is a key towards the
success of multi-robot systems for surveillance of an environment [42]. The co-
ordination among the robots refers to sharing and merging of information and
joint decision-making [54]. It helps the robots to manage their limited resources
of sensing, communication, processing, and battery (life) and to increase the
performance of surveillance. It also enables the operation of a large number of
robots by a single user. Sharing of information increases the ability of robots
to perceive the global view of the environment. Two important types of this
information are information about the robots (e.g., location, path, future inten-
tion) and information about the environment (e.g., area coverage, uncertainty,
location of obstacle). Joint decision-making, on the other hand, enables the
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robots to reason with each other on their motions [94]. An important aspect of
joint decision-making is distribution of sensing and processing among the team
members. It ensures that individual actions of the robots are beneficial to the
team as a whole and contribute to the team-level objective. Because of suc-
cessful coordination, the robots determine the type, time, and merging method
of partial information. Additionally, they determine the time and location of a
visit (when and where to move). Uncoordinated behavior is likely to result in
redundant coverage of the environment and a waste of resources. Depending
on the application and available resources, the coordination can be performed
in a centralized or distributed fashion.

Unmanned Aerial Vehicles (UAVs) are special types of robots that can
move in 3D space. Their high maneuverability and ability to move in space
make them suitable for aerial surveillance of a large-scale environment and
accessing hard-to-reach places. The significant technological advances in UAVs
and their cost-effective solutions provide an opportunity to use a team of UAVs
for aerial surveillance of an environment [11]. The use of teams of UAVs for
automation of many civil applications such as search and rescue [119, 118],
disaster management [100], surveillance [125], multispectral monitoring [124],
forest fire detection [88], target search [129], goods delivery and construction [9],
sports [83], crowd and social movement monitoring [85], and wildlife research
[103] is therefore steadily increasing. However, the design principles of such a
team of multiple autonomous UAVs for aerial surveillance of an environment
need intensive investigations and remain an open research problem.

1.1 Motivation and Objective

The motivation for this thesis is to develop coordination approaches for a team
of UAVSs to perform aerial surveillance of an environment, which contains some
targets of interest. This demands an investigation of the approaches of multiple
mobile and autonomous robots for the surveillance of such an environment. We
first survey the approaches in a larger domain of multi-robot system for the
surveillance of a given environment with moving targets. We then limit this
larger domain and consider the use of a team of resource-limited small-scale
UAVs such as quad-rotors and multicopters [125, 81].

In surveillance missions, the information is typically gathered in the form of
visual observation of the environment by sensors (e.g., cameras) on board the
robots. However, the two major limitations of these sensors, i.e., limited field
of view (FOV) and sensing errors (miss detection and false positive), make the
problem of surveillance very challenging, even for very simple environments.
The target in surveillance tasks can be a missing/injured person [119, 118],
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intruder [117], player [83], animal [103], fire [88], a pre-defined phenomenon
[77], or chemical/biological/radiological event [133]. These missions are typ-
ically time critical and span a large geographical area. A key research issue
in these missions is that of sensor placement—determining time varying loca-
tions of robots to gather information. Such missions require the coordination
of individual robots to operate as a team and to achieve mission specific goal.

Teams of autonomous UAVs are used with increasing interest in civil and
commercial applications and by the scientific research community. Small-scale
UAVs are of particular interest due to their ease of deployment, high maneu-
verability, and low costs. Airborne cameras and sensors are valuable sources of
information. They help in building an overview of the environment and assess-
ing the current situation. Examples of aerial surveillance systems that use a
team of UAVs are cDrones [101, 100, 1, 2] and SINUS [7, 124, 105, 3| projects
of Alpen-Adria-Universitat Klagenfurt, Austria.

The cDrones project has developed a system of wireless networked UAVs
for generating an aerial overview image of a given environment. Several UAVs
coordinate and fly in formation over an environment of interest and deliver
sensor data such as images. These images are fused on the ground, analyzed
in real-time to detect targets such as cars or persons, and delivered to the
user. The goals of cDrnoes project are to establish and maintain a reliable
communication network among the UAVs, to coordinate the movements of
UAVs, and to mosaic the local images. This system can be used in disaster
management applications.

The SINUS project focuses on integrating the four key components of aerial
surveillance into a single system. These components are: (i) the multiple UAVs,
(ii) the surveillance sensors on-board the UAVs, (iii) the aerial network, and (iv)
the coordination, which organizes the individual tasks of the UAVs to achieve
a common mission goal. Such a tight integration is necessary for deploying
self-organizing UAVs in dynamic and partly unknown environments.

In this thesis, we study multi-robot surveillance systems in general and
multi-robot aerial (multi-UAV) surveillance systems in particular. We focus
on two applications of surveillance using a team of small-scale UAVs: (i) co-
operative search of stationary targets [14, 128, 119, 118], and (ii) cooperative
observation of moving targets [95, 6, 4].

In cooperative search, the UAVs survey the entire environment as quickly
as possible to find the locations of stationary targets. The sensing and commu-
nication limitations make the cooperative search process dynamic, imprecise,
and uncertain. It requires the UAVs to survey (part of) the environment mul-
tiple times before confirming the locations of targets. Generally, each UAV
maintains local information about the environment [128, 14] that serves as the
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UAV’s knowledge base about the state of the environment and targets. The
UAVs move around, observe parts of the environment, and update the local in-
formation. Each UAV is likely to perceive (parts of ) the environment differently
due to some deviations in the available information at the UAVs. The UAVs
coordinate by sharing the updated local information with the team members
and by making joint decisions about their next moves.

In cooperative observation, the UAVs dynamically plan their movements to
increase the observation of moving targets, which are usually more than the
UAVs. Observation of a target refers to its inclusion in the FOV of any UAV.
In addition to sensing and communication limitations, the movement of targets
also contributes to increase the complexity of this surveillance application. Co-
ordination among the UAVs is important to minimize the observation overlap,
which is observing a single target by multiple UAVs, and to guide the UAVs
for observing the maximum number of targets.

The key research problem in both of these applications is that of coordi-
nated and dynamic route planning of UAVs. The UAVs must know how to
coordinate for determining their time varying locations in order to achieve the
application specific goal. The objective of this thesis is the development of
coordination techniques for dynamic placement of UAVs to accomplish the co-
operative search and cooperative observation. The objective in cooperative
search is to minimize the time and errors in finding the locations of station-
ary targets. Additionally, the objective is to identify the design space and to
analyze the effects of the type of coordination (centralized or distributed) on
the two components of coordination (information sharing and joint decision-
making). The objective of cooperative observation is to maximize the collective
time and quality of observation of moving targets. Information gathering is
based on the sensor observation and quality of sensor. Therefore, our research
objective pertains to show the effect of sensor quality on time and accuracy of
information.

1.2 Research Questions

We address the following research questions:

1. How do the UAVs share and merge their local information?
UAVs need to communicate with each other and the ground station to
share information. The communication limitations do not allow the UAVs
to share complete information all the time. This compels the UAVs to
select a subset of information to share at a specific time. The local infor-
mation of a UAV and the information received from other team members
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are possibly incomplete, erroneous, and outdated. The UAVs should
merge this information in such a way that helps in reducing the efforts of
the whole team.

2. How does a UAV make joint decisions to plan its movement?
Even if UAVs share their local information, they should coordinate to
decide the locations for future visits and the frequency of visits. This
requires the UAVs to know the required number of sensor observations
in each location they visit. Similarly

1.3 Contributions

This thesis explores the design space of coordinating a team of resource limited
UAVs for aerial surveillance in a given environment. The surveillance goal is to
find the location of targets in the environment and to increase the observation
time and quality if the targets are moving. This requires coordination among
a team of UAVs to determine their movements and sharing of information.

The key contributions can be summarized as follows.

1. We have performed a study of the existing approaches in multi-robot
coordination for surveillance applications, focusing on cooperative search
and cooperative observation of targets [70, 105]. We have highlighted
the advantages and limitations of these approaches. This has led us to
prepare a survey on existing approaches of coordinating multiple moving
autonomous robots for observing moving targets [72].

2. We have proposed a distributed strategy for merging delayed and incom-
plete information about the environment collected by different UAVs.
The delayed and incomplete information is a result of sensing and com-
munication limitations of UAVs. We have also shown a trade-off in time
of cooperative search and detection errors and the effect of various sensing
and communication parameters [73, 98].

3. We have provided an analytic analysis of the number of required ob-
servations to collect accurate information and to declare the absence or
existence of a target in a region. This number of required observations
has been integrated into a formal system model for cooperative search
with constraints in sensing, information exchange, and network connec-
tivity. We have also analyzed the effects of centralized and distributed
coordination on this model for cooperative search [74].



1 Introduction

4. We have proposed the application of UAVs for observing multiple mov-
ing targets with different resolutions. The UAVs have the ability to hover
and move in 3D environment, which enables them to observe the environ-
ment at different spatial scales (resolutions). This scale of observations
has been associated to the quality of observation of a target. A key
contribution is to use the quad-tree data-structure for modelling the en-
vironment and movement of UAVs. This modelling has helped in the
dynamic sensor placement of UAVs to maximize the observation of the
number of moving targets as well as the resolution of observation [71].

This work contributes towards a larger research effort aimed at developing
cooperative control algorithms that will allow a team of UAVs to complete
surveillance missions without direct human intervention, and in the presence
of uncertainty:.

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 covers related work on coordination in autonomous mobile robots
for surveillance applications. The first part of the chapter surveys the coordi-
nation approaches for a team of multiple mobile robots that observe moving
targets in a given environment. The second part of the chapter limits the scope
of the study and describes related work on the use of only UAVs for searching
stationary target.

In Chapter 3, a formal definition of the surveillance problem using a team
of UAVs is given. The chapter introduces a formal description of environment,
UAV, sensor, target, and sensing and communication limitations. Additionally,
the objectives of cooperative search and cooperative observation are presented.

Chapter 4 describes the first component of coordination i.e., information
sharing and merging in cooperative search of stationary targets. It explains the
observation, updating of local information and different strategies for merging
of shared information. The chapter also shows the effects of sensor and commu-
nication parameters on minimizing the time and errors of cooperative search.

Chapter 5 explains the second component of coordination i.e., joint decision-
making for planning the paths of the UAVs. The chapter provides an analytic
analysis of the number of required observations to decide the existence or ab-
sence of a stationary target. The chapter also describes the use of this required
number of observation in TSP and/or MTSP formulation to decide the paths
of UAVs. Additionally, the chapter explores the algorithmic design space by
presenting four algorithms for different coordination scenarios.
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In Chapter 6, the application of a team of UAVs for observation of moving
targets is presented. It presents the proposed quad-tree based modeling of
the environment and UAV motion. The chapter also presents a centralized
algorithm for planning of UAVs to increase the observation time and quality of
moving targets.

Finally, Chapter 7 concludes the thesis and gives an outlook to related
future research directions.



Chapter 2

Related Work

This chapter discusses the current state-of-the-art in (a larger domain of ) multi-
robot surveillance systems for a given environment, which is populated with
some targets. The discussion is based on coordination approaches among the
robots and applications of these surveillance systems.

The chapter studies two applications of multi-robot surveillance systems:
(i) cooperative observation of moving targets, and (ii) cooperative search of
stationary targets. In cooperative observation, the robots dynamically plan
their movements to maximize the observation of moving targets. In cooperative
search, the UAVs survey the entire environment as quickly as possible to find
the locations of stationary targets.

Section 2.1 describes a multi-robot surveillance system in general and the
factors that affect it. Section 2.2 explores the work on first application of multi-
robot surveillance systems (as mentioned in Section 1.1), namely cooperative
observation of moving targets. Section 2.3 then limits the scope of the study
and presents the existing work on second application of multi-robot surveillance
systems (as mentioned in Section 1.1), namely (multi-UAV) cooperative search
of stationary targets using a team of only aerial robots (UAVs). Section 2.4
discusses the differences of our contribution to the state-of-the-art.

2.1 Multi-robot Surveillance System

A multi-robot surveillance system consists of a set of robots that are equipped
with surveillance sensors and wireless communication devices. These robots are
deployed for the surveillance of an environment. The surveillance task usually
depends on collecting information about a number of targets in the environ-
ment. The sensing and communication capabilities of these robots are limited,
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which make it difficult for the robots to gain a full view of the environment
and targets. Fig. 2.1 shows an example scenario of a multi-robot surveillance
system in an environment with multiple targets.

The coordination is sharing and merging of information and joint decision-
making among the robots. Two important types of information that are shared
are information about the robots (e.g., location, path, future intention) and
information about the environment (e.g., area coverage, uncertainty, location
of obstacle). To abstract meaningful information, the robots merge the shared
information. Joint decision-making, on the other hand, enables the robots to
reason with each other, which results in a decision about their paths.

Each robot iteratively executes four actions: (i) taking observations and
processing the data locally, (ii) sharing and merging information with other
robots (and the ground station), (iii) making joint decisions for planning their
motion (path), and (iv) generating control actions to execute the physical mo-
tion of a robot according to its planned path. Once the robots move to a new
location, they use this new location information and new observation from the
sensor to repeat the process. Fig. 2.2 shows an overview of the information
flow, which is valid for both the applications (as mentioned in Section 1.1) of a
multi-robot surveillance system. This process is different from the traditional
motion planning where the robots decide shortest paths from their known initial
locations to known goal locations [53]. In the multi-robot surveillance system,
the selection of locations to visit are dynamic. Once a robot takes an observa-
tion, it can then perform a variety of actions to achieve an application specific
objective e.g., confirming the location of a target.

Approaches for both the applications of multi-robot surveillance systems (as
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Figure 2.1: Illustrative example of cooperative mobile robots for observing
multiple mobile targets. Three robots are observing six out of eight targets
in a given environment. The coordination may be centralized on the ground
station or distributed on the autonomous robots.
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Figure 2.2: Information flow in multi-robot surveillance systems. A set of
robots observe the targets in the environment and derive local information
about the environment and targets. This local information is exchanged with
other robots to derive global information, which serves as key input for the
decision-making about robot movements. The coordination (information ex-
change and/or motion planning) can be either centralized or distributed among
the different robots.

mentioned in Section 1.1) can be characterized by five factors: environment,
targets, robots, sensors and coordination. The multi-robot surveillance systems
also depend on why robots need to observe and for how long they need to
observe the targets. In the following sections, we describe these five factors.

2.1.1 Environment

Robots can operate on the ground, in the air, or underwater. Even to just
maintain a best view of an environment with no targets is a difficult task
[107]. In this section, we identify key characteristics of the environment (its
representation, structure and evolution) and their effects on our problem. Table
2.1 classifies related work based on these key characteristics.

The environment confines the movement of both robots and targets, and
affects observations by potentially restricting a sensor’s FOV. The environment,
which is usually bounded, is represented as a continuous [95, 93, 50] or discrete
[77, 71] 2D plane or 3D space. A ground robot may move on a 2D surface
embedded in a 3D space [93]. A 3D Euclidean space environment facilitates
operations of an aerial robot [57, 47, 71, 75, 48, 49, 50]. A region with a
boundary of regular shape such as a circle [93, 80] or rectangle [122] can be
used to represent 2D movement of robots and targets. Most approaches that use
a regular shape of the environment are based on simulation. Limited research
has been conducted using irregular shapes to represent the boundaries of the
environment as they introduce extra challenges [29]. Moreover, the terrain
of the environment (e.g., planar, irregular or cluttered surface) may limit the
mobility of robots to observe the targets.

10
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Table 2.1: Classification of related work based on key characteristics of the
environment (S: Structured, U: Unstructured).

. Representation
Structure | Evolution 5D D
26, 48] (116, 95, 93, 79]
U Static [5,49] | [111, 96, 35, 78, 120, 39, 34]
(77, 66] | [39, 34, 80, 86, 123, 108, 71]
Dynamic [122] [29, 28, 99, 63, 30]
. 82, 84 64, 65, 114, 115, 44
S Static 1 136] - 51, 62, 19] |
Dynamic - [75]

The environment can be structured or unstructured. The structure of an
environment may restrict the sensor’s observation as well as the movement of
targets and robots. The structure of the environment is usually represented by
a suitable data-structure e.g., occupancy grid map [38, 50] or Voronoi diagram
[62]. A structured environment may consist of a well-defined floor plan known
to the robots [75]. Examples of navigation in structured environments include
road-following approaches where the aim is to detect movable paths and to
navigate them [15]. In structured environments [64, 65, 114, 115, 44, 51, 62, 19],
the location and size of potential obstacles are usually assumed to be known,
and allowed and forbidden regions for the movement of targets and robots
are explicitly specified. Unstructured environments provide no defined paths,
boundaries or locations of obstacles [63, 30], and usually consist of outdoor
environments without a defined map or information about obstacles.

The environment can be static or can evolve dynamically. A static environ-
ment consists of unchanging surroundings throughout the mission [95, 78, 26,
48]. In dynamic environments, the movement of obstacles [29, 28|, variations
in geometry of the environment [75] and variation in terrain [99] continuously
change the surroundings. Operations in dynamic environments require the
robots to dynamically adapt to changing situations, thus introducing an addi-
tional challenge.

2.1.2 Target

The observation of a target depends on three characteristics: type, mobility
and representation.

We can identify three types of targets, namely cooperative, non-cooperative,
and evasive (Table 2.2). Cooperative targets [92] continuously or occasion-
ally transmit some information, such as GPS coordinates or another signal, to

11
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Table 2.2: Classification of related work based on three different types and the
number of mobile targets.

Number of targets
Target type Constant Variable
Cooperative (82, 84, 26, 92] -
62, 93, 71, 108, 111] 29, 28]
Non-cooperative | [96, 120, 86, 35, 79, 78, 39, 34, 80, 99, 123] | [47, 75]
[95, 50, 63, 64, 65, 114, 115, 44, 5] 57, 30]
Evasive [122, 116, 5, 51, 62, 19] [36]

robots thus making localization and observation easier. In most applications,
targets are non-cooperative [95, 79, 78, 120, 47, 57]. Non-cooperative targets
neither hide themselves from observation nor send information to robots about
their location. Evasive targets can sense the robots and avoid being observed,
which makes their observation more difficult [122, 116, 5, 51, 62, 19, 36].

The mobility of all types of targets is constrained by the environment.
Most works on cooperative mobile robots for observing moving targets focus
on ground targets and prior information about their mobility models. The
movements of targets are usually unforeseen and independent of each other as
observing one target generally does not provide useful information about the
location or behaviors of other targets. Random walks [26] and linear motion
models [57] are the dominant mobility models used for representing target mo-
tion. The mobility model of evasive targets depends also on the mobility of
robots.

A target can be represented as a point, whose coordinates are determined
by the sensor. This point can be represented as 2D planar coordinates on a pre-
defined grid of known size [59, 77] to show the position of a target. In addition to
positon coordinates, the representation of a target can also include constant [93,
78, 47, 48] or variable [29, 28] velocity components. Some approaches combine
position and target density information to represent a target [65, 75]. In more
complex scenarios, a target is represented using a combination of position,
velocity, and uncertainty /noise components [30, 57, 49].

Most approaches are applicable only for observing known and constant num-
ber of targets moving in the environment [95, 35, 78, 120, 39, 50, 114, 66, 115,
44, 111, 48, 49, 122, 116, 5, 51, 62, 19, 82, 84]. Only few approaches consider
movement of a variable number of targets [29, 36]. The number of targets
may change when a target appears and disappears for certain duration of time
[91]. Throughout a mission, targets may leave or enter the environment [29] in
(usually) known entry or exit points [95, 93]. The lack of prior knowledge (num-
ber and location) about the entry/exit points in the environment introduces
challenges when observing multiple moving targets [28].

12
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2.1.3 Robot

A cooperative mobile robot needs four main capabilities: sensing, processing,
communication, and mobility.

Robots sense the environment to generate observations and then process
these local observations to produce a local perception of the environment and
the targets. The processing depends on the available resources on the robot
and on application-specific objectives. Based on their local perception of the
environment, the robots exchange information, such as location information,
the state of the environment and sensor data with team members, to reach
a global perception of the environment. Moreover, to improve their future
movement decisions robots may communicate to share information, such as
their intentions, goals and actions. The movement decisions generate a path
for the mobility of the robot, which produces control actions for moving to a
new location according to this path. The perception of the environment and
movement plan depend on the specific application objective.

There are generally three types of the autonomous moving robots (Table
2.3): Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs),
and Unmanned Underwater Vehicles (UUVs). Each type of robot has unique
characteristics. The progress in UGVs and wireless mobile sensor nodes mo-
tivate the use of cooperative mobile robots for observation of moving targets
(95, 79]. In this study, we consider wireless mobile sensor nodes that move on
ground as UGVs. UGVs can enter narrow and indoor passages, can withstand
rough environmental conditions and can carry heavy sensors. The major limi-
tations of UGVs are smaller FOV and 2D movement. The recent development
in UAVs [89, 81] has made it possible to develop approaches for 3D movement
of robots. Aerial observation of ground moving targets [47, 57] with the help
of sensors attached to the UAVs bring another interesting dimension to the
research on cooperative mobile robots. The strength of these UAVs are low-
altitude flight, hovering at a specific point in the environment, a larger FOV,
and high-speed movement. However, the smaller size of UAVs limits their pay-
load capabilities. They cannot carry heavy sensors available for UGVs. The
conventional UGVs will still be used and researched due to specific constraints
of the environment, the target, the robot, and the application. The use of
UUVs is highly challenging due to their unique limitations e.g., problems with
underwater signal (GPS, radio, acoustic) transmission, 3D mobility affected
by water currents, and high cost [55]. Despite these challenges, research work
on deployment of UUVs for data gathering is actively in progress. However,
we could find very little work on underwater cooperative UUVs for observing
multiple mobile underwater targets [20, 134].

Traditional applications of multi-robot systems are based on homogeneous

13
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Table 2.3: Grouping of the approaches based on types of the robot.

Robot Ref.
UGy [95, 96, 93, 35, 79, 78, 120, 39, 34, 80, 86, 99, 114, 82]
[50, 47, 57, 30, 26, 66, 48, 49, 122, 5, 19]
[29, 28, 75, 123, 64, 65, 51]
UAv 63, 108, 111, 59, 71]
(10AY 20, 134]
Heterogeneous (115, 44, 116]

robots having similar capabilities. Recent developments in robotic applica-
tions benefit from a team of heterogeneous robots with different capabilities
that increase the performance of multi-robot systems. For example, a region
occluded by tall buildings or trees may not be observed by UAVs but coordi-
nating UGVs could observe that region [116, 57]. The operating environment
may also demand for heterogeneous robots with different capabilities to ex-
plore different parts of the environments [116, 115, 44]. The heterogeneity
in robotic platforms introduces the challenge of how to effectively deal with
heterogeneous-information exchanges and decision-making. Moreover, perfor-
mance guarantees on whether such heterogeneity improve or degrade system
performance are needed.

2.1.4 Sensor

Physical constraints of the robot and the environment may influence the di-
rectivity of the sensor [66, 122] (Table 2.4). Typical sensor types for target
detection include vision sensors [51, 75] and range sensors (e.g., radar, sonar,
laser scanner) [79, 78, 120, 80]. The aggregated area of all the sensors’ FOVs
is generally much smaller than the area to be monitored.

In addition to limited FOV, challenges in sensing include limited sensor
performance (e.g., detection errors, noise) and limited target observability
(e.g., due to occlusions). A deterministic model of a sensor represents a per-
fect sensor with no errors in reporting the location of a target. In this case,
the observation follows the model in Eq. 3.12. Sensing errors can be modeled
with target location uncertainties represented with probability distributions. A
probabilistic model includes two types of sensing errors: measurement noise and
detection errors. Measurement noise is represented as a probability distribution
in the sensor output and models inaccurate estimations of the coordinates of the
target location (and its size). Detection errors model false positive detections
and miss-detections.

Combining information from multiple sensors mounted either on the same
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robot or on different robots is desirable for improving the perception of the
environment [73, 106]. Information fusion from heterogeneous sensors, e.g., vi-
sion sensor and laser scanner, vision sensor and GPS sensor, helps increasing
robustness against sensing errors, the accuracy of distance and orientation es-
timation of targets, and environment features as shown already for a static
sensor network [23]. Information fusion can improve camera calibration and
sensor movement in single-robot applications [104]. Moreover, information fu-
sion can be employed to improve the robot (self-) state estimation with respect
to environment, targets and other robots. New techniques are desirable to
enhance sensor fusion in both distributed and non-distributed systems.

2.1.5 Coordination

Robots achieve coordination by sharing information to improve the perception
of the environment and by jointly performing decision-making for motion plan-
ning [98]. The coordination among robots can be centralized, decentralized, or
distributed (Table 2.5).

The functionality of cooperative robots depends greatly on their networking
capabilities and timely information exchange, especially in time critical mis-
sions. Coordination needs reliable networks with guaranteed QoS (e.g., band-
width, delay) to cope with connectivity and time-varying network latency of
highly mobile and cooperative robots. Wireless communication among the
robots is limited and may hinder the smooth and uninterrupted information
exchange among the robots because of limited bandwidth or temporary loss of

Table 2.4: Classification of related work based on sensor type and sensor model
(Om: Omni-directional, Di: Directional, Pr: Probabililistic, Dt: Deterministic,
DE: Detection Errors).

Sensor model
Pr Dt
Noise | DE Noise No errors
[116] [99] (75, 82, 84]
.. Om - [59] [47] [51, 62, 19]
Vision - - 23, 5]
Di | [66] | [122] | - -
Sensor type [50] (64, 36, 95]
Om [114] i [57] [96, 93, 35]
Range [108] (30] (79, 78, 120]
[63] [80, 86, 29, 28, 111]
Di - - [48, 49| -
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Table 2.5: Classification of related work based on three types of coordination.

. 69, 80, 50, 57, 62, 75
Centralized [ 30, 66, 114, 108] ]
Decentralized (86, 82, 84]
[47, 116, 95, 93, 79, 48, 49]
Distributed 29, 64, 65, 115, 44, 51, 122, 63, 19]
[120, 35, 39, 34, 96, 123, 59, 5, 111, 78, 28, 99, 26|

connectivity. Moreover, the communication requirements of robots moving in
3D environments [7, 131] are different from those of ground robots.

In centralized coordination, robots exchange information with a central
node or ground station that produces globally optimal plans using task as-
signment [50], optimization techniques [57, 30], clustering [75], triangulation
[66] or scheduling [62]. However, the central node is a single point of failure
and might not receive complete and updated information due to sensing and
communication limitations. In fact, communication problems severely affect
centrally coordinated robots by isolating (permanently or temporarily) one or
more robots from the available global information and decisions.

In decentralized coordination, there are multiple leader robots that act as
central nodes for smaller groups of robots [82, 84, 86]. Each leader then coor-
dinates with other leaders.

Finally, robots with a sufficient amount of memory and processing power can
coordinate in a distributed manner. In distributed coordination each robot de-
cides independently, even with limited available information, using for example
artificial force vectors [96, 93, 35, 79, 78, 120], auctions [39], region partitioning
[64, 65], data fusion [48, 49] or game theory [51, 116]. Distributed algorithms
enable individual robots to operate with partial available information and are
therefore only marginally affected by communication problems.

2.2 Multi-robot Cooperative Observation

Multi-robot cooperative observation refers to cooperative motion planning of
moving robots to keep multiple moving targets in the limited FOV by at least
a single robot. It is part of a broader topic multi-robot cooperation, which is
a well-researched topic supported by a number of surveys. The limitations in
the sensor’s FOV and the highly dynamic nature of the environment due to
movement of targets make the target observations a very challenging task for
the robots. A key research problem for accomplishing such tasks is to plan
the motion of the robots such that the number of targets under observation by
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at least a single robot is maximized. Fig. 2.1 shows an example scenario of
cooperative mobile robots for observing multiple moving targets in a given en-
vironment. The applications of cooperative mobile robots for observing moving
targets include surveillance [92], search operations [50], sports [83], crowd and
social movement monitoring [69, 85], and wildlife research [103, 67].

A target is considered under observation if it is in the FOV of a robot
at specific time. This observation of a target mainly depends on the type of
the surveillance sensor attached to the robot and its FOV. A single robot can
observe more than one target at a time. Similarly, more than one robot can
observe the same target(s) at a time. The robots can coordinate with each
other by communicating information about themselves and targets under their
observation.

The problem is to plan the motion of the robots to increase the number
of targets under observation by at least a single robot. The interesting aspect
is the prior information about the count of the targets. Knowing how many
targets are moving in the environment at a given time can greatly affect the
cooperative observation process. By comparing the number of targets under
observation and total number of targets moving in the environment, robots can
decide to search for the unobserved targets or continue observing the already
found targets. The lack of prior information about the number and location
of targets makes the motion planning difficult for the robots as they always
assume and search for unobserved targets. In the problem of observing moving
targets, the goal locations are the locations of targets, which are not known
and highly dynamic. Once a robot observes a target and determines its state,
the robot can then perform a variety of actions to achieve application specific
objective e.g., tracking the target.

While a number of surveys on related topics have been published [42, 68,
15, 37, 53, 8, 21, 33, 126], they do not present an overview on multi-robot
systems where robots as well as targets move in a given environment. Survey
papers on mobile robots [15, 37, 53] have been focused on the classification
and explanation of motion planning approaches for a single robot to explore a
region. A system of cooperative mobile robots requires approaches that com-
bine coordination and motion planning [8, 21, 33, 126]. Existing surveys on
cooperative mobile robots encompass tasks without targets such as collision
avoidance, area coverage, map making and marching [126], or with static tar-
gets, such as foraging and landmine detection [21, 33, 126]. Farinelli et al. [42]
presented a taxonomy of multi-robot system approaches that classified them
based on coordination dimensions and system dimensions. Only coordination
aspects of multi-robot systems were covered in [42, 68], whereas the use and
benefits of the cloud infrastructure to support the operations of coordinating
robots (cloud robotics) were discussed in [68]. No survey has so far covered ap-
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proaches for cooperative mobile robots equipped with sensing, processing and
communication capabilities for observing multiple moving targets.

We group existing approaches based on four major application scenarios,
namely Cooperative Tracking (CT), where the objective is to persistently track
moving targets; Cooperative Multi-robot Observation of Multiple Moving Tar-
gets (CMOMMT) [95], which aims to increase the collective time of observation
for all targets; Cooperative Search, Acquisition, and Track (CSAT) [47], which
alternates search and track of moving targets; and Multi-robot Pursuit Evasion
(MPE) [116], whose objective is to capture evasive targets. In the following
subsections, we discuss these application scenarios.

2.2.1 Cooperative Tracking (CT)

CT aims to minimize the uncertainty over moving target locations and/or to
increase the visibility of multiple moving targets. In CT, cooperative paths
can be designed for fixed-wing, minimum turn-angle UAVs, to increase the fre-
quency of individual observations of moving target in an uncluttered, outdoor
environment [111]. Regions with high target density lead to wasted resources
as robots visit each target individually. Optimal circular paths can also be
designed for fixed-wing, high altitude UAVs to increase visibility of targets in
densely populated urban areas [75]. All the targets may be divided into groups
(whose number is equal to the number of UAVs) and the center of each UAV’s
circular path is updated for the best view of the group.

When target paths are predefined, a simple strategy of revisiting paths
can be designed using moving Gaussian peaks [123]. To best visualize the
targets with known locations, multiple views of the targets can be desirable
[26]. Triangulation-based location estimation of moving targets can be achieved
with a moving target being constantly observed by multiple moving robots [66].
Cooperative paths for the movement of robots can be designed not only to
accurately localize the target but also to minimize the energy consumption of
robot movement. The movement of robots was formulated on a graph where
each node represents a location in the environment.

Several works track moving targets in outdoor, unstructured, uncluttered
and bounded environments. Clustering of robots and a distributed mechanism
for coordination are used in [48, 49] to track cooperative targets that trans-
mit signals to the robots. The robots use directional antennas, line-of-sight,
time-of-arrival and direction-of-arrival to generate (noisy) measurements of the
target location that are predicted using a Kalman filter. Multiple moving small
ground robots can be used to observe animals using range sensors and binary
decisions to indicate the presence/absence of a target in a sensors neighbor-
hood [67]. The location of a target is corrected locally by vote decision fusion.

18



2 Related Work

Tracking is based on a penalized maximum likelihood framework to addressed
the problem of variable number of targets as animals move in (appear) and
out (disappear) of the environment. Multiple moving targets can be observed
in a multi-region structured environment [63] with the assumption of prior
knowledge of the densities of both targets’ and robots’ locations, but without
coordination between robots of the same region. This approach was extended
to outdoor environments [64] for tracking multiple targets in regions with a
high target-density to robot-density ratios.

Using a flocking control algorithm, swarms of ground robots with range
sensors with omnidirectional FOV have been used to track targets that avoid
obstacles in a structured and cluttered environment [82, 84]. Flocks of robots
split and merge into multiple smaller flocks that track a single target. Each
robot is assumed to know the location of other robots and targets. A com-
bination of UAV and UGV [115] has also been proposed for tracking mobile
targets, where ground robots move in a structured and cluttered environment.
They used range sensors with omnidirectional circular FOV in a rectangular
environment. Each new observation triggers exchange of information between
robots and causes a change of the behavior in the robot’s movement. The work
was further extended to include detection errors in sensing and by minimizing
energy consumption for sensor path-planning [44, 114].

In CT, the estimated locations of targets are assumed to be known to the
robots, which do not search for unknown targets. The search for unknown
targets is covered in the next subsections.

2.2.2 Cooperative Multi-robot Observation of Multiple
Moving Targets (CMOMMT)

The goal of CMOMMT is to dynamically place robots to maximize the collective
time during which targets are observed, when the number of moving targets is
larger than that of robot. The number of non-cooperative targets with unknown
locations is constant and the environment is uncluttered and with regular shape.
CMOMMT maximizes not only the number of targets under observation but
also the duration of observation for each target. A target is assumed to be
under observation when it is within the FOV of a robot. CMOMMT is an
NP-hard problem and was first proposed by Parker and Emmons [95].

To maximize the collective time of observation, robots operate in search or
track mode. Mode switching is decided based on the presence of targets in the
FOV of each robot. In search mode, when a robot finds one or more targets,
it starts to track them. During the tracking mode the robot moves toward
the center of mass of the set of moving targets under observation. Then the
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robot switches back to search mode when there are no more targets in its FOV.
Local force vectors are used to attract and repel robots to achieve coordination
[95, 93]: a robot is attracted to the targets to keep close enough to observe
them and repulsed by neighbor robots to avoid observation overlap.

Approximate CMOMMT (A-CMOMMT) includes weighted local force-
vectors [96, 93] to reduce observation overlap of a single target by multi-
ple robots to help increase the collective time of observation. Personality
CMOMMT (P-CMOMMT) [35] addresses the problem that some targets may
be observed for most of the time, while others could be completely unobserved.
To make sure that all targets are observed, P-CMOMMT uses information en-
tropy for the evaluation of the target diversity under observation. To minimize
the problem of losing a target from observation, Weighted CMOMMT (W-
CMOMMT) assigns different priority weights to targets based on Broadcast of
Local Eligibility (BLA) [120].

Behavioral CMOMMT (B-CMOMMT) [79, 78] includes a third mode of
operation, the help mode, when a robot broadcasts a help request to other
robots when it is losing a target from its FOV. The robots in search mode
respond to these help requests by approaching the robot that is in need of
help. B-CMOMMT also introduces targets tags in the coordination process to
reduce overlap in target observation. B-CMOMMT can be improved with an
extended Kohonen map for each robot to reach the target and an auction-based
algorithm for cooperation [39].

Instead of using local force vectors and help calls, Formation-CMOMMT
(F-CMOMMT) uses flexible formation of robots [34]. Model-predictive con-
trol strategies [80] can also be used for CMOMMT but at the cost of a high
computational complexity. The effects of degree of decentralization, speed of
targets, and sensing range on collective observation of targets are analyzed
in [86]. The work compares K-means clustering and hill-climbing algorithms,
which are scalable in degree of decentralization, for achieving the objective of
CMOMMT. The expected motion patterns of the targets can be exploited to
observe each target for an equal amount of time [10].

The CMOMMT framework has been used for iceberg observation [29, 28].
The number of targets in iceberg observation problem vary with time and the
entry/exit points of these targets are not known. The objective in such a
problem is to minimize the time of initial contact with the newly generated
targets.

The strengths of CMOMMT are its capability of switching between two
modes of operation (search and track) and of working under limited-range
communication. However, most CMOMMT approaches are based on uniform
FOVs, observations with constant resolution and assume a perfect sensor with-
out errors. Moreover, as soon as a robot finds one or more targets in its FOV
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it starts its tracking mode, thus restricting the search of the remaining regions
that may contain more targets. In addition to this, there is no situational
awareness, as robots do not share their perceptions of the environment. For
example, in search mode robots work independently without cooperating with
each other. For these reasons, CMOMMT is not suitable for real-world appli-
cations where the assumption of perfect sensors is unrealistic and situational
awareness is needed.

2.2.3 Cooperative Search, Acquisition, and Track
(CSAT)

CSAT integrates search and track modes into a single strategy [50]. Task
assignment is used for the team of robots to search and track (observe) as many
targets as possible. Each robot in CSAT purposely switches its mode repeatedly
between search and track. Mode switching is decided using the uncertainty level
in location of a target. CSAT includes a situational awareness in the form of
search map that is updated by all the robots enabling tracking robots to aid
the search process. The robot tries to keep the location uncertainty of a found
target under a given bound throughout the mission. Targets are tracked only
for a specified amount of time or until their states are adequately determined.
Once a target is located accurately, its location is recorded and the target is
temporarily left unobserved. The robot then starts searching for more targets
thus causing a gradual increase in the uncertainty about the location of already
located target. To keep this uncertainty under a given bound the robot quits
the search mode, approaches the previously located target, and switches back
to track mode. The motivation for a robot to switch its mode from tracking to
search is the assumption that there is always at least one unknown target. Most
of the work in CSAT uses aerial robotics with a downward pointing camera for
observation [57, 47].

Unlike CMOMMT, in CSAT noisy sensors and measurement noise can be
handled, a robot tracks only one target at a time and can switch to search mode
even if it is successfully tracking a target. In CSAT, mode changes are frequent
and a robot does not lock its operation in a given mode thus facilitating keeping
a balance between search and track operations [57].

The first CSAT approach used a recursive Bayesian framework and a 2D grid
containing probability density function (PDF) of a target that guides the robot
movement for search and maintains the information about the environment
and target [50]. The robots use the PDF to share their perceptions of the
environment and to decide the mode switching. A tracking metric based on
covariance matrix of the target state [47] incorporates the growth of the target-
location uncertainty. Besides using the covariance matrix, a multi-agent task
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assignment algorithm is used for mode switching [57, 30]. To integrate the
conflicting objectives of target-search and target-track, an objective function is
used that is based on the average value of information gained by the mission
and that represents the number of targets detected and how well each detected
target is tracked [99]. Different terms in the objective function control the
importance given to detection and tracking. This approach depends on prior
information about target distributions and lack on-line path generation.

Existing CSAT approaches face the same problem as CMOMMT: a small
number of targets may capture the attention of a robot (i.e., a robot frequently
switches mode only for a small subset of targets in a small part of the environ-
ment).

2.2.4 Multi-robot Pursuit Evasion (MPE)

Unlike CT, CMOMMT and CSAT, in MPE targets are evasive and can be faster
than the robots. MPE approaches do not aim to increase the observation time
of a target, but to observe targets only once. The observation in pursuit-evasion
is also called capture: one or more robots try to capture one or more targets
that try to avoid being captured. The goal of MPE is to minimize the time
required to capture evasive targets.

A distinguishing feature of pursuit-evasion (also known as adversarial
search) is the intelligence of the target that has full knowledge of the envi-
ronment and is aware of robot location and intent [27]. The robot and target
motions are therefore somehow inter-dependent as robots and targets compete
with each other [126]. For this reason, motion-planning problems that arise in
adversarial settings are related to a probabilistic game theoretical framework.

While single-target pursuit-evasion has been an active topic of research for
the last two decades (see survey in [27]), only a few works consider observation
of multiple moving targets by multiple moving robots, i.e., the Multi-robot
Pursuit Evasion (MPE) problem [116, 16]. Two main MPE variations exist
[27]. In the first variation, a robot associates itself with a captured target and
maintains this association until the mission ends [5] (target tracking for only
M targets). In the second variation, a target is removed from the mission as
soon as it is detected/captured [122] and the robot that captured this target
continues looking for other targets.

Several works assume unstructured environments. A distributed approach
based on hierarchical decomposition algorithm for differential game theory was
used for UAVs [51]. The deterministic model of the sensor (with no sensing
errors) makes the approach less attractive and applicable. Targets can be cap-
tured using a centralized MPE algorithm with task-scheduling heuristics that
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assign robots to different parts of the environment, which was partitioned using
Voronoi diagrams [62]. The negotiation and auction mechanisms of economics
theory were also used to assign multiple robots to the targets [19] with the ob-
jective of maximizing the probability of capture while minimizing the time to
capture. In order to achieve this objective, the robots used dynamic coalition
formation for planning their paths.

Other MPE works consider irregular-shaped, structured and planar envi-
ronment with obstacles for area coverage using range sensors with cone-shaped
directional FOV [36]. A team of mobile ground robots with limited sensing
and communication capabilities coordinates to guarantee the capture of tar-
gets, considering a deterministic model of a perfect sensor (i.e. with no errors).
A greedy decentralized approach that employs a heterogeneous team of UAVs
and UGVs was used to minimize the capture time of targets in [116]. A dis-
tinctive characteristic of this approach is the modelling of detection errors in
the sensing process.

2.3 Multi-UAV Cooperative Search

In multi-UAV cooperative search, generally, UAVs coordinate to minimize the
time of finding the location(s) of one or more stationary targets. Each UAV
maintains a data structure, known as search map or cognitive map [128, 14]
that serves as the UAVs knowledge base about the state of the environment
and other UAVs. The UAVs update the search map by collecting information
from parts of the environment using their on-board surveillance sensors (e.g.,
cameras). The sharing and merging of these local search maps help UAVs in
better understanding of the environment and planning their paths. The ul-
timate goal is to determine the necessary movement actions in order to gain
as much information as possible about the target locations. To achieve the
goal the UAVs must decide what search action to take (i.e., when and where to
move in the environment) and what information to send or receive. Multi-UAV
cooperative search is thus defined by three components: (i) sensing the envi-
ronment and updating the search map by individual UAVs, (ii) sharing local
information, and (iii) making joint decisions about search actions based on the
available information. These three components correspond to local process-
ing, information exchange and motion planning blocks of Fig. 2.2. Multi-UAV
cooperative search always require joint decision-making.

Each UAV has limited sensing (e.g., limited FOV, detection errors) and
communication (e.g., limited range and bandwidth) capabilities. These lim-
itations result in an incomplete and potentially outdated search map of the
environment for each UAV. The detection errors in sensing require the UAVs
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to visit parts of the environment multiple times before confirming the existence
and location of a target. When neighboring UAVs communicate and share their
incomplete and outdated search maps, the merging of information within the
search maps helps the UAVs in accurately estimating and learning the global
state of the environment [18]. Joint decision making and planning, on other
hand, enable the UAVs to predict the behavior (position, orientation, area cov-
ered) of other UAVs in the neighborhood [110]. A UAV should be able to make
its decisions based on subjective information obtained through observation,
communication with other UAVs and merging of information. The coordina-
tion approach among the UAVs e.g., task assignment depends on the goal and
performance metric of the multi-UAV cooperative search (e.g., reducing search
time, collision avoidance and fast coverage).

Multi-UAV cooperative search can be traced back to the work of Passino
et al. [97]. They model a pre-defined rectangular environment as a discretized
grid of cells (search map), which is shared by a team of fixed wing, high speed
UAVs. They propose to coordinate the paths of fixed wing UAVs to increase
the number of visits in all the cells uniformly. Most of the existing multi-
UAV cooperative search methods are designed for fixed wing, high speed UAVs
with unique constraints on their speed, altitude, and turn angle. Depending
on the application scope, different approaches have been proposed in the past
to perform multi-UAV cooperative search. The performance metrics of these
approaches include: minimizing the time of finding the location of a target
[119], minimizing the energy consumption of covering the environment [109],
minimizing the uncertainty in the environment [128, 110] and maximizing the
accuracy of information about the target location [56], maximizing the number
of found targets or the combination of two or more of these metrics. The
constraints of physical maneuverability (speed, altitude, turn angle), fuel time,
sensor range and communication make multi-UAV cooperative search a very
challenging problem.

Although coordination among UAVs is desirable [129, 128], there is no uni-
versally optimal behavior [86] for cooperative search. One must evaluate some
interrelated criteria (e.g., independence vs interdependence of UAVs, local vs.
global communication among UAVs and homogeneity vs. heterogeneity of in-
formation) for designing various coordination strategies. The intuitive response
is to allow each UAV to communicate its local information with other UAVs.
Unfortunately, this depends on the available communication and sensing re-
sources.

We classify the existing multi-UAV cooperative search approaches based on
two dimensions of coordination i.e., information merging and decision-making.
The coordination in these approaches is based on either joint decision-making
or the combination of joint decision-making and information merging. Addi-
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tionally, we classify these approaches based on the type of coordination i.e.,
centralized or distributed.

In centralized coordination, the information sharing and decision-making
about movement actions are performed either on a single UAV or at a ground
station—both equipped with sufficient computing equipment and connected
with all other UAVs during the mission. Centralized strategies result in an
optimal global solution but require reliable, explicit and global communica-
tion and may lose efficiency or accuracy, if communication is limited. Limited
communication hinders the collection of information from individual UAVs at
the centralized ground station. Similarly, out-of-range UAVs cannot receive
information from the centralized ground station. Centralized strategies are not
optimal in such situations. The team’s performance is highly sensitive to the
failure of the centralized node and communication limitations. In distributed
coordination, information sharing and decision-making are distributed among
the UAVs. Distributed coordination increases the robustness of the team, but
introduces control overhead and may lead to performance degradations due
to imperfect decisions based on limited information. A detailed survey on
distributed coordination of multiple vehicles for a variety of applications is
available in [20].

We find that there are some multi-UAV cooperative approaches where UAVs
coordinate by joint decision-making without merging of search maps (infor-
mation merging). However, we couldn’t find any work where UAVs coor-
dinate by only merging of search maps and not by making joint decisions.
We, thus, classify the multi-UAV cooperative search approaches on the ba-
sis of the following six types of coordination: (i) Centralized Decision-making
(CD) without information merging, (ii) Distributed Decision-making (DD)
without information merging, (iii) Centralized Information Merging and Cen-
tralized Decision-making (CIMCD), (iv) Centralized Information Merging and
Distributed Decision-making (CIMDD), (v) Distributed Information Merging
and Centralized Decision-making (DIMCD), and (vi) Distributed Information
Merging and Distributed Decision-making (DIMDD). Table. 2.7 groups the ex-
isting multi-UAV cooperative search approaches according to this classification.
We explain each of these classes in the following subsections.

2.3.1 Centralized Decision-Making (CD)

The approaches in this class use only centralized decision-making for plan-
ning paths of the UAVs and do not use any information merging about the
environment. The authors in [102] propose a centralized decision-making ap-
proach to jointly optimize routes and sensor orientations for a team of two
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UAVs searching for a mobile target. They model the environment by dynami-
cally updating the graph whose vertices represent waypoints for the UAVs and
whose edges indicate potential connections between the waypoints. They use
receding-horizon optimization to share and to decide their paths for minimiz-
ing the time of search. Daniel et al. [31] examine centralized communication
aware mobility algorithms for a team of UAVs to cover a given environment
and to avoid redundant observations of identical regions. Their work does not
support sensing limitations and information gathering tasks. They focus on
channel aware mobility and on self-organizing mesh topologies of networked
UAVs with respect to communication constraints. The decisions in their work
are taken in a centralized manner and there is no information sharing and
merging about the environment.

2.3.2 Distributed Decision-Making (DD)

The approaches in this class use only distributed decision-making for planning
paths of the UAVs. They do not use any information merging about the en-
vironment or the targets. The authors in [40, 117, 129] propose a distributed
coordination of decision-making among UAVs without having a search map.
They generate promising results for spatial and temporal coverage of a search
region. The authors in [40, 117] propose different configurations for a number
of networked UAVs to exhaustively search a given area for unknown locations
of targets. The approach focuses on dynamically accommodating on increas-
ing/decreasing number of UAVSs for searching the environment. Moreover, they
do not focus on modeling the sensor errors and sharing the environment infor-
mation among the UAVs.

The authors in [129] present distributed decision-making using artificial
force vectors to coordinate the movement of UAVs. The UAVs share their lo-
cation and orientation information with each other and generate a force vector,
which is used to guide the UAVs. The approach enables UAVs to avoid col-
lisions and to maximize the redundant coverage of the environment for target
detection. Moreover, due to lack of global information about the environment,
the approach suffer from unnecessary redundancy of information collection.

2.3.3 Centralized Information Merging and Centralized
Decision-Making (CIMCD)

Sujit and Ghose [109] propose an approach where the centralized ground station
is responsible for information merging and path planning of a team of homoge-
neous UAVs. Each UAV collects information during its flight along a predefined
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path. The UAVs are unable to communicate with the ground station or other
UAVs during the flight. Once the UAVs return to the ground station, they
deliver their collected information to the ground station. The ground station
merges the delayed and partial information in a centralized search map. The
ground station then assigns new paths based on the k-shortest path algorithm
[61] to the UAVs and the process continues until the uncertainty in the search
region drops a threshold.

Lum et al. [87] use heterogeneous UAVs with different capabilities to cover
a given environment and find the location of stationary targets. Their method
assumes perfect communication of the UAVs with the ground station during
their flight, which avoids the problem of delayed information. The centralized
ground station maintains and merges information in an occupancy based search
map. The ground station generates online and instantaneous paths for all the
UAVs that restrict each UAV to a distinct Voronoi partition. The method guar-
antees an exhaustive search of the environment. A similar approach is proposed
by Mirzaei et al. [90], where a centralized assignment of heterogeneous UAVs
to different Voronoi partition is performed. They use a limited look-ahead dy-
namic programming algorithm to find the paths of UAVs for maximizing the
amount of information gathered by the whole team. One type of UAVs spreads
out over the environment to optimally cover the environment, while an other
type of UAVs iteratively modifies their configuration, based on the information
provided by first types of UAVs, to improve the accuracy of cooperative search.

2.3.4 Centralized Information Merging and Distributed
Decision-Making (CIMDD)

Much of the early work in multi-UAV cooperative search relies on central-
ized search maps for information merging and distributed decision-making for
movement of UAVs [97, 45]. In these approaches, the UAVs can access the
centralized information, which consists of information about the environment
and the UAVs. Based on accessibility to this centralized information the UAVs
plan their own paths in a distributed way. These approaches use artificial po-
tential fields [127], machine learning techniques [128], group dispersion patterns
[132], mixed integer linear programming [46], and evolutionary algorithms [13]
as coordination mechanisms to reduce the potential overlap in the UAV paths.
These approaches conclude that reducing overlap in UAV paths can improve
the efficiency of cooperative search. In fact, the approaches in this category
do not need sophisticated information merging strategies. They only need a
method to update the centralized information base based on their sensor obser-
vations and prior information. These approaches model either a perfect sensor
without any detection errors [132] or a sensor with only miss-detections [128].
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Moreover, these approaches assume perfect communication between the ground
station and the UAVs.

Some approaches focus on more common types of sensing limitations e.g.,
measurement noise [56] and detection errors of false alarms and miss detections
[77]. The authors in [77] use an information-theoretic sensor management to
decide the paths for UAVs in a distributed way. This sensor management
directs the movement of a UAV to a region, where the expected information gain
is maximized by future sensor observations. Although these methods reduce
the uncertainty about the search region, they do not consider communication
limitations.

2.3.5 Distributed Information Merging and Centralized
Decision-Making (DIMCD)

Alvaro et al. [52] propose a centralized decision-making approach for cooper-
ative search where each UAV distributedly maintains and merges information
about the environment. UAVs share their sensor observations with each other.
These observations are used to update the locally available map of the environ-
ment. The local information of each UAV consists of the number of observations
performed in each sub region of the environment. The UAVs can communicate
with each other and they share the environment information, however, the cen-
tralized ground station or satellite station dynamically assigns these UAVs to
different regions.

2.3.6 Distributed Information Merging and Distributed
Decision-Making (DIMDD)

UAVs become more autonomous when they have both the information merging
and decision-making capabilities. The fully distributed multi-UAV cooperative
search approaches [17, 113, 43] require UAVSs to possess sensing, communica-
tion, memory, and processing capabilities. Each UAV senses the environment,
updates its own search map, exchanges and merges information, and modifies
its path whenever required to efficiently search the environment. Some of these
methods do not consider sensing and communication limitations [17, 113, 43].

A subset of approaches in this class considers either sensing or communica-
tion limitations, but cannot work if both of these limitations are present. The
authors in [110] propose a similar approach that considers the communication
range limitation. One unique characteristic of this approach is that UAVs can
agree on actions using mutual decision-making based on an exchange of mul-
tiple messages. Although the method assumes limitations in communication,
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it does not apply a realistic sensor model with sensing limitations. Another
approach with fully distributed cooperation is proposed in [24] where UAVs
coordinate in terms of sharing binary sensor observations. This method con-
siders a realistic sensor model with both types of errors but does not include
limitations in communications.

The work of Hu et al. [58] in this category of multi-UAV cooperative search
approaches uses both the communication and the sensing (both types of er-
rors) limitations. However, the approach focuses on consensus among UAVs to
maintain similar maps on each UAV with a finite number of observations, and
not on increasing the efficiency of the search operation.

2.4 Differences to State of The Art

2.4.1 Multi-robot Cooperative Observation

The difference of our work to the literature is the proposed approach for cooper-
ative multi-scale observation of moving targets in outdoor environments, which
has not been covered in the literature. So for, most research in cooperative
observation of moving targets is based on a model of perfect sensors with fixed
FOV. In our approach, the environment is modeled as quad-tree to represent
3D space and the sensor is modeled to include noise in the sensor measurement.
A centralized 3D path-planning algorithm is proposed for a team of small-scale

UAVs.

2.4.2 Multi-robot Cooperative Search

The first difference is the development of a method for merging probabilistic
search maps (local information) from different UAVs in a distributed manner.
The presented work shows the effects of merging probabilistic information, sens-
ing limitations, and communication limitations on cooperative search efficiency
and accuracy. It also highlights a trade-off in search time and detection errors.

The second difference is the analytic analysis of the number of observations
required for collecting information from a given region to decide on target
existance or non-existance. This allows immediate decision making about re-
visiting a part of the environment to save UAV battery life and search time.
In addition, the parts of the environment that require more observations are
iteratively predicted. To the best of our knowledge, this analytic analysis using
binomial distribution and sensor parameters (miss-detection and false alarm
rate) along with the iterative prediction for parts of the environment to be
visited in decision-making has never been presented in the literature.
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Finally the analysis of design options considering centralized or distributed
decision making for information merging and path-planning by iterative use
of Travelling Salesman Problem (TSP) and/or Multiple Travelling Salesmen
Problem (MTSP) algorithms. The existing approaches present a specific so-
lution for a given scenario and do not explore various options of coordination
with respect to sensing, time, and communication limitations.

2.5 Summary

In this chapter, we organized, critically discussed and compared works from the
last 20 years in the area of cooperative mobile robots for surveillance of sta-
tionary and moving targets. We identified the basic actions performed by each
robot and five factors that affect the design and performance of cooperative
mobile robots. It is important to notice that most related works on the topic
are based on simulation and lab studies, which may be sometimes far from
real-life applications. We group existing approaches of cooperative observation
of moving targets based on four major application scenarios, namely Coopera-
tive Tracking (CT); Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT); Cooperative Search, Acquisition, and Track (CSAT);
and Multi-robot Pursuit Evasion (MPE). We classify the existing multi-UAV
cooperative search approaches based on two dimensions of coordination i.e.,
information merging and decision-making. Additionally, we classify these ap-
proaches based on the type of coordination i.e., centralized or distributed.
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Chapter 3

Problem Formulation of
Multi-UAYV Search and
Observation

3.1 Overview

This chapter limits the general problem of multi-robot surveillance (as men-
tioned in Section 2.1) to multi-robot aerial surveillance. It defines a task of
multi-robot aerial surveillance i.e., multi-UAV search and observation. In multi-
UAV search and observation, a team of resource-limited small-scale UAVs e.g.,
quad-rotors searches for and observes a set of targets in a given environment.
The key problem is to coordinate these UAVs for completing the task of search
and observation. This coordination can be centralized or distributed and con-
sists of other problems. The first problem is the representation and selection of
local information about the environment and targets that a UAV shares with
other team members and/or the centralzied ground station. The second prob-
lem is the merging of (parts or complete) shared local information by a UAV
to determine the global information about the environment and targets. The
final problem is the selection of paths for the UAVs to efficiently explore the
environment.

We focus on two instances of multi-UAV search and observations: (i) coop-
erative search (Section 2.2) and (ii) cooperative observation (Section 2.3). In
cooperative search, the objective is to minimize the time of finding the locations
of stationary targets. The objective of cooperative observation is to maximize
the collective time and quality of observations of moving targets that are larger
in number than the UAVs.

The rest of the chapter is organized as follows. Section 3.2 describes all the
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Target under
observation

Target out of
observation

' Search region

Figure 3.1: Observing multiple moving targets using cooperative UAVs.

assumptions and formulates the problem. Section 3.3 explains the objective
functions of cooperative search and cooperative observation.

3.2 Problem Formulation

3.2.1 Environment

Inspired from [38, 58, 76] the rectangular environment ) € R? is represented
by L - W equally-sized, disjoint cells, where L and W represent the number
of rows and the number of columns, respectively. Each cell is identified by
¢ = (x,y), where x € {1,2,...,L} and y € {1,2,...,WW} are the coordinates
of its center. Thus, C = {1,2,3,..., LW} represents the set of cells in the
discretized environment. A search map, which is a grid of LW cells can be
maintained either in a centralized or distributed way.

3.2.2 Target

Let T = {T},T5,...,Tg} be the set of B targets present in 2. The number of
targets is assumed to be known and constant during the mission. These non-
cooperative, non-evasive and uniquely identifiable targets can be stationary or
moving.

Stationary Target

A target is assumed to occupy at most a single cell in 2 and a cell is allowed to
have at most one target. A cell is termed as target cell if it contains a target
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and as empty cell if it does not. The occupancy probability [38] in cell ¢ at
discrete time steps t is denoted as P'. This occupancy probability is modeled
as a Bernoulli distribution, i.e., the event X. = 1 (a target is present in cell ¢)
has a probability P! and the event X, = 0 (no target is present in cell ¢) has
a probability 1 — P!. The target location is discretized in space i.e., cell and
definite knowledge about target existence or absence in a cell ¢ is represented
as P! =1 or P! =0, respectively. No knowledge about target existence in cell
¢ is thus represented as P! = 0.5 [38]. It is assumed that no prior knowledge is
available about €2 or the locations of targets, which may require the UAVs to
search every cell of Q) at least once. Cell ¢ is considered as containing a target
if P> O%1 and as an empty cell if P! < ©7, where ©T and ©~ are predefined
thresholds.

Moving Target

The state of the j™ target (T}) at time ¢ is denoted by

xj = (5, 4%,y 5), (3.1)
where (2f,y5) and (2%,9;) are the position and velocity of the target. The
motion of T} is

XM = ox! + 7, (3.2)

where ® is the state transition matrix with process noise v «~ AN(0,Q) and
process noise covariance matrix Q. The movement of the targets is independent
of each other.

3.2.3 UAVs

Let U = {U;,Us, ...,U4} be the set of A homogeneous and synchronized UAVs
moving above the  in discrete time step t. The state of the " UAV (U;) at
time step ¢ is

Y§ = (fztv yf’ Zf)v (33)
where 2! represents the altitude of U; at time step ¢. The x} and y! components
of y! coincide with x and y components of a cell ¢ € C. We assume that more
than one UAVs can go to the same location and have the same state. Each
UAV is equipped with (i) a position sensor which facilitates the UAV to know
its position within the resolution of a cell at any time, (ii) a surveillance sensor
for observing €2, (iii) a wireless communication unit for exchanging information
with the ground station and with other UAVs in the team, and (iv) a computing
unit for performing local search map updates. Each UAV U; has its own local
search map €); of the 2. At time step ¢, each UAV executes the following three
actions: take observation, receive new location for movement, and move to the
new location.
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3.2.4 Observations

The observation depends on the surveillance sensor’s FOV and the target. The
surveillance sensor of U; consists of a downward-looking camera with a fixed
zoom level. For simplicity we consider the FOV F; € ) to be a square with
side of length ¢ (Fig. 3.1). We define different observations for stationary and
moving targets.

Observations for Stationary Targets

The sensor observation by the surveillance sensor of U; in cell ¢ at time step ¢ is
denoted as Oj .. Assuming that multiple observations are independent of each
other, two observation results are defined for each cell, i.e., Oj ., = 0 (negative
observation) or O , = 1 (positive observation). Depending on the target’s true
presence or absence and the made observation, the following probabilities are

defined [58, 25, 77]:

PO!, =1|X,=1) =p, P(Of,C =0X.=1)=1-p (3.4)
PO}, =1]X.=0)=¢, PO}, =0[X,=0)=1—¢q '
where sensor parameters p,q,1 — p and 1 — ¢ denote probabilities of detection,
false alarm, false miss and true miss, respectively. Considering an informative
sensor with 0.5 < p <1 and 0 < ¢ < 0.5, we assume that only one observation
per cell can be taken at a single time step and the FOV of surveillance sensor
coincides with a single cell. The number of observations in a given cell ¢ is
denoted by m..

Observations for Moving Targets

For moving targets, we relax our assumptions on sensing limitations. The
sensing limitations in this case include variable FOV (depends on altitude of
the sensor) and measurement noise in reporting the location of a target. We
do not assume miss detections and false alarms for moving targets. The FOV
of U;, denoted as F;, depends on its altitude!. A target is considered under
observation when it is in the FOV of at least one UAV. The observation of T}
by U; at time t is defined as

1 if (ot yh) € F
to— VRRS v
O” { 0 otherwise. (3.5)

!The method is equally applicable to constant-altitude UAVs with variable zoom levels.
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A single UAV can observe multiple targets and a single target can be observed
by multiple UAVs. However, the observation of a single target by multiple
UAVs at time t is of no advantage as we are not interested in depth perception,
in multi-view analysis or in improving the estimate of the target position. We
use the OR operator [95] to show that observation by a single UAV is sufficient:

A
1 if3:0L =1
- ij
\_/1029 { 0 otherwise. (3.6)

The UAV U; collects a measurement z;; for target T; under its observation.
The measurement z;; consists of the x’. At time ¢, there can be n; < B
targets in F; and thus nj measurements can be generated. A measurement z;;
is generated by the following model

z;; = Hx} + 9, (3.7)

where H= (100 0;0 0 1 0) is the observation matrix with observation noise
¥« N(0,0) and observation noise covariance matrix O. The sensing errors
(Eq. 3.7) do not allow a UAV to know the exact location of a target that
is under its observation. The states of all the targets, all the UAVs, and the
measurements for all the targets are denoted as X' = {x},...,x%}, Y' =
{yl,...,y4} and Z' = {z}, ... zL}, respectively

3.2.5 Movement and Path Planning

The movement of U; is discretized in space (cells) and time (time step). It
is assumed that U; has sufficient battery (life) or flight time to complete the
mission. The UAV U; makes movement decisions only at discrete time intervals
referred to as time step. The duration of a single time step t is sufficient for U;
to move from its location to an adjacent location, to take a sensor observation,
to update its local information, and to exchange information with other UAVs.

In cooperative search, the discretized movement of U; is represented as
vl = e {(z+ Lyl (z— L,y)l, (2, + 1) (,y — 1)1}, where ! (location
of U; at time step t+1) must stay within the boundary of 2. This representation
does not include the altitude of UAVs as it is constant. UAVs cannot move to
diagonal cells to synchronize the time and distance of movements. Each UAV U;
traverses a path r; which is an ordered sequence of cells, and R = {r; : 1 < <
A} represents the set of search paths for all UAVs in U. The cells constituting
a search path for a UAV are considered as waypoints and determine the sub-
regions where observations should be made to gather information. The paths
in R can be pre-defined static or dynamically calculated during the search

mission. For the pre-defined static paths, we assume standard sweep model or
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lawnmower-type search [22]. In the sweep mobility model, a UAV moves from
one boundary to the other boundary of € in a single row. It then jumps to
the next row and starts movement in reverse order to completely traverse that
row. The UAV continues this movement to visit each cell of the (2.

In cooperative observation for moving targets, UAVs can move in 3D space
and the speed of each UAV is higher than that of the fastest target. The varia-
tion in altitude causes variation in the size of FOV and quality of observation.
Increasing the altitude of UAV increases its FOV but reduces the quality of
observation. However, there is a threshold z; on the minimum allowed altitude

of a UAV.

3.2.6 Communication

Following a discussion [7] on the communication requirements of UAV networks,
we simplify the assumptions that suit to the problem of cooperative search. Let
the communication range among UAVs, measured by the Euclidean distance,
be limited to r cells. Thus, information can only be exchanged when the
UAVs are within distance . Communication is considered free of any delays
or failures, once the UAVs are within range r. Let N; = {U;, € U : [ =
L ..., AN|ly; =yl < r} be the set of UAVs that are within the communication
range 7 of U; (N; C U) and 1 < |N;| < A. Note that N; = {U;} and |[N;| =1,
if r=0or|y,—y;| > rfori# (. We relax the assumptions on communication
range limitations for cooperative observation and assume that UAVs can always
communicate.

3.2.7 Coordination

The UAVs coordinate in terms of sharing information and decisions about
the search action. Primarily, each UAV updates its own local information
without coordination with other UAVs (cp. Section 4.2). Due to different
UAV locations, errors in the surveillance sensor, number of visits to a given
cell and especially limited communication range, the UAVs may have different
local information. The UAVs coordinate by exchanging and merging individual
local information to best represent the situation in the environment. The UAVs
can communicate with the ground station whenever needed. In addition to the
exchange of information, the UAVs also coordinate the decision-making about
their paths.
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3.3 Objectives

3.3.1 Objective of Cooperative Search

The objective of each UAV is to find the locations of B targets as fast as
possible. Let the number of observations m, increase as the time spent by a
UAV in cell ¢ increases. The objective function of each UAV can be defined as

minimize ¢ : B = Z fle,t) (3.8)
ceC
where
1 it Pt > 0T
flet) = { 0  otherwise (3.9)
and
Pt 1 %f m. — 0o and ¢ §onta1ns a target (3.10)
¢ 0 if m, — oo and c¢ is empty

The constraint in Eq. 3.10 shows that the value of P' depends on target
existence and the observations made by a UAV in cell ¢. Increasing the number
of observations in cell ¢ also increases the time spent in that cell. Once this
objective is achieved by any of the UAVs or the ground station, the search is
finished. To achieve this objective, the UAVs coordinate by performing two
tasks: (i) information merging, and (ii) decision-making,.

In case of limited communication, the UAVs have inconsistent local infor-
mation, as complete and updated information is not available to each UAV.
This means that each UAV may represent different occupancy probabilities for
a given cell. Individual probabilities by various UAVs for a given cell should be
merged to calculate a probability that best represents information about the
target existence in that cell. Utilizing the information from other teammates a
UAV can improve the search in two ways: (i) by increasing its observability of
the environment by considering other UAVS’ observations and (ii) by improv-
ing its knowledge in a given cell by merging probabilities in that cell by other
UAVs. The key question is how to combine information from one UAV with
information from other UAVs so that the team can work together to locate
the target in minimum time with minimum location errors. Several informa-
tion merging techniques to maintain maps need to be investigated where the
amount and type of information exchanged between the UAVs vary. Chapter
4 describes the information merging for cooperative search in detail.

Once a UAV updates its map, it needs to select a search action, which is a
combination of two sub-actions: (i) how many observations to take in a given
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cell and (ii) which cells to visit and in which order (path). The first sub-action
requires determining the number of observations, based on the initial observa-
tion and prior information, in order to declare the cell as empty or occupied
with the target. In other words, a UAV must know the time or efforts in fully
exploring that cell. The second sub-action requires a UAV to predict the cells
and the order of visiting those cells, which increase the chances of contain-
ing targets. A dynamic path planning approach, which includes both of these
sub-actions, can increase the performance of multi-UAV cooperative search.
Decision-making should answer the questions of how to predict the cell with
more chances of target existence, how to plan the path to visit the predicted
cells, and how much time a UAV should spend in gathering information from a
given cell. Chapter 5 presents details of decision-making in cooperative search.

3.3.2 Objective of Cooperative Observation

The objective of cooperative observation is inspired from the standard
CMOMMT [96, 93, 35, 78, 120] problem. CMOMMT maximizes the collec-
tive time of observation represented by the following objective function

E B A
T:ZZ\/%, (3.11)

where E is the total time of the mission. We extend the CMOMMT problem
formulation to include variable resolution of observations and measurement
noise. We refer to this problem as multi-scale observation of multiple moving
targets.

A higher value of the altitude z increases the FOV but reduces the resolution
of observation (i.e., the spatial scale the target is being observed at). The
variable resolution observations can also improve the movement decisions of the
UAVs in order to maximize the number of targets under observation. Reducing
the value of z from the surface of the environment improves the resolution
of observation. However, we set a minimum allowed altitude zy, as reducing
altitude of the UAV below zy may cause the UAV to hit the target.

The resolution of observation of T; by U; at time ¢ is defined as

; { ﬁ if (%, 95) € Ff

3.12
0 otherwise. ( )

In case, multiple UAVs are observing 7; with different resolutions, the resolu-
tion used is given as
85 = max{sy;, ..., s\, }. (3.13)
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Table 3.1: Duration of observation and resolution of observation for B targets,
mission duration of E time steps, and highest resolution 1/zy (2o is lowest
altitude).

E/2 E
Lowest resolution (a« =1) | ¢ =0.5 g=1
Highest resolution (« =0) | g=1/2p | g = 1/2z

In addition to maximizing the collective time of observation, we want to
maximize the collective resolution of observations.

Maximizing the collective resolution of observation of the targets under
observation corresponds to maximizing the following objective function:

\P_ii§§. (3.14)

With a limited number of UAVs (i.e., A < B) not all targets might be under
observation and it is not possible to observe all the targets with high resolution
all the time. The goal thus becomes to maximize

g= %(mua —a)xp>, (3.15)

where g € [0,1], g = 0 implies that no target is under observation throughout
the mission and g = 1 implies that all the targets are under observation with the
desired resolution throughout the mission. The parameter « assigns a priority
weight or importance to the resolution of observation. Setting & = 1 makes the
problem as a standard CMOMMT problem with constant FOV and no interest
in high resolution observations.

In Table I, we provide some numeric values of g for B targets and mission
duration of E time steps. These values are calculated by putting T (Eq. 3.11)
and ¥ (Eq. 3.14) in Eq. 3.15 for two different values of E and «. Setting @ = 0
means that we want to maximize the collective resolution of observations of
the targets that are currently under observation. Note that it is difficult to get
g = 1 for a = 0, as targets will easily escape the smallest FOV. The multi-
scale multi-UAV coverage problem at hand is dynamic and, at each time step,
the coordinated movement approach should determine which UAVs observe,
the part of the environment to observe, and the resolution of observation. We
focus on developing a centralized cooperation and movement strategy for a
team of UAVs to maximize g.
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3.4 Summary

This chapter defines a specific problem of multi-UAV search and observation.
The chapter describes all the assumptions made for a multi-UAV system and
presents mathematical notations for the environment, the target, the UAV
and the sensor. It provides a mathematical formulation for the two objectives
corresponding to two applications of multi-UAV search and observation.

Chapter 4 and Chapter 5 explain cooperative search and Chapter 6 is ded-
icated to cooperative observation. In Chapter 4, we use the concept of occu-
pancy probability and Bayesian analysis to represent information about the
environment and the target existance. We then analyze different strategies for
merging of shared information. We also show the effects of sensor and commu-
nication parameters on minimizing the time and errors of cooperative search.
In Chapter 5, we provide analytic analysis of the number of observations re-
quired to decide the existence or absence of a stationary target. We then use
this required number of observation in TSP and/or MTSP formulation to de-
cide the paths of the UAVs. Additionally, the chapter explores the algorithmic
design space by presenting four algorithms for different coordination scenar-
ios. Chapter 6 presents the quad-tree based modeling of the environment and
UAV motion. The chapter also presents a centralized coordination algorithm
for movement of UAVs to increase the observation time and quality of moving
targets.
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Chapter 4

Information Merging in
Multi-UAV Cooperative Search

4.1 Overview

This chapter discusses the local information of a UAV and merging of informa-
tion (as mentioned in Subsection 3.3.1) contributed by other UAVs to perform
a cooperative search. The chapter is adopted from [73]. As shown in Fig.
4.1 multi-UAV cooperative search is performed in three steps: (i) sensing the
environment, (ii) sharing and merging of information, and (iii) making joint
decisions for movement. In first step, each UAV observes a part of the envi-
ronment, using its surveillance sensor, and updates its local information about
the environment. The local information is updated using observation of the
environment and prior information available about the environment. We use
the observation model (defined in Chapter 3) and a Bayesian update rule to
perform this step. In the second step, each UAV broadcasts its local informa-
tion to share with the other team members. Each member of the team merges
the received information with its local information to improve its perception of
the environment. The sensing and communication limitations, however, cause
each UAV to receive potentially incomplete, erroneous, or outdated informa-
tion. Finally, the UAVs decide their next moves in the environment. In this
chapter, we explain only the first two steps of multi-UAV cooperative search.

In cooperative search, the information of a UAV consists of a search map
(as described in Section 2.3 and Section 3.2), which is updated in two ways:
(i) uncoordinated search map update based on sensor observation, and (ii)
information merging or coordinated search map update, which is the first task
of coordination among the UAVs (cf. Subsection 3.3.1).

At the beginning of the search mission, U; initializes its local search map €;
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Figure 4.1: Processing diagram for cooperative search of an individual UAV

U..

with Pi?c =0.5fori=1,...,A and ¢ € C to represent complete uncertainty or
lack of prior knowledge about the search region €2. It then starts taking sensor
observation at its current location y;. Based on the sensor observation Of
and prior probability Pf;l in the current location ¢, U; updates the occupancy
probability to Pfc in its own search maps €2;. This uncoordinated map update
by U; depends on the detection errors (detection and false alarm probabilities)
of the surveillance sensor on board the UAV.

The UAV U; then broadcasts the updated information to neighboring UAVs
N; in the team. The number of UAVs in set N;, 1 < |N;| < A, depends on
the communication range of U;. Depending on the communication range, the
UAVs in the team now have different search maps at time ¢. These search maps
represent partial information contributed by neighboring UAVs. The difference
in search maps is caused by the variation in the occupancy probability values of
some cells. Different occupancy probability values corresponding to a given cell
are merged to determine a new occupancy probability value that best represents
the existence of a target. Information merging iteratively performes this step
for each cell ¢ € C to merge the search maps. The UAV U; then moves to
another cell according to its mobility model and continues the process. The
process is depicted in Fig. 4.1, which is executed by each UAV at every time
step. The search is finished when any of the A UAVs identifies a cell ¢ with
P! > ©F, where ©7 is a predefined detection threshold to stop the search. In
this chapter, we discuss the uncoordinated search map update and information
merging (map merging).

The rest of the chapter is organized as follows. Section 4.2 describes the
method of uncoordinated search map update for updating the local information
of a UAV. Section 4.3 explains our proposed work on information merging. In
Section 4.4, we present the simulation results to show the effects of information
merging on multi-UAV cooperative search.
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4.2 Search Map Update

As shown in Fig. 4.1, primarily, each UAV updates its own search map using
its own sensor observations and prior information. At each time step ¢, a UAV
U; observes some part of the search region, which corresponds to a single cell
¢ in the search map. The UAV then updates cell ¢ in its search map €); by
using the observation and prior information in cell ¢. The following Bayesian
rule [135, 58] is a common tool to calculate the updated probability in cell
¢ using the sensor characteristics (p and ¢), sensor observation Of,c and prior
probability PZ;I in cell c.

ppit,zl : t
i pPITh 4 q(1—PITh if Oi,c =1
Pi c = ©e (1_p)1:7;.’tC71 (41)
if Of, =0

(1-p)P/ T + (1—9)(1—P ")

Thus, if ¢ contains a target P! — 1 as m, — oo, and if ¢ is empty P! — 0
as m. — oo [58]. It can be shown from Eq. (4.1) that P/, = 1 if P}, = 1
and P/, = 0 if P}, = 0 for all t > 0. If p = 0, P/, becomes 0 once Uj
gets a sensor observation equal to 1, and will remain unchanged regardless of
future observations. We consider an informative sensor with 0.5 < p < 1, and
0 < g < 0.5. Fig. 4.2 shows the relationship of ¢, ©1 and the required number
of observations in a given target cell ¢ to declare that the cell contains a target.
In Chapter 5, we will derive analytic expressions for calculating the required
number of observations in a cell.

4.3 Information Merging

Once U; updates its search map (local information) €; using sensor observation
and prior information, it exchanges the search map with neighboring UAVs N;.
If no other UAV is in the communication range of U;, U; has no neighbors and
IN;| becomes 1. In a given cell ¢, U; may now receive different values for P!
which are merged to determine a new value for P/, that best represents the
collected information about target existence in ¢. Depending on r, U; can now
have 1 < n < A occupancy probability values for a given cell ¢ at time ¢t. If
r =0, then |N;| = 1 and cell ¢ has only one (n = 1) value contributed by the
local search map €2; of U;. If the communication range is limited, the neighbors
N; may have different values for a given cell ¢ and U; can now have at most
(n = A) values for cell c¢. In the case of unlimited communication, there are
n = 2 values for each cell, one contributed by €2; and the other by €2,, where
U, € N;. In case of unlimited communication, the UAVs have consistent maps,
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Figure 4.2: Minimum number of observations required in a single cell to satisfy
condition P! > ©%. It corresponds to the best case, i.e., when a target is
present in the visited cell and the observation is always positive (Oj . = 1).

as complete and updated information is available to each UAV. The UAVs
require a strategy to merge these different probabilities in a single probability
for increasing the performance of the search.

In order to maintain the timeliness of the occupancy probabilities, a simple
time stamping mechanism is introduced. Whenever P! is updated by U;, the
time stamp 7;. of this update is captured. If the update is caused by an
observation of the cell, the current time step is captured as a time stamp. If the
update is caused by merging cell values from different UAVs, the most recent
time stamp among the contributing cell values is taken as the new time stamp.
The time stamps are stored in the search maps and are exchanged together with
the probability values of the cells. Map merging is only performed in those cells

that have different time stamps with respect to the neighboring UAVs.

Obviously, when |N;| = 1, U; does not receive information from other UAVs
and there is no information merging stage. UAV U; simply uses the uncoor-
dinated occupancy probability in the search map!. If |[N;| > 1, U; receives
n occupancy probability values for cell ¢ represented as P = {P/,, P, . : u #
i AU, € N;}. Similarly, U; receives n time stamps for cell ¢ represented as
t = {7ic, Tue : Uy € N;}. The information merging method can be expressed
as

Pl = f(P,t). (4:2)

Fig. 4.3 represents a small search region with a single target and the local

'For the sake of simplicity, we do not distinguish between uncoordinated and merged
occupancy probabilities throughout the remainder of this chapter.
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Figure 4.3: Local 4 x 4 search maps of three UAVs (a, b and c) and the
environment (d). UAVs are marked with the dots and the target location is
marked with a star. The local occupancy probability of U; at the location of
U, is denoted as P ,,.

4 x 4 search maps of three UAVs having unlimited communication. Fig. 4.4
shows the information contents of U; after exchange of information with all
other UAVs. Sharing and merging of information results in at most A cell
updates in each individual search map. To avoid confusion, we use the notation
Pfu to represent the occupancy probability of U; in €2; at the location of U,
where u = 1,2,..., A. As indicated in Fig. 4.1 there are two different updates
performed by each UAV at each time step: uncoordinated search map update
and information merging i.e., merging of search maps.

There are different methods for merging probability values in P to calculate
a new value for P!. We propose four strategies to merge information from mul-
tiple UAVs. These merging strategies are: (i) belief update, (ii) average, (iii)
modified occupancy grid map merging, and (iv) sensed data sharing. We con-
sider different types of information and communication limitations. We start
with unlimited communication and then elaborate on the modifications required
for efficient implementation of each strategy under limited range condition.

4.3.1 Belief Update (BU)

The belief update merging strategy simply replaces the outdated information
with the most recent information. The occupancy probability associated with
the latest time step is given more importance to prioritize the most recently
collected information. UAV U; declares the occupancy probability PfC in a
given cell ¢ of €; outdated if 7, < maxz(t). It means that another UAV has
recently updated the occupancy probability in cell c. UAV U; then updates
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Figure 4.4: The search map merging at U; having unlimited communication.

Pf,c by replacing it with a value from P with the most recent corresponding
time stamp. The UAV U; also updates the time stamp 7. by 7. = max(t).
In belief update the merging strategy, (Eq. 4.2) becomes

Pl ={P, . Tu.=maz(t)}. (4.3)

4.3.2 Average (AVG)

The average merging strategy takes the arithmetic mean of all the probability
values in P to calculate a new value for Pf,. The UAV U; then overwrites P/,
by this mean value. The UAV U; updates its map €2; by

t qu,cv n =2 and Pfc =05
%(Pztc + Z:;i qu,c) otherwise

ic (4.4)
where n depends on the communication range. If the communication range is
unlimited, all UAVs become neighbors of U;, which makes |N;| = A. In case of
unlimited communication and distinct locations of all UAVs, a cell ¢ can get at
most two different values (n = 2): one from U; and the other from a UAV that
is visiting cell c. If two different values of occupancy probability are available
for a given cell ¢ and U; has no prior information for cell ¢ (P{, = 0.5), then U;
replaces Pfc by the occupancy probability provided by neighboring UAV U,,.
If the communication range is limited, cell ¢ may have A different occupancy
probability values. This variation is caused by updates of ¢ by different UAVs
at different time steps. In this case n < A is equal to the number of UAVs
with different values, which are stored in P, for ¢. If more than two values
of occupancy probability are available for cell ¢, then U; replaces PfC by the
average of occupancy probability values provided by P.
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4.3.3 Weighted Integration of Occupancy Grids
(WIOG)

Integrating Occupancy Grids [18] is a well-known technique used in simulta-
neous localization and mapping (SLAM). This technique is not applicable in
its original form to the cooperative search. We propose a modified version
of this technique, which is applicable to the cooperative search. The original
integration rule is given as

iog _ odds,. A5
¢ 1 + odds. (4.5)
odds,. = H odds, . (4.6)
u=1
P,
dds, . = —=— 4.7
s, = 15— (47)

where P9 is the probability of occupancy at ¢ calculated by integrating occu-
pancy grids (IOG)?2. It models an environment with a grid where the occupancy
probability at each cell of the grid represents information about an obstacle.
In conventional IOG, robots determine obstacle cells that need to be avoided
during the movement of robots.

We use the occupancy probability to model the existence of a target in a
cell. We use IOG to determine the cells that may contain target and need to
be visited frequently. The IOG method aims to reinforce cell values and thus
reaches low or high probability values very fast. This property supports quick
decision making but results in a considerable amount of detection errors, if
the repetitive observations include false alarms and false negatives. Table 4.1
shows an example of this problem for specific values of p = 0.9 and ¢ = 0.1,
where at time t; one UAV receives a false alarm from its sensor and the other
UAV has no observation at cell ¢. The merging results in updating both the
maps at P, . and P, with value 0.9. Later at ¢, one of the UAVs observes
a true negative at cell ¢ but merging of values results in no change in both
the maps. The probability of occupancy at ¢ is now fixed to 0.9 and cannot
be reduced by even infinite numbers of correct observations in that cell. The
detection of another false alarm at ¢ will further increase the value of P, leading
to exceed the threshold value and will terminate the search with an erroneous
result. Thus, IOG in its original form is not suitable for cooperative search
scenario.

2This rule is adopted from SLAM where robots develop partial maps using occupancy
grids and integrate the partial occupancy grids at the end of the SLAM process by using
Eq. (4.5).
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Table 4.1: Merging occupancy probabilities in a given cell multiple times using
integrating occupancy grids method.

Time | Oy . Oy Pi.| Py
to - - 0.5 0.5
t1 1 (false alarm) | — 0.9 [ 0.9
to — 0 (true negative) | 0.9 | 0.9

The effect of this problem can be reduced if we restrict the output of the
IOG technique to change slowly. In order to do so, we combine the average
value of occupancy probabilities at ¢ and occupancy value using IOG at ¢ by
a weighted average. We call this rule as Weighted Integration of Occupancy
Grids (WIOG), which is given as

P, = w(P) + (1 — w)(P) (4.8)
where
1 n
P = — P,. 4.9
= P (19)

The weight w can be chosen based on the sensor parameters and search
constraints.

4.3.4 Sensed Data Merging (SDM)

Instead of sharing probability values, the UAVs can share their current locations
and sensor observations with each other. In this strategy, each UAV keeps a
record of sensor observations for each cell in the search region and updates the
P! iteratively based on the total number and type of observations in cell ¢. The
strategy enables UAVs to share full information but requires more memory;,
computation power and bandwidth if surveillance sensors are heterogeneous
with different characteristics (p and ¢). The updated probability in cell ¢ can
be calculated by iteratively using Eq. (4.1) for all consecutive observations from
all UAVs. Observe that adding time stamps (i.e., history of observations) to
the search map increases the information to be exchanged and processed by
the UAVs.

4.4 Simulation Results

To evaluate the effectiveness of our proposed merging strategies, we simulate a
search region of L x W = 10 x 10 cells with a single stationary target located at
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(6,7). We initialize the location of up to A = 5 UAVs at randomly selected cells
and consider a standard sweep model for the mobility of UAVs. We consider
O1 = 0.99 which means the search is finished if one of the UAVs finds a cell
¢ in its own map with P! > 0.99 and that cell is designated as location of the
target. If the result of the search is a cell other than (6, 7), we record a detection
error. We perform simulations to compare the results of our proposed strategies
in case of no communication, limited communication and full communication
among UAVs. We use the communication range 7 in terms of cells (the unit of r
is cells) and consider two UAVs in range when the Euclidean distance between
them is less than or equal to the specified communication range. All results are
based on N = 1000 runs of simulations and w = 0.7 in WIOG strategy. We
also present results for uncoordinated search (UC), where UAVs only use their
own observations to update their maps as reference.

First, we consider full communication (r = 0o0), where all UAVs can ex-
change information at each time step and evaluate our strategies for various
values of ¢ and A. Fig. 4.5 and Fig. 4.6 show the average number of time steps
(T') required and the percentage of erroneous results (e) versus the false alarm
rate ¢ for A =2 and A = 5 UAVs, respectively. The figures show that degrad-
ing the quality of the sensor (increasing the value of ¢) increases the number
of time steps to locate the target in all strategies. Comparing the results in
these figures, in contrast to other strategies, the errors for the average strategy
reduces as the value of ¢ increases. This reduction in errors comes with a cost
of increase in time steps. The repetitive behavior or jumps in the plots are due
to the fact that there are a fixed number of observations required to exceed
the threshold for certain ranges of ¢ (as explained in Fig. 4.2). As the value
of ¢ increases within a given range, the number of false alarms increases but
the number of steps required to reach a decision remains constant. Having
consecutive false alarms in a cell will end up in an erroneous result. Similarly,
decreasing the value of p for fixed value of ¢ increases the number of time steps
required to terminate the search.

Second, we show the effect of increasing the number of UAV's on our merging
strategies with unlimited communication. Fig. 4.7 shows the effect of increasing
the number of UAVs with fixed values of p = 0.9 and ¢ = 0.2 on the search
time. Note that increasing the number of UAVs with coordinated map updates
is more efficient than increasing the number of UAVs in uncoordinated search
(UC). It is evident from Fig. 4.7 that sensed data merging and belief update
require less time to search the region but at the cost of higher location errors.
We can tune the value of v in the WIOG strategy to obtain better results
depending on the values of p, ¢ and the number of UAVs.

Third, we evaluate our proposed strategies for limited communication with
fixed values of p, ¢ and the number of UAVs. Fig. 4.8 and Fig. 4.9 show the ef-
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Figure 4.5: The effect of increasing the false alarm rate ¢ on the average search
time (7") and location errors (e) with A =2 UAVs (p = 0.9, r = 00).
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Figure 4.6: The effect of increasing the false alarm rate ¢ on the average search
time (7") and location errors (e) with A =5 UAVs (p = 0.9, r = 00).

fect of increasing the communication range on time steps required to terminate
the search and percentage of erroneous results for 2 and 5 UAVs, respectively.
We show the results for no communication to unlimited communication (in a
10 x 10 grid with r < 14). As the communication range increases, the perfor-
mance of these strategies converge to a point that is consistent with the results
of Fig. 4.7. The variations in average search time (7") and location errors (e) for
uncoordinated search (UC) are caused by averaging smaller number of results.

Finally, we show the percent gain for the various merging strategies with
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Figure 4.7: The effect of increasing the number of UAVs (A) on the average
search time (7") and location errors (e) for p = 0.9,¢ = 0.2, and r = 0.

r

Figure 4.8: The effect of increasing the communication range (r) on the average
search time (7') and the location errors (e) for A = 2 UAVs, p = 0.9, and
q=0.2.

respect to uncoordinated search (UC) in Table 4.2. We define the percent
gain as ((T — T)/T) » 100, where T represents time steps required to complete
the search without coordination among UAVs. In general, the improvements
rise with increasing the number of UAVs. For unlimited communication, the
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Figure 4.9: The effect of increasing the communication range (r) on the average
search time (7) and the location errors (e) for A = 5 UAVs, p = 0.9, and
q=0.2.

minimum gain that we can achieve for a minimum number of UAVs (i.e., 2
UAVs) is 27% and the maximum gain that we can reach for maximum num-
ber of UAVs (i.e., 5 UAVs) is 70%. The improvement is also increasing with
enlarging the communication range but saturates once the communication is
stable. The negative gain in Table 4.2 shows that uncoordinated search per-
forms better than coordinated search with merging of information. It happens
only for short ranges of communication when UAVs take the average of thier
search maps after long periods of time. Note that when there is unlimited com-
munication, exchanging the probability maps (i.e., belief update) is sufficient
to perform as good as sharing all observations. As the communication range
reduces, the improvements with belief update also reduce (from 70% to 41%)
since the UAVs meet each other at different times and keep different maps,
while sharing observations still sustains high improvements. In this case, in-
creasing the number of UAVs is also not sufficient. Therefore, under stringent
communication, deployed merging strategy needs to be chosen carefully.
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Table 4.2: Percentage gain in terms of time steps with respect to uncoordinated
search (p =0.9,¢ = 0.2)
| | A| BU | AVG | WIOG | SDS |

2 1156 -7.2 14.7 36.7
N 31204 | -21 16.2 48.0
4 1396 | 5.80 28.7 67.6
5 | 41.6 | 8.00 29.7 70.9
2 1309 | 229 32.6 37.0
'—6 3 190.6 | 14.5 36.8 52.3
4 164.0 | 239 51.3 68.6
5 | 70.0 | 40.0 61.1 69.5
21398 | 274 32.1 39.9
14 3 1545 23.1 33.1 52.0
4 1635 | 256 43.8 64.8
5 1694 | 37.0 D7.8 69.8

4.5 Summary

In this chapter, we discussed a method to update the local information of a
UAV about its environment. This method uses not only the sensor parame-
ters and observations but also the prior information about the environment.
The method relies on a discretized search map with a Bayesian update rule for
the occupancy probabilities. We presented our proposed strategies for merging
incomplete and outdated information about the environment. The reasons be-
hind incomplete and outdated information are the sensing and communication
limitations of the UAVs. We presented simulation results to validate the pro-
posed merging strategies, to compare the performance of our proposed merging
strategies with the uncoordinated search and to show the effects of sensing and
communication parameters on the performance of the proposed merging strate-
gies. However, there are some limitations of this work. Our proposed work
considered only detection errors (false positive and missed detection) but did
not consider measurement noise, which is a common sensing problem. Among
a set of communication related limitations, we considered only communication
range limitations. The work in this chapter is limited only to exchange and
merging of simple data. However, the problems of complex data (e.g., images,
videos) exchange among the UAVs need more investigation.
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Chapter 5

Decision-making in Multi-UAV
Cooperative Search

5.1 Overview

This chapter discusses the final task of cooperative search, i.e., joint decision-
making of UAVs for planning their paths (defined in Section 3.3). This decision-
making includes the selection of a cell to be visited and the order in which these
cells are visited. Additionally, it is also part of the path planning to determine
the time spent or the number of observations required in a given cell. The
time spent in a given cell is always determined by initial observation made in
that cell by a UAV. Both the information merging and decision-making com-
ponents of coordination can be processed at a centralized entity or on each
UAV in a distributed way enabling four processing options. The processing
options are: (i) both the information merging and decision-making are central-
ized, (ii) information merging is centralized and decision-making is distributed,
(iii) information merging is distributed and decision-making is centralized, and
(iv) both the information merging and decision-making are distributed. This
chapter proposes an algorithm for each processing option to analyze the ef-
fects of centralized and distributed coordination on information merging and
decision-making. Each of these algorithms incorporates the steps shown in Fig.
5.1.

The rest of the chapter is organized as follows. Section 5.2 describes the
computation of the path of a UAV. It also derives analytically the number of
required observations to declare the absence or existence of a target in a given
cell. Section 5.3 explains our proposed algorithms to execute the complete
multi-UAV cooperative search and to analyze the effects of centralized and
distributed coordination. In Section 5.4, we present the simulation results to
validate the proposed work.
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Figure 5.1: Processing diagram for cooperative search of an individual UAV U;
at time step t.

5.2 Path Planning

At each time-step t, a UAV visits a specific cell for taking an observation
and exchanging local information with other team members (as shown in Fig.
5.1). The selection of cells to be visited and the order of visiting these cells
(path planning) constitute the path of a UAV. The proposed approach of path
planning consists of two actions: (i) to determine the path, and (ii) to determine
the required number of observations in a given cell.

A closely related work can be found in [14], which uses a greedy approach
in determining the path by selecting an adjacent cell each time step. It does
not include the probability of miss detection and the probability of false alarm
into a single expression while determining the required number of observa-
tions. Moreover, strong assumptions on the selection of sensor model, thresh-
old, and requirement of additional prior information further limits this work
[14]. Unlike [14], our proposed path-planning approach derives the expressions
for calculating the required number of observations considering probability of
miss detection, probability of false alarm, modeling observations as a binomial
distribution, and relaxing assumptions on the selection of the sensor model.

5.2.1 UAV Path

Based on prior information, we predict the cells that are likely to contain a
target. Only these predicted cells are included when determining the paths of
UAVs. A path is planned in such a way that reduces the distance covered by
a UAV. Instead of visiting all the cells of search region, the UAVs visit only a
subset of cells using shortest paths, which reduce the time of cooperative search.
We iteratively predict and determine the paths of the UAVs until all the targets
are located. To predict paths, we first predict cells that need observations. We
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call these predicted cells as candidate cells and represent them by a set S C C.
Depending on the initial observations and P!, S is updated iteratively after
each time a path is traversed (Section 5.3). The Euclidean distance between
the candidate cells is considered as cost, and the set of paths for all the UAVs
R is determined to visit cells in S. The start and end of the paths depend
on centralized (path computation at the ground station) or distributed (path
computation at UAVs) coordination. Consider a graph G = (S, E), where
E is the set of edges connecting cells @ € S and b € S (a # b) and hg
is the Euclidean distance associated with edge (a,b) € E. Finding shortest
paths to visit each cell in S exactly once resembles with solving the well-known
Traveling Salesman Problem (TSP) and/or the Multiple Traveling Salesmen
Problem (MTSP) [12] depending on the number of UAVs. The work in [12]
also provides a survey on a subset of exact and heuristic solutions for the TSP
and the MTSP. Any existing solution (exact or heuristic) for TSP and MTSP
can be applied as an off-the-shelf component to compute the path for visiting
candidate cells. Thus, computational complexity and limitations of TSP and
MTSP solutions are inherited in the proposed approach.

5.2.2 Required Number of Observations

A distinct feature of the proposed path planning is the calculation of limits
for the required observations for deciding on the target existence at a specified
confidence level. These limits are derived considering an imperfect surveillance
sensor (i.e., with miss detections and false alarms) and a Bayesian update model
for the cell’s occupancy probability.

The minimum and average number of sensor observations required to declare
c as a target cell are represented by m., and m,,, respectively. Similarly, the
minimum and average number of sensor observations required to declare c as
an empty cell are represented by m., and m,,, respectively. We exploit the
Bayesian update rule in Eq. 4.1 to calculate the minimum (m.,) and average
(me,,) number of observations required in a given cell ¢ to satisfy the condition
P!> 0OT.

In order to calculate the required number of observations for a target cell, let
us consider a single target cell where a sensor takes m independent observations.
The sequence of consecutive binary observations has a binomial distribution
with the probability of success = p and frequency of successes = x and can be

written as
K

P = (m>p“(1 -p)" " (5.1)

If all observations are positive, the probability of occupancy for m observa-
tions can be calculated by iteratively solving Eq. (4.1). In this case the updated
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occupancy probability in cell ¢ for m positive observations is given by

m PO
pm = iy , (5.2)
prE + g (1 - PY)

where P? is the initial occupancy probability of cell c. Given the values of
p, ¢ and ©T and the target is present, the minimum number of observations
+ o Tequired in a cell ¢ to satisfy the condition P™ > ©F can be computed,
if the target is present. By transforming Eq. (5.2) with some simple algebra,
the number of observations is computed by

m = |Vlog <%) /log %“ ) (5.3)

PY(1-0©7 q
Me o Z 10g (ﬁ) /log}—?, (54)

where [-] denotes the ceiling function to ensure positive integral time steps. It
is clear from Eq. (5.4) that increasing the value of ¢ or decreasing the value of
p increases the minimum number of observations required to decide whether a
target is in the cell.

m

The probability of having m consecutive negative observations in a target
cell is given as (1 —p)™ (using Eq. 5.1). In case of positive and negative obser-
vations, the average number of observations required to satisfy the condition
P™ > ©1 can be determined as follows. Suppose m and m represent the num-
ber of negative and positive observations such that m = m + m. The binomial
distribution has a mean of mp which shows that m = mp and m = m — mp.
The probability of occupancy after m number of positive observations P™ can
be calculated using Eq. (5.2). The probability of occupancy after m number of
negative observations P can be derived in a similar way and is given by

A =p)"R+ (1 -g7(1 - F)
Considering P2 as a prior probability in cell ¢ and using Eq. (5.5) to find the
probability of occupancy after m consecutive negative observations, yields

(5.5)

© A=pmpmPY+ (1 - q)me(1 - FY)

By replacing the values of m and m, and simplifying algebra the average number
of observations m..,, required to satisfy the condition P," > ©7 is calculated as

Po(—P)
{ log ( Ft )
m = (

l—p)logi%g-i—plog%

(5.6)

, (5.7)
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pPo(1—oet
log (%)

— 1=q a4’
(1 —p)log ;= +plog ?

(5.8)

Me,p Z

In analogy we can derive the probability of occupancy after m observations in an
empty cell. Given the threshold ©~ such that P" < ©~, the minimum number
of observations m,, and the average number of observations m.,, required to
declare a cell empty are

Meoy = {log (H) /log %w , (5.9)

and

(5.10)

With probability ¢, the sensor will provide false alarms in all the m obser-
vations and eventually the cell will be erroneously declared a target cell (false
alarm).

5.3 Centralized and Distributed Coordination

Centralized and distributed strategies have different characteristics [86] and
we want to explore the design space in the presence of resource limitations.
The initial observation of an informative sensor (cp. Eq. (4.1)) greatly affects
the occupancy probability which in turn determines whether a cell remains a
candidate cell (if P! > ©7). For further observations, the search actions of the
UAVs are updated to focus only on the candidate cells. Such search strategy
reduces the resource usage and increases the efficiency of the cooperative search.

At the beginning of the search, the ground station generates a pre-computed
movement plan for the team of UAVs. After this initial phase, representative
algorithms are proposed for four possibilities with (i) centralized decision mak-
ing and information merging with team movement plans (CCT), (ii) central-
ized decision making and distributed information merging with individual UAV
movement plans (CDI), (iii) distributed decision making and information merg-
ing with individual UAV movement plans (DDI), and (iv) distributed decision
making and centralized information merging with individual UAV movement
plans (DCI).
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5.3.1 Centralized Decision Making and Information
Merging with Team Movement Plans (CCT)

CCT is a completely centralized algorithm (Alg. 1), where all UAVs have ac-
cess to a single search map {2 on the ground station, and the ground station
is responsible for the selection of the UAV paths R throughout the mission.
Exemplified paths of two UAVs following the CCT algorithm are shown in
Fig. 5.2a. The number of targets found B is initialized with 0, the set of candi-
date cells S is initialized with C, and the number of negative observations (..
is set to zero for each cell. The paths are traversed a fixed number of times M
to have at least M number of observations per cell as shown in line 5 of Alg. 1.
Based on the M initial observations, some cells (with M negative observations)
are removed from the search (Alg. 2) while others become candidate cells and
new paths are computed (lines 8 to 13) by the ground station to focus only on
candidate cells. Thus, the number of cells to be visited for additional observa-
tions at each iteration is reduced. Each path is then traversed only once (line
17) and the process of updating S and R continues until B targets are found.
An empty set S indicates that the search process completely missed the target,
in which case the search is re-initialized (line 15).

Algorithm 1 CCT runs on the ground station.
: procedure CCT((, 4, B, B, M)
: B=0
: S=C

1
2
3
4: M={m.=0:ce C}

5: traverse R = MTSP(S, A), M times

6: while B < B do

7 S = CANDIDATECELLS1(S,M, M)
8 if 0 < size(S) then

9 if size(S) < A then

10: ry =TSP(S) > R,=@:u=2,.,A
11: else

12: R =MTSP(S, A)

13: end if

14: else

15: initialize search

16: end if

17: traverse R, 1 times

18: B = number of cells having P! > 0

19: end while

20: end procedure
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Figure 5.2: Exemplified search paths for (a) CCT, (b) CDI and (¢) DDI for 2
UAVs. Paths in gray represent initial iterations, paths in black represent the
second iteration. Solid lines correspond to U; and dotted lines to Us. In CCT,
all UAVs start from and return to the ground station (GS) at each iteration.
In CDI, the GS selects R during the first iteration and each U; selects S; and
r; in the second iteration (note that r; € RY). In DDI, U, traverses its path r}
0

and selects new Sy and ry, while U; is still on r{ (note that r; & r?).

Algorithm 2 Selection of candidate cells in S for CCT algorithm.
1: procedure CANDIDATECELLS1(S, M, M)

2: if m. > M then > VYe:c€S
3: remove c from S
4. end if

5. end procedure

At each iteration, the ground station waits for all the UAVs to complete
their paths and then updates both S and R. While the paths are the best possi-
ble paths with the given information, the time to search is long due to the wait
times. There are two reasons that stop the ground station from frequent re-
planning. First, due to limited communication the information available at the
ground station may be incomplete. Second, the decision made by the ground
station may not be communicated to all the UAVs on time. This centralized
algorithm is motivated by [109] where new paths for UAVs are computed once
the previous paths are completely traversed and information along those paths
is collected. Distributed algorithms where autonomy is provided to UAVs will
take implicit advantage of frequent updates based on locally available informa-
tion.

The selection of the value for M depends on p and the probability that
a sensor can miss the target in initial M — 1 observations but detects it in
the M observation. The probability that the M observation is the first
success in a target cell and M —1 initial observations miss the target (geometric
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distribution) is
Py =(1-p)"'p (5.11)
and

_log(pam/p)
M= log(1 —p)

For example, if p = 0.9 there is a less than 10% (P = 0.09) chance that
a sensor will miss the target in the first observation and will detect it in the
second (M = 2) observation. If Py, is given (by the operator), the number of
initial observations necessary to predict a cell as a candidate can be selected.

If [S| > A, the ground station updates R by using MTSP otherwise it
assigns a single UAV (TSP path) to visit the candidate cells (lines 10 to 12 of
Alg. 1). As U; can only move to neighboring cells, it may cover multiple cells
while moving from one cell of r; to another. Fig. 5.3 shows an example of paths
taken by the UAVs. The paths generated by the TSP and MTSP solutions are
drawn with edges that cut corners of the cells and UAVs use straight-edge
distances between cells in our computations. Spending one complete time step

by U; in each cell of r; is necessary for time step synchronization among the
UAVs.

+1 (5.12)

GS GS

(a) (b)
Figure 5.3: (a) Path r; and (b) path ry of two UAVs. The gray line shows the
path computed by MTSP and the black line shows the actual path taken by an
UAV. Cells with dots represent candidate cells, and GS represents the ground
station.
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5.3.2 Centralized Decision Making and Distributed In-
formation Merging with Individual UAV Move-
ment Plans (CDI)

In contrast to CCT, CDI (Alg. 3) is distributed where each UAV Uj has its own
search map (2;, a set of candidate cells S;, and the ability to compute a TSP
path for itself. The centralized part in this algorithm is the initial assignment
of MTSP paths R® (line 3) by the ground station, which restricts an UAV U; to
a distinct cluster of cells ¢ for the rest