
Md. Muhidul Islam Khan, M.Sc.

Resource-Aware Task Scheduling in
Wireless Sensor Networks

DISSERTATION

to gain the Joint Doctoral Degree

Doctor of Philosophy (PhD)

————————————–

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

in accordance with

The Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments

Alpen-Adria-Universität Klagenfurt and Universitá degli Studi di Genova

1. Begutachter: Univ.–Prof. Dr. techn. Bernhard Rinner
Institut für Vernetzte und Eingebettete Systeme,

Alpen-Adria-Universität Klagenfurt

2. Begutachter: Prof. Dr. Carlo S. Regazzoni
Dipartimento di Ingegneria Biofisica ed Elettronica,

Universitá degli Studi di Genova

Klagenfurt, July 2014

Acknowledgments

This PhD Thesis has been developed in the framework of, and according to, the rules of the Erasmus

Mundus Joint Doctorate on Interactive and Cognitive Environments EMJD ICE [FPA n° 2010-0012]

with the cooperation of the following Universities:

Alpen-Adria-Universität Klagenfurt – AAU

 Queen Mary, University of London – QMUL

 Technische Universiteit Eindhoven – TU/e

 Università degli Studi di Genova – UNIGE

Universitat Politècnica de Catalunya – UPC

According to ICE regulations, the Italian PhD title has also been awarded by the Università degli Studi

di Genova.

i

First Reviewer

Univ.-Prof. Dr. Bernhard Rinner

Institute für Informatik-Systeme

Alpen-Adria-Universität Klagenfurt, Austria

Second Reviewer

Prof. Dr. Carlo S. Regazzoni

Dipartimento di Ingegneria Biofisica ed Elettronica

Universitá degli Studi di Genova

ii

Declaration of Honor

I hereby confirm on my honor that I personally prepared the present academic work
and carried out myself the activities directly involved with it. I also confirm that
I have used no resources other than those declared. All formulations and concepts
adopted literally or in their essential content from printed, unprinted or internet
sources have been cited according to the rules for academic work and identified by
means of footnotes or other precise indications of source.

The support provided during the work, including significant assistance from my su-
pervisors have been indicated in full.

The academic work has not been submitted to any other examination authority.
The work is submitted in printed and electronic form. I confirm that the content of
the digital version is completely identical to that of the printed version.

I am aware that a false declaration will have legal consequences.

Md. Muhidul Islam Khan Klagenfurt, July 25th, 2014

iii

Abstract

Wireless sensor networks (WSN) are an attractive platform for various pervasive
computing applications. A typical WSN application is composed of di↵erent tasks
which need to be scheduled on each sensor node. However, the severe resource
limitations pose a particular challenge for developing WSN applications, and the
scheduling of tasks has typically a strong influence on the achievable performance
and energy consumption. In this thesis we propose di↵erent methods for scheduling
the tasks where each node determines the next task based on the observed ap-
plication behavior. We propose a framework where we can trade the application
performance and the required energy consumption by a weighted reward function
and can therefore achieve di↵erent energy/performance results of the overall ap-
plication. By exchanging data among neighboring nodes we can further improve
this energy/performance trade-o↵. We evaluate our approaches in a target track-
ing application. Our simulations show that cooperative approaches are superior to
non-cooperative approaches for this kind of applications.

iv

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges . 5
1.3 Contributions . 7
1.4 Thesis outline . 8

2 Background and related work 9
2.1 Wireless sensor networks . 9
2.2 Task scheduling . 16
2.3 Online learning . 18
2.4 Related work for task scheduling in WSN 20

2.4.1 Reinforcement learning method 21
2.4.2 Evolutionary-based method 21
2.4.3 Rule-based method . 22
2.4.4 Constraint satisfaction method 22
2.4.5 Market-based method . 24
2.4.6 Utility-based method . 24

2.5 Di↵erence to own approach . 25

3 System model 27
3.1 Formal problem definition . 27
3.2 System model . 29

3.2.1 Basic system model . 29
3.2.2 System model for combinatorial auction 31

3.3 Set of actions . 31
3.4 Set of states . 32
3.5 Reward function . 33

4 Task scheduling methods 34
4.1 Combinatorial auction . 34
4.2 Learning methods . 37

4.2.1 Reinforcement learning . 37
4.2.2 Bandit solvers . 42

v

4.3 Task scheduling for target tracking 43
4.3.1 Target tracking using combinatorial auction 43
4.3.2 Target tracking using cooperative Q learning 45
4.3.3 Target tracking using cooperative SARSA(�) learning and

Exp3 bandit solvers . 48

5 Implementation and Evaluation 56
5.1 Simulation environment . 56
5.2 Experimental setup . 59
5.3 Simulation results . 59

5.3.1 Results of RL, CRL (one hop and two hop) 60
5.3.2 Results of cooperative Q learning 66
5.3.3 Results of combinatorial auction method 67

5.4 Comparison of RL, CRL, and Exp3 74
5.5 Discussion . 80

6 Conclusion and future work 81
6.1 Summary of contributions . 81
6.2 Future works . 83

Bibliography 83

vi

List of Figures

1.1 Task scheduling in WSN . 6

2.1 Components of a wireless sensor node. 10
2.2 Examples of some commercial sensor nodes. 11
2.3 Wireless sensor network. 12
2.4 Overview of sensor applications [90]. 13
2.5 Data communication in a WSN [11]. 14
2.6 Task scheduling for better resource consumption/overall performance

trade-o↵. 17
2.7 Basic components of a reinforcement learning. 20

3.1 WSN model components. Here four nodes n
i

, n
j

, n
k

, and n
l

. R
i

is the communication range, r
i

is the sensing range, and (u
i

, v
i

) is
the position of the node n

i

. Number of neighbors of the node n
i

,
ngh(n

i

) = 2. 28
3.2 Proposed system model. 30
3.3 System model for the combinatorial auction. 31

4.1 Target tracking example. Red dots denote the di↵erent positions of
a moving target at di↵erent time steps. Circles denote the sensing
range and black lines denote the communication link between the
sensor nodes. 45

4.2 Target prediction and intersection. Node j estimates the target tra-
jectory and sends the trajectory information to its neighbors. Node i
checks whether the predicted trajectory intersects its FOV and com-
putes the expected arrival time. 49

4.3 Trajectory prediction and intersection. Black dots denote the tracked
positions of a target. The middle line is drawn based on linear re-
gression. The other two lines are drawn by confidence interval. 53

4.4 State transition diagram. States change according to the value of two
application variables N

t

and N
ET

. L
c

represents the local clock value
and Th1 is a time threshold. 54

5.1 Simulation environment. 58

vii

5.2 Achieved trade-o↵ between tracking quality and energy consumption
for � = 0.1. 61

5.3 Achieved trade-o↵ between tracking quality and energy consumption
for � = 0.3. 61

5.4 Achieved trade-o↵ between tracking quality and energy consumption
for � = 0.5. 62

5.5 Achieved trade-o↵ between tracking quality and energy consumption
for � = 0.7. 62

5.6 Achieved trade-o↵ between tracking quality and energy consumption
for � = 0.9. 63

5.7 Tracking quality versus energy consumption for various network sizes. 64
5.8 Randomness of target movement, ⌘=0.1, 0.15, and 0.2 64
5.9 Randomness of target movement, ⌘=0.25, 0.3, and 0.4 65
5.10 Randomness of target movement, ⌘=0.5, 0.7, and 0.9 65
5.11 Cumulative reward over time by application scenario 1 (cp. Subsec-

tion 4.3.2). 67
5.12 Tasks execution for Node A in Figure 4.1 by cooperative Q learning. . 68
5.13 Tasks execution for Node B in Figure 4.1 by cooperative Q learning. . 68
5.14 Tasks execution for Node C in Figure 4.1 by cooperative Q learning. . 69
5.15 Total number of execution for each action. 69
5.16 Cumulative reward over time by application scenario 2 (cp. Subsec-

tion 4.3.2). 70
5.17 Residual energy of the network over time. 70
5.18 Variance of the available energy for di↵erent methods. 71
5.19 Residual energy of the network. 72
5.20 Tasks execution for Node A in Figure 4.1 by combinatorial auction

method. 72
5.21 Tasks execution for Node B in Figure 4.1 by combinatorial auction

method. 73
5.22 Tasks execution for Node C in Figure 4.1 by combinatorial auction

method. 73
5.23 Cumulative revenue of the network with three agents. 74
5.24 Tracking quality/energy consumption trade-o↵ for RL, CRL, and

Exp3 by varying the balancing factor of the reward function �. 76
5.25 Tracking quality/energy consumption trade-o↵ for RL, CRL, and

Exp3 by varying the network size. 77
5.26 Tracking quality/energy consumption trade-o↵ for RL, CRL, and

Exp3 by varying the randomness of target movement, ⌘ = 0.10, 0.15,
and 0.20. 78

5.27 Tracking quality/energy consumption trade-o↵ for RL, CRL, and
Exp3 by varying the randomness of target movement, ⌘ = 0.25, 0.30,
and 0.40. 78

viii

5.28 Tracking quality/energy consumption trade-o↵ for RL, CRL, and
Exp3 by varying the randomness of target movement, ⌘ = 0.50, 0.70,
and 0.90. 79

5.29 Results varying the sensing radius . 79

ix

List of Tables

1.1 Classification and examples of sensors [18]. 2

4.1 Reward values for application scenario 1. 47
4.2 Reward values for application scenario 2. 48

5.1 Energy consumption of the individual actions. 59
5.2 Comparison of RL, CRL, and Exp3 based on Tracking Quality (TQ),

Energy Consumption (EC), and Average Communication E↵ort (ACE)
by varying the balancing factor of the reward function �. 76

5.3 Mean and variance of the tracking quality and the energy consump-
tion by varying the number of nodes, N=5, 10, and 20. Here TQ
means Tracking Quality and EC means Energy Consumption. 77

5.4 Comparison of average execution time and average number of trans-
ferred messages (based on 20 iterations). 80

x

CHAPTER

1

Introduction

In recent years, wireless sensor networks (WSN) have become an attractive platform
for observing real world phenomena. A WSN consists of hundreds or thousands of
tiny sensor nodes capable of sensing, communicating wirelessly with their neighbors
and performing on-board computation. Sensor nodes are small devices equipped
with one or more sensors, one or more transceivers, a processor, a storage device
and actuators. Sensor nodes are typically powered by batteries which pose strong
limitations on energy but also on computation, storage and communication capabil-
ities [50, 3].

Sensor networks perform a wide range of applications like area monitoring, mil-
itary applications, target tracking, health and security, etc. Basically WSNs can
be applied to monitoring and computation-based applications [17]. Monitoring ap-
plication includes fire detection, tra�c monitoring, and wildlife habitat monitoring.
Computation-based applications include target detection, tracking, and acoustic sig-
nal processing which may require image processing and filtering operations.

WSNs applications require various kinds of independent tasks like sensing, trans-
mitting, receiving, processing, etc., and various resources like processors, bandwidth,
memory, battery power, etc. Each sensor node is responsible for performing a partic-
ular task at each time step. Task execution consumes energy from the fixed energy
budget of the sensor nodes. The scheduling of the individual tasks has a strong
influence on achievable performance and energy consumption [60].

One of the important characteristics of a WSN is that the network changes
dynamically over time. The network dynamics may happen because of node mobility,
or because of node failure due to energy depletion. Energy consumption includes
the energy cost arising due to computation and communication tasks at each sensor
node. In order to accommodate the dynamic nature of WSN, the need for adaptive
and autonomous task scheduling is well recognized [41].

In this thesis we focus on resource-aware task scheduling in WSN. Resource-
aware, e↵ective task scheduling is very important so that the WSN can know the
best task to execute during upcoming time slots. We propose di↵erent methods
for online scheduling of tasks so that a better resource consumption/performance

1

CHAPTER 1. INTRODUCTION Page 2

trade-o↵ is achieved.

1.1 Motivation

Recent technological advances have enabled the deployment of tiny, energy sensitive
sensor nodes capable of local processing and wireless communication. Each battery-
operated sensor node is able to perform limited processing. When sensor nodes
communicate with neighboring nodes and form a network they then have the ability
to measure a given physical environment in detail. Thus, a sensor network can
be described as a collection of sensor nodes that communicate with each other to
perform application-specific actions [9].

Typically a sensor node has four basic components. Sensing components are
responsible for gathering data from the environment, processing components for data
processing, wireless communication components for data transmission and energy
supply components for power supply to the sensor nodes [63]. Sensor nodes should
be chosen for an application depending on the physical phenomena to be monitored
like temperature, pressure, light, humidity, etc. Table 1.1 shows the classification
and examples of some sensors.

Type Examples
Temperature Thermistors, thermocouples
Pressure Pressure gauges, barometers, ionization gauges
Optical Photodiodes, phototransistors, infrared sensors, CCD sensors
Acoustic Piezoelectric resonators, microphones
Mechanical Strain gauges, tactile sensors, capcitive diaphragms
Motion, vibration Accelerometers, gyroscopes, photo sensors
Flow Anemometers, mass air flow sensors
Position GPS, ultrasound-based sensors, infrared-based sensors
Electromagnetic Hall-e↵ect sensors, magnetometers
Chemical pH sensors, electromechanical sensors, infrared gas sensors
Humidity Capacitive and resistive sensors, hygrometers
Radiation Inonization detectors, geiger-Mueller counters.

Table 1.1: Classification and examples of sensors [18].

In some applications of WSNs, sensor nodes communicate directly with a central-
ized controller or a base station. A WSN could be a collection of autonomous nodes
that communicate with each other by forming multi-hop radio networks and main-
taining connectivity in an ad hoc manner. Such WSNs could change their topology
dynamically, when the connectivity changes either to the mobility of nodes or to the
failure of nodes due to energy depletion [91].

A WSN monitors the environment by measuring the physical parameters like
pressure, temperature, and humidity. Constant monitoring, detection of specific

CHAPTER 1. INTRODUCTION Page 3

events, military battlefield surveillance, object tracking, in-network data aggrega-
tion, forest fire detection, flood detection, habitat exploration of animals, patient
monitoring, home appliances are some of the common applications in sensor net-
works [2].

The number of nodes in a typical WSN is much higher than in a typical ad hoc
network and dense deployment of these nodes is desired in a WSN to ensure the
coverage and connectivity. Sensor nodes must be cheap in order to make their huge
numbers. Sensor network hardware should be power-e�cient and reliable in order
to maximize the lifetime of the network.

The lifetime of a WSN is extremely crucial for most applications. The lifetime
of the network depends on the energy consumed by the sensor nodes during the
performance of the di↵erent tasks required by the application. Typically sensor
nodes perform packet transmission, sensing, processing, and idle mode operation.
Transmitting packets is the most energy-consuming task. Sensing and even in idle
mode operation consume a consistent amount of power as well [30]. The lifetime of
the network can be extended through energy e�cient hardware and protocol design.
Protocol helps to operate the sensor nodes based on the application demands.

For example, in a surveillance application, sensors (e.g., acoustic, video, seismic)
are distributed throughout an area. The application will have some quality of ser-
vice (QoS) or performance requirements like minimum percentage sensor coverage,
minimum probability of missed detection of an event [79]. At the same time, the
application needs to continue this performance as long as is possible with limited
battery power, bandwidth, memory, etc. A careful design of the network protocol
is required in order to maintain the trade-o↵ between performance and resource
consumption.

WSNs face some challenges and limitations in performing the application. Sensor
networks operate in an unattended fashion in remote geographic locations. Nodes
may be deployed in harsh and hostile environments. Wireless communication links
in a WSN operate in the radio, infrared, or optical range. To facilitate the global
operation of WSNs, the selected transmission channel must be available worldwide.
Deploying and managing a high number of sensor nodes in close proximity is a
challenge. Any time after deployment, topology changes due to changes in sensor
node position, power availability, dropouts, malfunctioning, jamming and so on. A
sensor node may need to fit into a tight module on the order of 2cm⇥5cm⇥1cm or
even as small as a 1cm⇥ 1cm⇥ 1cm; a hardware constraint for developing a WSN
applications [74].

Wireless communications pose challenges to WSN design. An increasing distance
between a sensor node and the base station increases the required transmission power
which is very energy consuming. Therefore, the distance is divided into several
shorter distances with multi-hop communication for sensor nodes protocols. Multi-
hop communication requires cooperation among sensor nodes to identify e�cient
routes and to serve as relays. Many sensor nodes use power-aware protocols where
radios are turned o↵ when they are not in use [69].

CHAPTER 1. INTRODUCTION Page 4

The large scale and the energy constraints of WSNs make centralized algorithms
infeasible. For example, in routing application, a base station can collect information
from all sensor nodes and inform each node of its route. On the other hand, in
decentralized algorithms, sensor nodes cooperate with the neighboring nodes to make
localized decisions.

Sensor nodes typically exhibit a strong dependency on battery life. Generally,
sensor nodes use AA alkaline cells or one Li�AA cell. Energy consumption can be
allocated to three functional domains: sensing, communication and data processing.

A performance metric is required to determine the performance of a particular
application. Since energy-e�ciency is the key characteristic of a WSN, the perfor-
mance metric is typically associated with the trade-o↵ between energy consumption
and performance of the application. For example, in a typical surveillance system,
it may be required that one sensor node remains active in every sub-region of the
network. In this case, the performance metric can be determined by the percentage
of the environment that is actually covered by the active sensors. In a typical track-
ing application, the performance metric can be considered as the accuracy of target
location estimation provided by the network [61].

Generally a WSN node can perform the following tasks: transmit, receive, sleep,
sense, data processing, etc. Each task requires a specific energy consumption level.
Energy consumption in sense task is relevant to a specific application, while energy
consumption in other tasks are related to work process of a node [34]. In addition,
energy consumption for the radio component in a node is much greater than that
of other components in the majority of WSN applications. Task scheduling helps to
find the best allocation of tasks to resources for the specific application by performing
some triggering activities. This triggering can be performed in several ways such
as o✏ine, periodic, online or can be issued by changes in network. It also helps in
learning the usefulness of tasks in any given state to maximize the total amount of
reward over time [5].

For determining the next task to execute, the sensor nodes need to consider
the impact of each available task on energy budget and the application’s perfor-
mance. There is a trade-o↵ between application performance and resource con-
sumption, and the task scheduler of the node should be able to adapt to changes
in the environment. For example, in a target tracking application, sensor nodes
should frequently execute the tracking task when objects are within the field of
view (FOV). Since tracking is very resource consuming, this task should be avoided
when no object to track is nearby. Thus, task scheduling is an important issue
to improve the energy/performance trade-o↵, and we investigate scheduling meth-
ods which are able to learn e↵ective scheduling strategies in dynamic environments.
Since resource-awareness is an important aspect we consider energy consumption for
task scheduling and aim for low resource consumption of the scheduling algorithms.
The ultimate goal is to achieve a high application performance while keeping the
resource consumption low.

In this thesis we propose di↵erent methods of task scheduling. The proposed

CHAPTER 1. INTRODUCTION Page 5

methods help to learn the best task scheduling strategy based on previously observed
behavior and is further able to adapt to changes in the environment. A key step here
is to exploit cooperation among neighboring nodes, i.e., the exchange of information
about the current local view of the application’s state. Such cooperation helps to
improve the trade-o↵ between resource consumption and performance.

1.2 Challenges

As a WSN is a resource constrained network, there are challenges associated with
task scheduling. Figure 1.1 shows the basic task scheduling mechanism in WSN.
Here we observe that there is an available resource infrastructure for the WSN
application. Basically battery power, memory, and processing functionality form
the resource infrastructure. For performing the application, sensor nodes execute
some tasks. Task scheduling methods help to schedule the tasks in a way that
the resource is optimized with the goal of maximizing the lifetime of the network.
Sensor nodes consume some resources from the resource budget for each executed
task. Scheduling can be performed online, o✏ine or periodically.

Some of the challenges and design issues for task scheduling are as follows:

• Which task scheduling method to use?

– To select a suitable task scheduling method is a challenge. There are
several methods for task scheduling (cp. Section 2.4 for more details).
Due to the dynamic nature of WSNs, adaptive, and online task scheduling
methods should be chosen.

• How to monitor a resource assignment?

– Battery power, memory and processing functionality are the main re-
sources of WSNs. We need to monitor the resources after executing the
tasks. For example, a task execution consumes some energy from the
energy budget of the sensor node which has also an e↵ect on the per-
formance of the application. The goal is to maintain a better trade-o↵
between energy consumption and application performance.

• How to model the WSN and application?

– To model the WSN with some number of nodes having di↵erent param-
eters such as sensing radius, transmission radius, and resource consump-
tion model is a challenge. These parameters provide an impact on task
scheduling. Tasks scheduling should meet the application demands. For
that, careful consideration should be given to model the WSN and the
application.

CHAPTER 1. INTRODUCTION Page 6

 Avilable Resource Infrastructure

(Battery Power, Memory, Processing
Functionality)

Task Scheduling Methods

(Reinforcement Learning, Bandit
Solvers, Auction)

Goals

(Maximize
Lifetime of

the Network)

Trigger

(Online, Offline, Periodic)

Resource
Assignment

Monitor

Figure 1.1: Task scheduling in WSN

• How to learn the best scheduling?

– There is a wide range of learning methods in computer science like super-
vised learning, unsupervised learning, reinforcement learning, etc. The
choice of a particular learning method is however a challenge since there
is no a priori information or a very little information exists for a dynamic
system like WSNs.

• Which type of triggering should be used?

– Triggering for task scheduling can be performed online, o✏ine or peri-
odically. Appropriate triggering depends on the application and task
scheduling methods.

CHAPTER 1. INTRODUCTION Page 7

1.3 Contributions

The main contributions of this thesis are following:

• Perform research on state-of-the-art.

– We perform state-of-the art research on resource-aware task scheduling
methods in WSN. We find that most of the existing approaches do not
provide online scheduling of tasks. Further, they do not consider cooper-
ation among neighboring nodes for task scheduling.

• Apply online learning methods for task scheduling.

– We apply online learning methods for task scheduling. We further con-
sider the cooperation among neighboring nodes for task scheduling.

– We propose an online task scheduling method with cooperation among
neighboring nodes. First, we propose a cooperative Q learning, a variant
of the reinforcement learning, for task scheduling. The main contribution
here is cooperation among neighboring nodes. This work is published in
[41]. This is our initial work to apply reinforcement learning. We consider
a set of actions, a set of states, and scalar values for the reward. We
consider a fixed topology with only three nodes in this work.

– We propose a market-based method for resource-aware task scheduling in
WSN. We apply a combinatorial auction based method for task schedul-
ing. We compare our proposed approach with static and random task
scheduling methods. Our proposed method outperforms the others, in
terms of residual energy, comparing with the existing static and random
task scheduling. This work is published in [45].

– We update the work [41] with di↵erent topologies consisting of a dif-
ferent number of nodes, weighted reward function, and exchanging data
among neighboring nodes. We propose a cooperative reinforcement learn-
ing (CRL), state-action-reward-state-action (SARSA(�)) algorithm for
task scheduling. We compare our proposed method with independent
reinforcement learning (RL) [67]. This work is published in [42].

– We propose a method using bandit solvers for task scheduling. We use the
classical adversarial algorithm, Exp3 (Exponential-weight algorithm for
exploration and exploitation) for task scheduling. Exp3 and CRL achieve
similar results in terms of performance/resource consumption trade-o↵.
The paper based on this study is currently under review [43].

• Evaluate/compare based on simulation.

CHAPTER 1. INTRODUCTION Page 8

– We evaluate RL, CRL, and Exp3 in terms of the performance/resource
consumption trade-o↵. The paper based on this study is currently under
review [44].

1.4 Thesis outline

The remainder of this thesis is organized as follows:
Chapter 2 o↵ers an overview of the literature published in this area. In this

chapter, we provide background on wireless sensor networks (WSN), task scheduling,
and online learning. We then review related works based on task scheduling in a
WSN. We conclude this chapter with a discussion of the novelty of our work.

Chapter 3 provides the description of the system model. In this chapter, we
describe the system model of our task scheduling methods. First, we delineate
the basic system model for our task scheduling followed by the system model for
combinatorial auction method. Afterward, we describe our considered set of actions,
set of states, and the reward function.

Chapter 4 describes the proposed methods for the task scheduling in a WSN and
the task scheduling for the target tracking application. We describe the proposed
resource-aware task scheduling methods for the WSN. Here, we consider the sys-
tem model, the set of tasks, the set of states, and the reward function described in
Chapter 3. First, we describe the combinatorial auction method. Then we describe
the cooperative reinforcement learning methods (Q learning, SARSA(�)) and ban-
dit solvers method. We conclude this chapter with a description of our proposed
method for task scheduling in an object tracking application.

Chapter 5 shows the results and discussions. We describe our simulation en-
vironment first. We apply reinforcement learning (RL), cooperative reinforcement
learning (CRL), exponential weight for exploration and exploitation (Exp3) bandit
solvers, and combinatorial auction for the task scheduling in a WSN. We consider an
object tracking application and apply our methods for task scheduling. We evaluate
our applied methods. We conclude this chapter with the discussion of simulation
results.

Chapter 6 concludes the thesis, summarizing the goals, contributions, results,
and future work.

CHAPTER

2

Background and related
work

In this chapter, we o↵er an overview of wireless sensor network (WSN), task schedul-
ing, and online learning. We then proceed with related works based on tasks schedul-
ing in WSN. We conclude this chapter with a discussion of the novelty of our work.

2.1 Wireless sensor networks

The recent promotion of micro-electro-mechanical systems (MEMS), digital electron-
ics and wireless communication enable the evolution of low power, multifunctional
sensor nodes that are small in size and communicate with their neighbors. Wireless
sensor networks (WSN) consist of hundreds or thousands of small, battery-powered,
and wireless devices called sensor nodes with on-board processing, communication,
and sensing capabilities. Each node consists of one or more processors, multiple
types of memory, a wireless transceiver, a power source (e.g., batteries, solar cells),
and diverse sensors [4].

Figure 2.1 shows the components of a general sensor node. Sensing elements
are a crucial part of a sensor node. Sensors collect information about physical
phenomena. Selecting the sensors for a particular application is a challenge. For
example, if we propose to calculate distance using audio sensors, we will also need
to measure humidity and temperature. Because the velocity of the sound depends
heavily on both temperature and humidity of the environment. The sensors have a
particular range to sense or detect the targets or events. This range is called sensing
coverage [91].

One of the components of a sensor node is the storage device. Depending on the
overall WSN structure, the requirement for storage devices at each node should be
di↵erent. For instance, if the WSN follows the structure that all sensor nodes should
send data to the central node then there is less importance for local storage on each
single sensor node. But if the goal is to reduce the amount of communication in the
network, local storage will be more significant. Flash storage, micro disks and nano-
electronics based magnetoresistive random-access memory are some of the common

9

CHAPTER 2. BACKGROUND AND RELATED WORK Page 10

storage devices in WSN [82].

Figure 2.1: Components of a wireless sensor node.

Radios are the communication component of a sensor node. The design and
selection of radios are important as the energy budget for sending and receiving
messages usually dominates the total energy budget of a sensor node. Radios have a
particular range called the radio coverage. Within the radio coverage, sensor nodes
can communicate with each other [32]. Some low-power radio-based sensor devices
use a single-channel RF transceiver operating at 916 MHz and some sensor sys-
tems use a bluetooth-compatible 2.4 GHz transceiver with an integrated frequency
synthesizer.

Energy is the main constraint for a sensor node. So, power supply is a very
significant factor. There are two di↵erent ways to address the concept of power
supplies. The foremost is to equip a sensor node with a source of energy. Presently,
the most used option is to use high-density battery cells. Another alternative is to
employ the energy harvesting cells. The solar cell is one form of energy harvesting
cells. Battery operation for sensors used in commercial applications is typically
based on two AA alkaline cells or one Li� AA cell.

Processors are capable of on-board processing. Digital signal processor (DSP),
field programmable gate array (FPGA) processor and application specific integrated
circuit (ASIC) are some examples of the processor. There are di↵erent microcon-
trollers currently used in sensor node design such as Atmel AVR 8bit, Intel PXA271
“Bulverde”, Texas Instruments MSP430, and Atmel AtMega 1281 [40].

Sensor nodes work together to monitor an area in order to obtain information
about the environment. Based on the way of deployment of the nodes, there are
two types of WSNs: structured and unstructured. In an unstructured WSN, sensor

CHAPTER 2. BACKGROUND AND RELATED WORK Page 11

nodes are densely deployed. Sensor nodes may be randomly placed into the field.
After the deployment, the unstructured WSN is left unattended to perform the
environment monitoring. Network maintenance is more di�cult in an unstructured
network comparing with the structured network since there are so many nodes in an
unstructured network. Sensor nodes are pre-determined to be located in specified
locations in a structuredWSN. The advantage of a structured network is less network
maintenance with less management cost [90].

Figure 2.2 shows some commercially available sensor nodes.

(a) Mica2 node [12]. (b) Mica2dot [37]. (c) Sun Spot [70].

(d) Smartdust node [39].

Figure 2.2: Examples of some commercial sensor nodes.

Figure 2.3 shows an example of a multi-hop data communication in a wireless
sensor network. The sensor node which detects an event, sends the information to
the neighboring nodes which terminates at a special node called the base station.
The base station is like a gateway that connects one network to another. The base
station has enhanced capabilities as compared to simple sensor nodes. Here, a link
between two sensor nodes represents a single hop and that the data is eventually
transferred via multiple hops to the base station.

When the transmission ranges of the radios of all sensor nodes are large enough
to communicate directly with the base station, each sensor node can send their data
directly using a single-hop. However, most sensor networks cover a huge area and
in this case radio transmission power should be kept minimum in order to make the

CHAPTER 2. BACKGROUND AND RELATED WORK Page 12

network energy e�cient.

Figure 2.3: Wireless sensor network.

Basically, sensor network applications can be categorized into two types; monitor-
ing the real world phenomena, and tracking targets. Monitoring applications include
military security detection, habitat monitoring, industrial monitoring, health and
environmental monitoring. Habitat monitoring includes monitoring human habitats
(smart homes and residential care centers, for instance), as well as animal habi-
tats. Business monitoring includes inventory monitoring. Public/Industrial moni-
toring includes structural, factory, inventory, machinery and chemical monitoring.
Environmental monitoring includes weather, temperature and pressure monitoring.
Tracking applications include tracking vehicles, humans, animals, and objects. Fig-
ure 2.4 shows the overview of sensor applications [90].

A WSN has its own resource and design constraints. Resource constraints in-
clude a limited energy, low bandwidth, limited processing capability of the central
processing unit, limited storing capacity of the storage device, and short commu-
nication range. Design constraints are application-dependent and also depend on
the environment being monitored. The environment acts as a major determinant
regarding the size of the network, deployment strategy, and network topology. The
number of sensor nodes or the size of the network changes based on the monitored
environment. For example, in indoor environments, fewer nodes are needed to form
a network in a limited space, whereas outdoor environments may require more sensor
nodes to cover a huge unattended area. The deployment scheme also depends on the
environment. Ad hoc deployment is preferred over a pre-planned deployment when
the environment is not accessible and the network is composed of a vast number of
nodes [47].

CHAPTER 2. BACKGROUND AND RELATED WORK Page 13

Sensor Networks

Tracking Monitoring

Public/Industrial

Traffic Tracking

Car/Bus Tracking

Habitat

Animal Tracking

Military

Enemy
Tracking

Business

Human
Tracking

Military

Security
Detection

Habitat

Animal
Monitoring

Business

Inventory
Monitoring

Industrial

Structural
Monitoring

Factory
Monitoring

Machine
Monitoring

Chemical
Monitoring

Health

Patient
Monitoring

Environment

Weather
Monitoring

Figure 2.4: Overview of sensor applications [90].

Since sensor nodes operate on limited battery power, energy is a vital resource
for a WSN. When a node is depleted of energy, it will disconnect from the network,
which has a significant impact on the performance of the application.

One of the major reasons of energy consumption for the communication in WSN
is idle mode consumption. When there is no transmission/reception, sensor nodes
consume some energy for listening and waiting for the information from the neigh-
boring nodes. Over hearing is another source of energy consumption. Over hearing
means that a node picks up packets that are destined for other nodes. Packet
collision is another issue of energy consumption. Collided packets should be re-
transmitted which require extra e↵ort in energy consumption. Protocol overhead is

CHAPTER 2. BACKGROUND AND RELATED WORK Page 14

also a reason for energy consumption.
In some protocols, nodes are clustered together, to maintain scalability, that is;

to allow spatial expansion if necessary. In that case, there is a cluster head (CH)
for each cluster. A CH is responsible for collecting data from the sensor nodes of
that particular cluster. The CH can communicate with other CH and can send the
processed information to the base station (BS). Both CH and BS are special types
of sensor nodes having more energy and processing functions [68]. Figure 2.5 shows
the basic data communication in a clustered WSN. Data communication can be
categorized into two types: intra-cluster communication and inter-cluster commu-
nication. In a particular cluster, sensor nodes communicating with the CH of that
cluster is called intra-cluster communication. CH communicating with the CH of
other clusters or with the BS is called inter-cluster communication.

Figure 2.5: Data communication in a WSN [11].

One of the factor that needs to be considered for network and protocol design
in WSN is scalability. The number of sensor nodes deployed in the area may be in
the order of hundreds or thousands. A WSN must be designed so that the network
adapts to the number of sensor nodes. The node density depends on the WSN
application. In an indoor environment, the number of sensor nodes could be smaller
as compared to an unattended outdoor environment [73].

Fault tolerance is another factor to be considered. Some nodes may fail due to
power failure, physical damage or monitored environmental interference. A WSN
should be fault tolerant. Fault tolerance depends on the application of WSN. If the
sensor nodes are deployed in the home, there should be less consideration for fault
tolerance since there should be less active, deliberate interference in an indoor envi-

CHAPTER 2. BACKGROUND AND RELATED WORK Page 15

ronments. On the other hand, if sensor nodes operate in a battlefield for surveillance
and detection then there should be proper care for fault tolerance because sensor
nodes may be damaged by hostile actions.

Production costs also need to be considered. Since a WSN consists of so many
nodes, the production cost of a sensor node should be kept low. Current sensor
systems based on bluetooth technology cost about 10$. However, the cost of a
sensor node is generally targeted to be less than 1$, which is lower than the current
state-of-the-art technology [36].

Network topology is another design factor for a WSN. A huge number of sensor
nodes are deployed over the monitored area and for this network topology is a chal-
lenging factor. There are three issues related to topology maintenance. One issue
is the deployment phase. Sensor nodes can be deployed by dropping from a plane,
throwing by a catapult, placing in factories or by placing one by one either by a
human or a robot. Post-deployment phase is another issue. After deployment, topol-
ogy changes due to changes in position, available energy or malfunctioning. Another
stage of network topology maintenance is re-deployment of additional nodes. Addi-
tional sensor nodes may be deployed for replacing the malfunctioning nodes [54].

Sensor nodes are densely deployed which may be close to each other or may
be directly inside of the monitored phenomenon. Sensor nodes may work in busy
intersections, in the interior of a large machinery, on the surface of the ocean during a
tornado, in a biological or chemical contaminated field, in a home or a large building,
in a large warehouse, attached to animals, attached to fast moving vehicles, etc. [62]

Transmission media is another factor to be considered. Communicating nodes
are linked by radio, infrared or optical media. For the global operation of WSN, the
transmission media should be available worldwide.

Data processing is another design factor for WSN. Energy spent in data pro-
cessing is much less comparing with the data communication. Data processing in
WSNs reduces the number of transmissions which minimizes the overall power con-
sumption. This improves the performance and emergency response speed of the
application of WSN like environmental monitoring [33]. For example, in sea water
quality monitoring application, number of sensor nodes distributed on the sea sur-
face is large. If every nodes send the data to the base station for processing to find
out the abnormality, there should be a huge number of data transmissions which is
very energy consuming. Each node able to do some local processing can reduce this
number of data transmissions and helps to make the system energy e�cient [64].

Target tracking is a challenging, typical and generic application for WSN. The
tracking application may be for a single target or multiple targets. Targets may
be stationary or moving. Target tracking is applied in various applications of
WSN, such as the field of surveillance, finding intruder, military application, and
tra�c operation. For target tracking application, the protocol design should be
energy e�cient so that the better energy consumption/tracking performance is
achieved [65] [4].

CHAPTER 2. BACKGROUND AND RELATED WORK Page 16

2.2 Task scheduling

In general, task scheduling means to make a plan for performing the tasks to achieve
an objective. Where each task has some constraints like completion time, required
resources, etc. In computer science, this term basically used in the operating system
(OS) concepts. Task scheduling in operating system is the method by which running
processes or programs are given access to the system resources, e.g., processor time,
memory access, etc. Basically task scheduling is important for multi-tasking in OS.
When the scheduler needs to perform multiple tasks in their queue to execute, then
task scheduling is required to meet the deadline. Whenever the processor becomes
idle, the scheduler selects another task from the queue to perform next [86].

Basic task scheduling concepts can be categorized in to two types: preemptive
and non-preemptive task scheduling. The di↵erence between preemptive and non-
preemptive scheduling is that in non-preemptive scheduling, a process or a program
enters the running state and is not removed from the processor until it is terminated.
Preemptive scheduling allows the OS to control over the states of processes.

There are following five states which a process goes through during its life cycle.

• New: When a process is first activated and created. For example, launching a
software program in OS.

• Ready: When the process is ready to be assigned to the processor.

• Running: When the process is being executed is known as “running”.

• Waiting:: The process is waiting for the communication from other processes.

• Terminated: When the execution of the process is finished.

Preemptive scheduling is when a process is interrupted and the processor is assign
to another process with a higher priority. This type of scheduling occurs when a
process switches from running state to a ready state or from a waiting state to ready
state. Non-preemptive scheduling allows the process to run through to completion
before moving onto the next task [77].

The basic non-preemptive scheduling mechanism is the first-in-first-out (FIFO).
In this scheduling mechanism, the first task in the queue should be executed first.
There is no priority to select the task from the queue.

Shortest-job-first (SJF) is a preemptive scheduling. In SJF, scheduler picks the
shortest job that needs to be done, get it out of the way first and then pick the next
smallest one and so on. Here the shortest job means, the job which requires the
least processor time or central processing unit (CPU) cycle [72].

Priority scheduling can be either preemptive or non-preemptive. In preemptive
priority scheduling, the scheduler preempt the processor if the priority of the newly
arrived process is higher than the priority of the currently running process. In non-
preemptive priority scheduling, the scheduler simply puts the new process at the

CHAPTER 2. BACKGROUND AND RELATED WORK Page 17

head of the ready queue. Priorities are implemented using integers within a fixed
range, but there is no rule as to whether “high” priorities use large numbers or small
numbers [88].

Round robin scheduling is another scheduling mechanism. It is similar to FIFO
scheduling, except that CPU cycle are assigned with limits called time quantum.
When a task is given the CPU, a timer is set to whatever value has been set for
time quantum. If the task finishes its cycle before the time quantum timer expires,
the scheduler selects the next task from the queue and allocate CPU to it [48].

Task scheduling is an important aspect in WSN. Sensor nodes have no prior
knowledge about which task to execute at each time step. Each node performs
task scheduling among a set of available tasks. Scheduling is performed at time
instances, when the previous task has terminated. Each task requires resources and
contributes to the overall performance of the application [20].

Figure 2.6 shows a small homogenous sensor network. Each sensor node needs
to perform a particular set of tasks over time steps.

Node

Node

Node

Set of Tasks
to Perform

the
Application

Energy
Budget for
the Tasks

Cooperation Cooperation

Set of Tasks
to Perform

the
Application

Energy
Budget for
the Tasks

Set of Tasks
to Perform

the
Application

Energy
Budget for
the Tasks

Cooperation

Figure 2.6: Task scheduling for better resource consumption/overall performance
trade-o↵.

Every sensor node has an initial energy budget for performing tasks. Each task
consumes an amount of energy budget and provides an impact to the overall perfor-
mance. Here, cooperation means to share the local observations with the neighboring
nodes. Tasks scheduling helps to schedule the tasks in a way that the better resource

CHAPTER 2. BACKGROUND AND RELATED WORK Page 18

consumption/overall performance is maintained.
Task scheduling can be defined as to schedule a set of tasks needed for performing

the application in a way that the better resource consumption/application perfor-
mance trade-o↵ is achieved. For every application of WSN, there should be a set of
tasks to be executed by each sensor node. These tasks can be scheduled o✏ine or
online [7].

In o✏ine scheduling, the complete information about the system activities is
available a priori, and the schedule can be determined at compile time. Due to the
high dynamics of WSN, complete system information is only available at runtime
which requires online scheduling [52].

If we consider some sensor nodes scattered in a particular area for an object
tracking application, the network should work in such a way that it can e�ciently
allocate its resources for the performance of its tasks. For object tracking the basic
tasks are sensing, transmitting, receiving, and sleeping. If we apply task scheduling
for object tracking, we need to model the network in such a way that it can maximize
the network lifetime.

2.3 Online learning

Online learning takes place in a sequence of rounds. At each round, the learner makes
some kind of predictions and then receives some kind of feedback so that training
and testing take place at the same time. Online learning is concerned with problems
of decision making about the present based on the previously earned experience and
knowledge. Online learning is the process of answering questions given knowledge
of correct answers of previous questions. For that, the learner needs to make a
prediction. This prediction mechanism is based on the mapping from the set of
questions to the set of answers is called the hypothesis. After predicting the answer,
the learner gets the correct answer of the question. The quality of the answer is
then evaluated by a loss function that measures the di↵erence between predicted
answer and real answer [10]. Learning algorithms fall in to three groups based on
the feedback it has access to. These are supervised learning, unsupervised learning,
and reinforcement learning.

In supervised learning, a learning algorithm analyzes the training data and pro-
duces an inferred function, which can be used for mapping new examples. For ex-
ample, a learning algorithm is given a problem to decide whether it will rain today
or not. For that, the learner was given a set of inputs about the raining probabilities
of some days. At first, the learning algorithm needs to predict about an output (rain
or not rain) based on the provided inputs. The quality of the prediction or answer
of the learner is evaluated by the loss function. The learner’s ultimate goal is to
minimize the cumulative loss [71].

In an unsupervised learning, the learner makes a decision based on past experi-
ences by trail and error [75]. The learner simply receives inputs but obtains neither

CHAPTER 2. BACKGROUND AND RELATED WORK Page 19

supervised target outputs, nor rewards from the environment. However, it is possi-
ble to develop the representations of the input that can be used for decision making,
predicting future inputs, e�ciently communicating the inputs to another machine,
etc. [28]

The third category of learning is reinforcement learning. This is where the learner
receives feedback about the appropriateness of its response. Reinforcement learning
is one kind of online machine learning. In reinforcement learning, the learner learns
about what to do (actions) and the mapping of situations to actions by the past
experiences to maximize the reward over the long run. The learner is not told which
action to perform like most of the machine learning mechanisms do. The learner
needs to discover which actions provide the most reward by trying the actions.
Actions not only provide an impact on the situation of the environment but also on
obtained reward [38].

One of the challenges of reinforcement learning is exploration and exploitation of
the actions. In reinforcement learning, the learner tries out all actions in it’s actions
set. Exploitation means to perform the action based on current information. The
learner select the action which has been performed in the past, and found to be
e↵ective in producing reward. Exploration means to perform a new action which
has not been performed before. The learner needs to exploit actions in order to
obtain reward, but the learner also needs to explore the actions in order to make
better action selection in future [80].

A reinforcement learner generally has four basic components: a policy, a reward
function, a value function, and a model of the environment. The policy is the
decision making function of the agent. It specifies what action it should perform in
which state it remains. The reward function maps the state of the environment to
a single number indicating the gain of the state. The objective of the agent is to
maximize the total reward over long run. The value function defines what is good
in the long run. The model of the environment or external world should follow the
behavior of the environment. For a given situation and action, the model predicts
the resultant next state and next reward. Figure 2.7 shows the basic components of
reinforcement learning.

Due to the dynamic nature of WSN, it is necessary to schedule the tasks on-
line [16]. We need a task scheduling mechanism that improves application perfor-
mance. For example, for object tracking applications, sensor nodes need to perform
some tasks over some time period. Sensing, transmitting, receiving, and sleeping
are some of the common tasks performed by the sensor nodes. If sensor nodes have
nothing to transmit/receive or sense then its better to turn o↵ all the components.
So, a task scheduling mechanism is required which is online and able to improve
the overall performance of the network. If we are able to learn e�ciently and online
about the tasks to perform for a particular application then there should be better
performance in terms of the resource consumption/performance trade-o↵ [27].

CHAPTER 2. BACKGROUND AND RELATED WORK Page 20

Agent Environment

Agent’s Policy

(Tasks Scheduling Policy)
Agent’s Value Function

Action

(Execution of a Task)

Reward

S

S

Figure 2.7: Basic components of a reinforcement learning.

2.4 Related work for task scheduling in WSN

In a resource constrained WSN, e↵ective task scheduling is very important for facil-
itating the e↵ective use of resources [26]. Cooperative behavior among sensor nodes
can be very helpful to schedule the tasks in a way that the energy is optimized
and also a considerable performance is maintained. Most of the existing methods
of tasks scheduling do not provide online scheduling of tasks. Most of them rather
consider static task allocation instead of focusing on distributed task scheduling.
The main di↵erence between task allocation and distributed task scheduling is that
task allocation deals with the problem of finding a set of task assignments on a sen-
sor network that minimizes an objective function such as total execution time [81].
On the other hand, in a task scheduling problem, the objective is to determine the
best order of tasks execution for each sensor node. Each sensor node has to execute
a particular task at each time step in order to perform the application, and each
node determines the next task to execute based on the observed application behav-
ior and available resources. The following subsections describe some task scheduling
methods in WSN.

CHAPTER 2. BACKGROUND AND RELATED WORK Page 21

2.4.1 Reinforcement learning method

Reinforcement learning helps to enable applications with inherent support for ef-
ficient resource/task management. It is the process by which an agent improves
task scheduling according to previously learned behavior. It does not need a model
of its environment and can be used online. It is simple, and demands minimal
computational resources.

Shah et al. [66] consider Q learning as reinforcement learning for the task man-
agement. They describe a distributed independent reinforcement learning approach
(DIRL) for resource management, which forms an important component of any ap-
plication includes initial sensor selection and task allocation as well as run-time
adaptation of allocated resources to tasks. Here the optimization parameters are
energy, bandwidth, network lifetime, etc. DIRL allows each individual sensor node
to self schedule its tasks and allocate its resources by learning their usefulness in any
given state while honoring application-defined constraints and maximizing the total
amount of reward over time. The advantage of using independent learning is that
no communication is required for coordination between sensor nodes and each node
selfishly tries to maximize its own rewards. They apply this to the object tracking
application and achieve better results in terms of the average award over time in the
network.

Shah et al. [67] presents a scheme for resource management in WSN using a
bottom up approach where each sensor node is responsible for task selection instead
of the top down approach conventionally used by other solutions. This bottom
up approach using reinforcement learning allows development of autonomous WSN
applications with real time adaptation, minimal or no centralized processing require-
ment for task allocation, and minimal communication overhead. They use two tier
learning: micro learning and macro learning, as used by each data stream sub-world
to steer the system towards application goal by setting/updating rewards for micro
learners. They use collective intelligence (COIN) theory to enable macro learning
that can steer the system towards the application’s global goal.

2.4.2 Evolutionary-based method

Guo et al. [31] propose an evolutionary based method for the task allocation problem
in WSN. They consider a WSN consists of m sensors and n independent task. Tasks
compete for the sensors. The goal is to allocate n tasks to the sensors reasonably with
the shortest total execution time. They propose a basic particle swarm optimization
(PSO) which is initialized with a population of random solutions. They consider a
set of particles. Each particle is treated as a point with a velocity in a D dimensional
solution space. Each particle has a fitness value which is set by an objective function.
After calculating the fitness value, the system updates the local best value and then
global best value. For each particle, the system executes the mutation operator on
this particle if its diversity is less than the threshold. After that, the system executes

CHAPTER 2. BACKGROUND AND RELATED WORK Page 22

the mutation operator on the all particles if the population diversity is less than a
particular threshold. If the termination conditions are satisfied, then the method
terminates.

2.4.3 Rule-based method

A set of rules or predicates help to configure the wireless sensor networks, where
certain functions must be automatically assigned to sensor nodes, such that the
properties of a sensor node (e.g. remaining energy, network neighbors) match the
requirements of the assigned function. Based on the assigned rules, sensor nodes
may adapt their behavior accordingly, establish cooperation with other nodes, or
may even download specific code for the selected rule.

Frank et al. [26] propose a method for generic task allocation in wireless sensor
networks. They define some rules for the task execution and propose a role-rule
model for sensor networks where “role” is used as a synonym for task. It is a pro-
gramming abstraction of the role-rule model. This distributed approach provides a
specification that defines possible roles and rules for how to assign roles to nodes.
This specification is distributed to the whole network via a gateway or alterna-
tively it can be pre-installed on the nodes. A role assignment method takes into
account the rules and node properties, which may trigger execution and in network
data aggregation. This generic role assignment approach does consider the energy
consumption but not the ordering of tasks to sensor nodes.

Liu et al. [55] mention a system for managing autonomic, parallel sensor systems.
They consider energy a resource. They describe Impala, a middleware architecture
that enables application modularity, adaptability, and reparability in WSN. Impala
allows software updates to be received via each node’s wireless transceiver and to
be applied dynamically to the running system. In addition, Impala also provides an
interface for on-the-fly application adaptation in order to improve the performance,
energy e�ciency, and reliability of the software system. They consider the applica-
tion parameters include recent histories, averages, or totals of the number of direct
network neighbors encountered the amount of sensor data successfully transferred
to peer sensor nodes, the amount of free storage for application data, and so on.
System parameters include the battery level, the transmitter range, and the geo-
graphic position of the nodes. They design the middleware considering some rules
on parameters. If the rules are satisfied then the next query is executed. This is
designed to be a part of the Zebranet mobile sensor network. Impala is a lightweight
run-time system that can greatly improve the system reliability, performance and
energy e�ciency.

2.4.4 Constraint satisfaction method

Constraint satisfaction is a formalism that is used to model a large class of problems
with applications in engineering design, planning, scheduling, resource allocation,

CHAPTER 2. BACKGROUND AND RELATED WORK Page 23

and fault diagnosis [19]. There are a number of variables, each of which has an
associated domain of values in a constraint satisfaction problem (CSP). Constraints
are specified on subsets of these variables restricting the set of values they can take on
jointly. The objective of a CSP is to find out if each of these variables can be assigned
a value from its domain in such a way that all the constraints are satisfied. In a CSP
it su�ces to find a single point in the search space which satisfies all constraints. A
CSP is said to be satisfiable if there exists such a point and unsatisfiable otherwise.

Krishnamachari et al. [53] examine channel utilization as a resource management
problem by constraint satisfaction. They consider a wireless sensor network of n
nodes placed randomly in a square area with a uniform, independent distribution.
This work tests three self configuration tasks in wireless sensor networks: partition
into coordinating cliques, formation of Hamiltonian cycles and conflict free channel
scheduling. They explore the impact of varying the transmission radius on the
solvability and complexity of these problems. In the case of partition into cliques and
Hamiltonian cycle formation, they observe that the probability that these tasks to
be performed undergoes a transition from zero to one. Almost every network graph
is generated by random location of the nodes satisfies the desired global property.
In these cases, the critical transmission range corresponds to an energy e�cient
operating point. However, in the third task (conflict free channel scheduling) they
observe that the transition occurs in reverse; there is a critical transmission range
below which almost all network graphs generated by the random location of nodes
can be allocated the available number of channels, and beyond which the desired
property is rarely satisfied.

Kogekar et al. [51] consider energy or power saving as a resource management
problem modeled by dynamic software reconfiguration. It is a constraint guided ap-
proach for dynamic reconfiguration in WSN. Reconfiguration is performed by tran-
sitioning from one point of the operation space to another based on the constraints.
System requirements are expressed as formal constraints on operational parameters
such as power consumption, latency, accuracy, and other QoS properties that are
measured at run-time. In this work, once a new configuration that satisfies all the
constraints are found, the reconfiguration can be accomplished by online software
synthesis targeting an interpreted language or a command interface. The reconfig-
urator is responsible for performing the necessary local application changes upon
notification from the base station. Here each mote has two components: monitor
and reconfigurator. monitor observes the existing resources such as remaining
battery power. The base station has four components: GlobalConstraintMonitor,
GRATISP lus, DESERT and GRATIS. The monitor of each mote reports its
remaining battery power to global constraint monitor of the base station whose has
a database to check the energy level of that mote is su�cient to keep the existence
configuration. If the energy level is below a certain threshold then it reports the pa-
rameters to GRATISP lus which sends the design space representation as an input
to the DESERT . DESERT configures the design and sends it to the GRATIS,
and finally the reconfigurator of a mote gets direction about configuration from

CHAPTER 2. BACKGROUND AND RELATED WORK Page 24

GRATIS. They implement it to track the movement of people across an aisle.

2.4.5 Market-based method

An auction is a market mechanism for allocating resources. The essence of an
auction is a game, where the players are the bidders, the strategies are the bids and
both allocation and payments are functions of the bids. One well known auction
is the Vickery-Clarke-Groves (VCG) auction [49], which requires gathering global
information from the network and performing centralized computations.

Huang et al. [14] describe the signal to noise ratio (SNR) auction and the power
auction that determine the relay selection and relay power allocation in a distributed
fashion. Here the network rate (bps/Hz) is considered as a resource. The proposed
auction-based resource allocation methods can be generalized to networks with mul-
tiple relays. Each relay announces a price and a reserve bid, without knowing the
prices and reserve bids of other relays of others relays. Each user submits a non-
negative bid vector, one component for each relay. Based on the bids, the relay
allocates to the user transmission power. The Nash equilibrium [59] is achieved in
a distributed fashion if it allows the users to iteratively update their bids based on
best response functions in an asynchronous fashion. They implement this on a single
relay network.

Chen et al. [35] address the problem of providing congestion-management for
wireless sensor networks executing several target tracking applications. They con-
sider information or data as resource. They employ auctions to provide two di↵erent
utility loss management solutions: equalizing utility loss across all tracking applica-
tions and minimizing the total utility loss of applications. Any time a given node
has multiple target report packets for di↵erent applications to be forwarded for its
current transmission slot, the node conducts an auction to assign the slot to the
packet with the highest bid. Hence, the bidders represent packets awaiting trans-
mission and their bids are defined by the predicted information utility loss of the
applications to which packets are sent. This in turn prevents resource starvation of
any auction participant.

2.4.6 Utility-based method

The utility-based technique is a valuable tool for resource management in wireless
sensor networks (WSN). The benefits of this technique include the ability to take
application utilities into account for performing the application.

Dhanani et al. [21] give a comparison of utility-based information management
policies in sensor networks. Here the resource is information or data. They consider
two models: sensor centric utility-based (SCUB) and resource manager (RM) mod-
els. SCUB is a distributed approach that instructs individual sensors to make their
own decisions about what sensor information should be reported, based on a utility
model for data. RM is a consolidated approach that takes into account knowledge

CHAPTER 2. BACKGROUND AND RELATED WORK Page 25

from all sensors before making decisions. They evaluate these policies through simu-
lation in the context of dynamically deployed sensor networks in military scenarios.
Both SCUB and RM can extend the lifetime of a network comparison to the network
which is not maintaining any policy. Without any policy, the network can send more
information than SCUB and RM but it has less network lifetime compared to these.
RM networks last longer than SCUB according to their experiment.

Byers et al. [13] describe utility-based decision making in wireless sensor network.
They consider application domains in which a large number of distributed, networked
sensors must perform a sensing task repeatedly over time. They present a model for
such application in which they define appropriate global objectives based on utility
functions and specify a cost model for energy consumption. They derive the utility
from a consumer of sensor network resources by a monotone function U : S ! [0, 1],
which for a network graph G = (V,E) maps the sensing subset, the set of all nodes
in the graph that are sensing, to a real valued interval. In a best e↵ort service model,
nodes attempt to optimize the utilization of resources in the present without regard
to future cost. With the goal of optimizing the total utility derived over the lifetime
of the network, the model enables nodes to discount current gain to optimize their
consumption of energy over time

2.5 Di↵erence to own approach

The following is a brief overview of the di↵erences between the state-of-the-art and
our own approach.

• Most of the existing methods [31], [26], [55], [51], [21] of task scheduling in
WSNs do not provide online scheduling of tasks. They mainly consider static
task allocation instead of focusing on task scheduling. The main di↵erence
between task allocation and task scheduling is that task allocation deals with
the problem of determining a set of task assignments on a sensor network that
minimizes an objective function such as the total execution time [81]. On the
other hand, the objective of task scheduling is to determine the best temporal
order of tasks for each sensor node. In o✏ine scheduling, the complete infor-
mation about the system activities are available a priori, and the schedule can
be determined at compile time. Due to the high dynamics of WSN, complete
system information is only available at runtime and so online scheduling is
required [52]. We propose online learning methods for task scheduling.

• Most of the existing methods of task scheduling in WSNs [29], [53], [21] nei-
ther consider distributed tasks scheduling nor the trade-o↵ among resource
consumption and performance. They also do not explicitly consider energy
consumption. We consider the trade-o↵ among resource consumption and
performance.

CHAPTER 2. BACKGROUND AND RELATED WORK Page 26

• Shah et al. [66] introduce a task scheduling approach for WSN based on an
independent reinforcement learning method (RL) for online task scheduling.
They use Q learning [85] for the task scheduling. Their approach relies on
a simple and fixed network topology consisting of three nodes and a static
value for the reward function. They further consider neither any cooperation
among neighbors nor the energy/performance trade-o↵. Our approach has
some similarity with [66], but is much more general and flexible since we sup-
port general WSN topologies, a more complex reward function for expressing
the trade-o↵ between energy consumption and performance, and cooperation
among neighbors.

• Most of the existing methods do not evaluate task scheduling methods. We
evaluate three online task scheduling methods: Reinforcement Learning (RL),
Cooperative Reinforcement Learning (CRL), and Exponential Weight for Ex-
ploration and Exploitation (Exp3). Each of these three are evaluated for task
scheduling in a target tracking application, and analyzed in terms of their
performance (a trade-o↵ between tracking quality and energy consumption).
Our proposed approach also takes cooperation into consideration, where each
node sharing local observations with its neighbors.

CHAPTER

3

System model

In this chapter, we describe the system model of our task scheduling methods.
We apply reinforcement learning (RL), cooperative reinforcement learning (CRL),
exponential weight for exploration and exploitation (Exp3) bandit solvers, and com-
binatorial auction for the task scheduling in a WSN. We consider a target tracking
application and apply our methods for task scheduling. First, we delineate the basic
system model for our task scheduling followed by the system model for combina-
torial auction method. Afterward, we describe our considered set of actions, set of
states, and the reward function.

3.1 Formal problem definition

Before describing the problem formally, terms like resource consumption, and track-
ing quality need to be defined. In WSNs, resource consumption happens due to per-
form the various tasks needed for the application. Each task consumes an amount of
energy from the fixed energy budget of the sensor nodes. Typically, tracking qual-
ity in a target tracking application of a WSN is defined as the accuracy of target
location estimation provided by the network.

In our approach the WSN is composed by N nodes represented by the set
N̂ = {n1, . . . , nN

}. Each node has a known position (u
i

, v
i

) and a given sensing
coverage range which is simply modeled by circle with radius r

i

. All nodes within
the communication range R

i

can directly communicate with n
i

and are referred to
as neighbors. The number of neighbors of n

i

is given as ngh(n
i

). The available
resources of node n

i

is modeled by a scalar E
i

. We consider the battery power of
sensor nodes as resource. We consider a set of tasks to perform over time steps. Each
task consumes some battery power from the energy budget of the sensor nodes. We
consider a set of static values for the energy consumption of tasks. These values are
assigned based on the energy demands of the task. We set higher value for the tasks
which need higher energy consumption.

The WSN application is composed by A tasks (or actions) represented by the

27

CHAPTER 3. SYSTEM MODEL Page 28

set Â = {a1, . . . , aA}. Once a task is started at a specific node, it executes for a
specific (short) period of time and terminates afterwards. Each task execution on a
specific node n

i

requires some resources Ẽ
j

and contributes to the overall application
performance P . Thus, the execution of task a

j

on node n
i

is only feasible if E
i

� Ẽ
j

.
The overall performance P is represented by an application specific metric. On each
node, an online task scheduling takes place which selects the next task to execute
among the A independent tasks. The task execution time is abstracted as fixed
period. Thus, scheduling is required at the end of each period which is represented
as time instant t

i

. We consider non-preemptive scheduling based on our proposed
model. Figure 3.1 shows our considered WSN model components.

Figure 3.1: WSN model components. Here four nodes n
i

, n
j

, n
k

, and n
l

. R
i

is the
communication range, r

i

is the sensing range, and (u
i

, v
i

) is the position of the node
n
i

. Number of neighbors of the node n
i

, ngh(n
i

) = 2.

We demonstrate our task scheduling approach using a target tracking applica-
tion. We consider a sensor network which may consists of a variable number of
nodes. The sensing region of each node is called the field of view (FOV). Every
node aims to detect and track all targets in the FOV. If the sensor nodes would per-
form tracking all the time then this would result in the best tracking performance.

CHAPTER 3. SYSTEM MODEL Page 29

But executing target tracking all time is energy demanding. Thus, task should only
be executed when necessary and su�cient for tracking performance. Sensor nodes
can cooperate with each other by informing neighboring nodes about “approaching”
targets. Neighboring nodes can therefore become aware of approaching targets.

We define the objective function in a way that we can trade the application per-
formance and the required energy consumption by a balancing factor. The ultimate
objective for our problem is to determine the order of tasks on each node such that
the overall performance is maximized while the resource consumption is minimized.
Naturally these are conflicting optimization criteria, so there is no single best solu-
tion. The set of non-dominating solutions for such a multi-criteria problem can be
typically represented by a Pareto front.

3.2 System model

We apply reinforcement learning methods (cooperative Q learning, SARSA(�)),
bandit solvers (Exp3), and a combinatorial auction method for task scheduling.
First, we describe the basic system model for reinforcement learning methods, and
bandit solvers then we describe the system model for the combinatorial auction
method. Since reinforcement learning methods, and bandit solvers both consider a
set of tasks, a set of states, and a reward for the executed actions, the system model
is same for both methods. On the other hand, in combinatorial auction method,
there should be some consideration of bids, auctioneer, and revenues. Due to the
di↵erent components in the system, we consider two di↵erent system models.

3.2.1 Basic system model

The task scheduler operates in a highly dynamic environment, and the e↵ect of
the task ordering on the overall application performance is di�cult to model. We
therefore apply reinforcement learning methods, and bandit solvers to determine the
“best” task order given the experiences made so far. Figure 3.2 depicts our proposed
system model can be described as follows:

• Agent: Each sensor node embeds an agent which is responsible for executing
the online learning algorithm.

• Environment: The WSN application represents the environment in our ap-
proach. Interaction between the agent and the environment is achieved by
executing actions and receiving a reward function.

• Action: An agent’s action is the currently executed application task on the
sensor node. At the end of each time period t

i

each node triggers the scheduler
to determine the next action to execute.

CHAPTER 3. SYSTEM MODEL Page 30

• State: A state describes an internal abstraction of the application which is
typically specified by some system parameters. In our target tracking applica-
tion, the states are represented by the number of currently detected targets in
the node’s FOV, and expected arrival times of targets detected by neighboring
nodes. The state transitions depend on the current state and action.

Figure 3.2: Proposed system model.

• Policy: An agent’s policy determines what action will be selected in a par-
ticular state. In our case, this policy determines which task to execute at
the perceived state. The policy can focus more on exploration or exploitation
depending on the selected setting of the learning algorithm.

• Value function: This function defines what is good for an agent over the long
run. It is built upon the reward function values over time and hence its quality
totally depends on the reward function [66].

• Reward function: This function provides a mapping of the agent’s state and the
corresponding action to a reward value that contributes to the performance.
We apply a weighted reward function which is capable of expressing the trade-
o↵ between energy consumption and tracking performance.

• Cooperation: We consider the information exchange among neighboring nodes
as cooperation. The received information may influence the application’s state
of a sensor nodes.

CHAPTER 3. SYSTEM MODEL Page 31

3.2.2 System model for combinatorial auction

Figure 3.3 shows our proposed system model for combinatorial auction. The key
components can be described as follows:

Figure 3.3: System model for the combinatorial auction.

• Auctioneer: Sensor nodes act as auctioneer initiate auction. The neighboring
nodes bid to the auctioneer.

• Bid: The bid is composed of some items as this is a combinatorial auction
mechanism. These items are required CPU cycle, energy consumption, and
ideal time gap (cp. Section 4.1 for more details).

• Objective function: The neighboring nodes calculate the objective function
which consists of bids. As we apply combinatorial auction method, we consider
multiple resources like computation cost, remaining energy, and ideal gap (cp.
Section 4.1 for more details). The goal is to maximize the objective function.

• Revenue: Revenue is defined by the di↵erence between value the sensor node
receives for the items, and the price it pay for those items.

3.3 Set of actions

For the application mapping to the proposed model, we need to consider a set of
actions. An agent performs action to perform the application and get reward for
that. We consider two di↵erent set of actions. In our initial works on resource-
aware task scheduling in WSN, where we consider a small network (a simple and
fixed network topology consisting of three nodes), we consider only four actions. We
apply combinatorial auction method considering this simple network and without
considering the actions like prediction of trajectories, intersection of trajectories,
etc.

We consider the following set of actions for the combinatorial auction-based
method.

• Sensing

CHAPTER 3. SYSTEM MODEL Page 32

• Transmit

• Receive

• Sleeping

We consider the following actions for a target tracking application using re-
inforcement learning methods, and bandit solvers (cp. Subsection 4.3.3 for more
details).

• Detect Targets

• Track Targets

• Send Message

• Predict Trajectory

• Goto Sleep

• Intersect Trajectory

3.4 Set of states

Another component for application mapping is a set of states. Agents execute an
action for performing the application and shift from one state to another. States are
defined by application variables. We consider some application variables to define
the state. These application variables can change for executing a particular action.
As the varibales change, agent can shift from one state to another after executing the
task. We consider the following variables to represent the states for the reinforcement
learning method, SARSA(�), and bandit solvers (cp. Subsection 4.3.3 for more
details).

• Currently detected targets.

• List of expected arrival times of targets.

Based on these variables, we abstract the target tracking application by three
states (cp. Subsection 4.3.3 for more details).

• Idle: This state denotes that there is currently no target detected within the
node’s FOV and the local clock is too far from the expected arrival time of
any target already detected by some neighbors.

• Awareness: There is currently no detected target in the node’s FOV in this
state. However, the expected arrival time of at least one target is less than a
threshold value.

CHAPTER 3. SYSTEM MODEL Page 33

• Tracking: This state indicates that there is currently at least one detected
target within the node’s FOV.

We consider the following set of variables for the cooperative Q learning.

• Currently detected targets.

• Minimum energy required for actions.

• Data to transmit.

3.5 Reward function

The reward function is another component for application mapping. For performing
each action, sensor nodes receive a reward. This reward helps to take decision in
future that which task is suitable to execute at each time step.

In our proposed reinforcement learning methods, and bandit solvers, we consider
a weighted reward function which balances between performance and resource con-
sumption. Performance is measured by the ratio of the number of tracked positions
of the target inside the FOV of the node to the number of all possible detected
target’s positions in the FOV. Resource consumption is defined as the energy con-
sumption at each time step for executing the tasks. We consider a balancing factor
which balances the trade-o↵ between energy consumption and tracking quality (cp.
Subsection 4.3.3 for more details).

For cooperative Q learning methods, we consider scalar values for the rewards
of each action. Higher scalar values are set to the tasks of lower energy requirement
(cp. Subsection 4.3.2 for more details).

CHAPTER

4

Task scheduling methods

In this chapter, we describe the proposed resource-aware task scheduling methods in
a WSN. Here, we consider the system model, the set of tasks, the set of states, and
the reward function described in Chapter 3. First, we describe the combinatorial
auction method. Then we describe the cooperative reinforcement learning methods
(Q learning, SARSA(�)), and the bandit solvers method. We apply our methods
in a target tracking application. We also describe the task scheduling in a target
tracking application using our proposed methods in this chapter.

4.1 Combinatorial auction

We consider a market-based approach for the task scheduling in WSN. We use
combinatorial auction-based method here as our bid is composed of some items like
central processing unit (CPU) cycle, energy requirement, and ideal time gap. Target
tracking is considered as application here. We consider two application variables to
define the states of the system which are field of view (FOV) and data to transmit
(DTT). Both of these variables can take the value either 1 or 0. For example, when
DTT=1 then there is data to transmit. When two application variables FOV and
DTT of a particular node i become 1, then the node acts as an auctioneer. We
consider four tasks sensing, transmit, receive, and sleeping for the target tracking
application. Each task needs some items, e.g., CPU cycle, energy, and ideal time
gap to execute. The targets are sold in this auction. The auctioneer initiates
an auction. The neighboring nodes send bid to the auctioneer and calculate the
objective function to win.

Objective function is as follows

Objective(j) = ↵Sj +
�

⌘j
+

�

Dj

(4.1)

where the node j has the signal strength for detecting Sj, the node with higher
signal strength carries more information about the target. The resource price ⌘j,

34

CHAPTER 4. TASK SCHEDULING METHODS Page 35

the node with lower resource price should be given priority as the node can perform
a task with lower resource price can maintain the resource e�ciency in the system
and the term Dj defines the distance between the target and the node. ↵, � and �
are equilibrium constants. The resource price ⌘j in Equation 4.1 can be calculated
by the following parameters.

• Required CPU cycle (R
CPU

): It refers to the expected CPU cycle required for
accomplishing the task.

• Available CPU: It is sensor node’s CPU clock frequency.

• Computation Cost: It can be calculated by the following equation that is used
in [23].

CompCost(R
CPU

, f) = NCV 2
dd

+ V
dd

(I0e
Vdd
nVT)(

R
CPU

f
) (4.2)

f ⇠= K(V
dd

� c) (4.3)

where V
T

is the thermal voltage, and C, I0, n, K, c are processor dependent
parameters.

• Remaining energy (E): It refers to the remaining energy of the sensor node.

• Ideal gap (T
IG

): It is a gap between the time that sensor nodes accomplish
the task and the time that sensor nodes communicate the tasks output to its
neighbor. If the ideal gap is very large, the incentive for the task would rather
decrease.

The resource price is calculated by the following equation

⌘j = (
CompCost

E
)⇥ exp(T

IG

) (4.4)

where CompCost refers to computation cost, E refers to remaining energy and T
IG

means ideal gap. After calculating the resource price, the sensor nodes will bid for
the object to track it.

Now we need an algorithm that will find out the winner and the bids that will
maximize the revenue of each agent as we consider the sensor nodes here as agents
in a multi-agent environment. We use the combinatorial auction named Progressive
Adaptive User Selection Environment (PAUSE) auction method [84].

The agents maintain a set B of the current best bids, each consists of a set of
items. The agents also maintain price of the items agent i should pay bvalue, value of
the bids v

i

(bitems), and value for the items of the bids bitems. There are two variables
g⇤ and u⇤. g⇤ is the revenue of the agent and u⇤ is the winner bid values. There are
two other variables my bids and their bids to track the bid values. At any point in

CHAPTER 4. TASK SCHEDULING METHODS Page 36

Algorithm 1 PAUSEBID (i)

1: Inputs: Price of the items agent i should pay bvalue, Value of the bids v
i

(bitems),
Value for the items of the bids bitems

2: Output: Revenue of the agent g⇤, Winner bid values W
3: Initialization: my bids �, their bids �, g⇤ �, u⇤ (W)
4: for b 2 B do
5: if bagent = i or v

i

(bitems) > bvalue then
6: Set my bids my bids+ new bid(i, bitems, v

i

(bitems))
7: else
8: their bids their bids+ b
9: end if

10: for S 2 subsets of fewer items such that v
i

(S) > 0 do
11: Set my bids my bids+ new bid(i, S, v

i

(S))
12: bids my bids+ their bids
13: MAXIMUM(bids,�)
14: u⇤ (W)
15: surplus

P
b

agent=i

W (bitems)� bvalue

16: if surplus = 0 then
17: return g⇤

18: end if
19: my payment v

i

(bitems)� bvalue

20: for b 2 u⇤|bagent = i do
21: if my payment  0 then
22: g⇤ 0
23: else
24: g⇤ W (bitems) +my payment.W (bitems)�b

value

surplus

25: end if
26: end for
27: end for
28: end for
29: return g⇤

30: MAXIMUM(bids, g)
31: for each iteration do
32: Sort the bids in increasing order
33: N = bid1, bid2,, bidn
34: for i = 1 to n do
35: Set g the list of bids in increasing order.
36: end for
37: end for

CHAPTER 4. TASK SCHEDULING METHODS Page 37

the auction, there will also be a set W ✓ B of currently winning bids. This is the
set of bids that currently maximizes the revenue, where the revenue of W is given
as follows

g⇤ W (bitems) +my payment.
W (bitems)� bvalue

surplus
(4.5)

whereW (bitems) is the value of the winning bids, my payment is defined by the value
it receives for the items minus the price it must pay for those items, my payment
v
i

(bitems) � bvalue. surplus is defined by the di↵erence of the winning bid values
minus the price it should pay for those items. The goal of the bidding agents in the
PAUSE auction is to maximize their revenue.

Given an agent’s value function and current set of winning bids W , we can
calculate the agent’s utility from W as

u
i

(W) =
X

b2W |bagent=i

V
i

(bitems � bvalue) (4.6)

That is, the agents utility for a bid set W is the value it receives for the items it
wins in W minus the price it must pay for those items. If the agent is not winning
any items then its utility is zero. The goal of the bidding agents in the PAUSE
auction is to maximize their utility.

4.2 Learning methods

We need suitable methods for learning resource-aware task scheduling. Learning
methods help to learn the next suitable task to execute based on the past observed
behavior. The learning methods could be o✏ine or online. Due to the dynamic
nature of a WSN, we do not have any a priori information about the scheduling
of tasks. So, our target is to learn the scheduling online. Reinforcement learning
methods, bandit solvers, are online learning methods for task scheduling. By these
methods, it is possible to learn the best task to execute from the past experiences
which provide more reward. We choose reinforcement learning methods and bandit
solvers for learning task scheduling online and to get the better trade-o↵ between
resource consumption and performance.

4.2.1 Reinforcement learning

Reinforcement learning is a branch of machine learning and is concerned with de-
termining an optimal policy (cp. Section 2.3 for more details). It maps the states
of the environment to the actions that an agent should take in those states so as to
maximize a numerical reward over time. We propose cooperative Q learning for task
scheduling. Here this is cooperative in a sense that each sensor node sends the value
function to the neighbors. We also consider a weight factor [89] for the neighbors. As
our aim is to learn task scheduling in a cooperative manner we choose cooperative

CHAPTER 4. TASK SCHEDULING METHODS Page 38

Q learning. We propose cooperative state-action-reward-state-action, SARSA(�)
learning algorithm. Here we also consider the cooperation among neighboring nodes
with the local observations. We also consider the weight factor for the neighboring
nodes. Here � is the learning parameter which helps for guaranteed convergence
learning [80].

Cooperative Q learning for task scheduling

Cooperative Q learning is a reinforcement learning approach to learn the usefulness
of some tasks over time in a particular environment. We consider the wireless
sensor network as a multi-agent system. The nodes correspond to agents in the
multi-agent reinforcement learning. The world surrounding the sensor nodes forms
the environment. Tasks are considered as activities for the sensor nodes at each
time step such as transmit, receive, sleep, sense, etc. States are formed by set of
system variables such as object in the FOV of sensor nodes, required energy for
a specific action, data to transmit, etc. A reward value provides some positive or
negative feedback for performing a task at each time step. Value functions define
what is good for an agent over long run described by reward function and some
parameters. In cooperative Q learning every agent needs to maintain a Q matrix for
the value functions like independent Q learning. Initially all entries of the Q matrix
are zero and the nodes or agents may be in any state. Based on the application
defined variable or system variables, the system goes to a particular state. Then it
performs an action which depends on the status of the nodes (Example: For transmit
action, a node must have residual energy which is greater than transmission cost).
It calculates the Q value for this (state, task) pair with the immediate reward.

Q
t+1(st, at) = (1� ↵)Q

t

(s
t

, a
t

) + ↵(r
t+1(st+1) + �

X
fV

t

(s
t+1)) (4.7)

V
t+1(st) = max

a2A
Q

t+1(st, a) (4.8)

where Q
t+1(st, at) means the update of Q value at time t + 1, after executing the

action a at time step t. r
t+1 means the immediate reward after executing the action

a at time t. V
t

is the value function at time t. V
t+1 is the value function at time

t+1. max
a2A

Q
t+1(st, a) means the maximum Q value after performing an action from

the action set A. � is the discount factor which can be set to a value in [0, 1]. The
higher the value, the greater the agent relies on future reward than the immediate
reward. ↵ is the learning rate parameter which can be set to a value in [0, 1]. It
controls the rate at which an agent tries to learn by giving more or less weight to
the previously learned utility value. When ↵ is set close to 1, the agent gives more
priority to the previously learned utility value.

f is the weight factor [89] for the neighbors of agent i and can be defined as
follows

CHAPTER 4. TASK SCHEDULING METHODS Page 39

f =
1

ngh(n
i

)
if ngh(n

i

) 6= 0 (4.9)

f = 1 otherwise. (4.10)

The algorithm can be stated as follows:

Algorithm 2 Q learning for task scheduling.

1: Initialize Q(s, a) = 0. Where s is the set of states and a is the set of actions
2: while Residual energy is not equal to zero do
3: Determine current state s by application variables
4: Select an action a which has the highest Q value
5: Execute the selected action
6: Calculate Q value for the executed action (Eq. 4.7)
7: Calculate the value function for the executed action (Eq. 4.8)
8: Send the value function to the neighbors
9: Shift to next state based on the executed action

10: end while

Cooperative SARSA(�) learning for task scheduling

SARSA(�) [80], also referred to as state-action-reward-state-action, is an iterative
algorithm that approximates the optimal solution without knowledge of the tran-
sition probabilities which is very important for a dynamic system like WSN. At
each state s

t+1 of iteration t + 1, it updates Q
t+1(s, a), which is an estimate of the

Q function by computing the estimation error �
t

after receiving the reward in the
previous iteration. The SARSA(�) algorithm has the following updating rule for
the Q values

Q
t+1(st, at) Q

t

(s, a) + ↵�
t

e
t

(s
t

, a
t

) (4.11)

for all s,a.
In Equation 4.11, ↵ 2 [0, 1] is the learning rate which decreases with time. �

t

is
the temporal di↵erence error which is calculated by following rule

�
t

= r
t+1 + �1fQt

(s
t+1, at+1)�Q

t

(s
t

, a
t

) (4.12)

In Equation 4.12, �1 is a discount-factor which varies from 0 to 1. The higher the
value, the more the agent relies on future rewards than on the immediate reward.
r
t+1 represents the reward received for performing action. f is the weight factor [89]
for the neighbors of agent i and can be defined as follows

f =
1

ngh(n
i

)
if ngh(n

i

) 6= 0 (4.13)

f = 1 otherwise. (4.14)

CHAPTER 4. TASK SCHEDULING METHODS Page 40

An important aspect of an RL-framework is the tradeo↵ between exploration
and exploitation [13]. Exploration deals with randomly selecting actions which may
not have higher utility in search of better rewarding actions, while exploitation aims
at the learned utility to maximize the agent’s reward.

In our proposed algorithm, we use a simple heuristic where exploration proba-
bility at any point of time is given by

✏ = min(✏
max

, ✏
min

+ k ⇤ (S
max

� S)/S
max

) (4.15)

where ✏
max

and ✏
min

define upper and lower boundaries for the exploration factor,
respectively. S

max

represents maximum number of states which is three in our work
and S represents current number of states already known. At each time step, the
system calculates ✏ and generates a random number in the interval of [0, 1]. If the
selected random number is less than or equal to ✏, the system chooses a uniformly
random task (exploration) otherwise it chooses the best task using Q values (ex-
ploitation).

SARSA(�) improves learning through eligibility traces. e
t

(s, a) is the eligibility
traces in Equation 4.11. Here � is another learning parameter similar to ↵ for
guaranteed convergence. �2 is the discount factor. In general, eligibility traces
give a higher update factor for recently revisited states. This means that the the
eligibility trace for a state-action pair (s, a) will be reinforced if s

t

2 s and a
t

2 a.
Otherwise, if the previous action a

t

is not greedy, the eligibility trace is cleared.
The eligibility trace is updated by the following rule

e
t

(s
t

, a
t

) = �2�et�1(st, at) + 1 if s
t

2 s and a
t

2 a (4.16)

e
t

(s
t

, a
t

) = �2�et�1(st, at) otherwise. (4.17)

The algorithm can be stated as follows:

Algorithm 3 SARSA(�) learning algorithm for target tracking application.

1: Initialize Q(s, a) = 0 and e(s, a) = 0
2: while Residual energy is not equal to zero do
3: Determine current state s by application variables
4: Select an action a, using policy
5: Execute the selected action
6: Calculate reward for the executed action (Eq. 4.48)
7: Update the learning rate (Eq. 4.18)
8: Calculate the temporal di↵erence error (Eq. 4.12)
9: Update the eligibility traces (Eq. 4.17)

10: Update the Q-value (Eq. 4.11)
11: Shift to next state based on the executed action
12: end while

CHAPTER 4. TASK SCHEDULING METHODS Page 41

The learning rate ↵ is decreased slowly in such a way that it reflects the degree
to which a state-action pair has been chosen in the recent past. It is calculated as

↵ =
⇣

visited(s, a)
(4.18)

where ⇣ is a positive constant. visited(s, a) represents the visited state-action pairs
so far [46].

Independent reinforcement learning (RL)

RL task scheduling follows the work of Shah et al. [66] which uses traditional Q
learning [85] as online learning strategy. In Q learning the scheduling policy is
represented by a two-dimensional matrix Q

t+1(s, a) indexed by state-action pairs.
The optimal Q value for a particular action in a particular state is the sum of the
reinforcement received when that action is taken and the discounted best Q value
for the state that is reached by taking that action [85].

The main idea of RL is to allow each individual sensor node to self-schedule its
tasks and allocate its resources by learning their usefulness in any given state while
honoring the application defined constraints and maximizing the total amount of
reward over time.

In Q learning every agent needs to maintain a Q matrix for the value functions.
Initially all entries of the Q matrix are zero and the agent of the nodes may be in any
state. Based on the application defined variables, the system goes to a particular
state. Then it performs an action which depends on the status of the nodes.

Algorithm 4 depicts the RL algorithm.

Algorithm 4 Q learning for task scheduling.

1: Initialize Q(s, a) = 0. Where s is the set of states and a is the set of actions
2: while Residual energy is larger than zero do
3: Determine current state s by application variables
4: Select an action a which has the highest Q value
5: Execute the selected action
6: Calculate Q value for the executed action (Eq. 4.19)
7: Calculate the value function for the executed action (Eq. 4.20)
8: Shift to next state based on the executed action
9: end while

It calculates the Q value for this (state, action) pair as

Q
t+1(st, at) = (1� ↵)Q

t

(s
t

, a
t

) + ↵(r
t+1(st+1) + �V

t

(s
t+1)) (4.19)

V
t+1(st) = max

a2A
Q

t+1(st, a) (4.20)

CHAPTER 4. TASK SCHEDULING METHODS Page 42

where Q
t+1(st, at) means the update of the Q value at time t + 1 after executing

the action a at time step t. r
t+1 represents the immediate reward after executing

the action a at time t, V
t

represents the value function for node at time t and V
t+1

represents the value function at time t + 1. max
a2A

Q
t+1(st, a) means the maximum

Q value after performing an action from the action set A for the agent i. � is
the discount-factor which can be set to a value in [0, 1]. For higher � values, the
agent relies more on the future than the immediate reward. ↵ is the learning rate
parameter which can be set to a value in [0, 1]. It controls the rate at which an
agent tries to learn by giving more or less weight to the previously learned utility
value. When ↵ is close to 1, the agent gives more priority to the previously learned
utility value.

4.2.2 Bandit solvers

We use the classical adversarial algorithm Exp3 (Exponential-weight algorithm for
exploration and exploitation) for task scheduling [6].

The algorithm can be stated as follows:

Algorithm 5 Task Scheduling by Bandit Solver Exp3

1: Parameters: Number of tasks A, Factor   1
2: Initialization: w

i,0 = 1 and P
i,1 = 1/A for i = 1, 2, . . . , A

3: while Residual energy is not equal to zero do
4: Determine current s based on application variables
5: Select an action a 2 {1, 2, . . . , A} based on the P

t

6: Execute the selected action
7: Calculate the reward (Eq. 4.23)
8: Update the weights (Eq. 4.22)
9: Calculate the updated probability distribution (Eq. 4.21)

10: Shift to next state based on the executed action
11: end while

Exp3 has a parameter  which controls the probability with which arms are
explored in each round. At each time step t, Exp3 draws an action a according to
the distribution P1,t, P2,t, ..., PA,t

. The distribution can be calculated by the following
equation

P
j,t+1 = (1� )

w
a,tP

A

j=1 wj,t

+


A
, j = 1, 2, . . . , A (4.21)

where w
a,t

is the weight associated with the action a at time t.
This distribution is a mixture of the uniform distribution and a distribution

which assigns to each action a probability mass exponential in the estimated reward
for that action. Intuitively, mixing in the uniform distribution is done to make sure

CHAPTER 4. TASK SCHEDULING METHODS Page 43

that the algorithm tries out all actions A and gets good estimates of the rewards for
each action.

Weight for each action can be calculated by following equation

w
a,t

= w
a,t�1e

rt+1 (4.22)

where r
t+1 is the reward after executing the action a.

Reward can be calculated by following equation

r
t+1 =

r
t

P
a,t

(4.23)

where P
a,t

is the calculated probability distribution for the action a by the Equa-
tion 4.21.

Exp3 works by maintaining a list of weights w
i

by the Equation 4.22 for each
of the actions, using these weights to decide which action to take next based on
a probability distribution P

t

, and increasing the relevant weights when the reward
is positive. The egalitarianism factor  2 [0, 1] tunes the desire to pick an action
uniformly at random. If  = 1, the weights have no e↵ect on the choices at any step.

4.3 Task scheduling for target tracking

Tracking mobile targets is a typical and generic application for WSNs. Since mon-
itoring the environment is one of the fundamental applications of WSNs, location-
tracking of the mobile targets helps to trace the paths of the moving targets in the
area where sensor nodes are deployed. Target tracking is challenging mainly for two
reasons: limited energy budget of the sensor nodes and the short range of communi-
cations. Target tracking application consists of several tasks like sensing, detecting,
tracking, sending messages, etc. Scheduling of these tasks has an e↵ect on the per-
formance of the tracking. There should be a trade-o↵ between energy consumption
and tracking quality [57]. We demonstrate our task scheduling approach using such
target tracking application. We consider a sensor network which consists of a set of
randomly deployed nodes.

4.3.1 Target tracking using combinatorial auction

Figure 4.1 shows a particular movement of a single target, i.e., the red dotted circles
represents the target’s position at di↵erent time points. We consider three nodes,
which are fully connected. Each node has no information of what actions are better
for them in terms of energy consumption. They will learn by performing some
actions over time based on their utility. Here we consider the tasks needed for target
tracking. These are transmit, receive, sleep, and sense. Every node maintains a set
B of the current best bids which consist of set of items. At any point in the auction,
there will also be a set W ✓ B of currently winning bids. All bids are broadcasted

CHAPTER 4. TASK SCHEDULING METHODS Page 44

and when a node receives a bid from another node it updates the set of best bids
and determine if the new bid is indeed better than the currently winning bid. After
performing the PUASEBID algorithm (cp. Section 4.1 for details) node A, B, and
C will aware that which task is giving higher utility. Each of the sensor nodes are
equipped with microprocessor with the CPU frequency randomly selected between
100 MHz and 300 MHz, and initial energy level of each node is 2.8 Joule. The other
parameters for computational and communication energy consumption are V

T

= 26
mV, C=0.67 nF, I0 = 1.196 mA, n = 21.26, K = 239.28 MHz/V, c = 0.5, ↵ =0.5,
� =0.5 and � =0.5 used for calculating the computational cost and communication
energy in [23]. The signal strength and the distance from the target are randomly
chosen from the values between [1,10].

To calculate the resource price, we need the following information for performing
the tasks [23]:

• Required CPU cycle:
Sensing: 10 MHz
Transmit: 26 MHz
Receive: 26 MHz
Sleeping: 0

• Energy requirement:
Sensing: 0.0000841 J
Transmit: 0.00233 J
Receive: 0.00231 J
Sleeping: 0.000012 J

• Ideal time gap:
Sensing: 25 msec
Transmit: 10 msec
Receive: 10 msec
Sleeping: 0

We calculate the variance of the available energy as V ar = 1
n

P
n

i=1(Ei

� E
0
)2,

where n is number of sensor nodes, E is the remaining energy level of sensor nodes
and E

0
is the mean which is calculated by E

0
= 1

n

P
n

i=1 Ei

. Variance of the available
energy is a way to measure the energy e�ciency which is used in an existing auction
based method [23] and we also use for this application scenario. The higher variance
value corresponds to the unbalanced available energy among the sensor nodes and
also not energy e�cient.

CHAPTER 4. TASK SCHEDULING METHODS Page 45

4.3.2 Target tracking using cooperative Q learning

Figure 4.1 shows the movement of a single target, i.e., the “red dotted circles”
represents the target’s position at di↵erent time points. We consider three nodes
which are fully connected. Each node has no information of what actions are better
for them in terms of energy consumption. Nodes learn by performing some actions
over time based on their utility.

Node A

Node C

Node B

Figure 4.1: Target tracking example. Red dots denote the di↵erent positions of a
moving target at di↵erent time steps. Circles denote the sensing range and black
lines denote the communication link between the sensor nodes.

We consider a snapshot of the system that the target is within the FOV of Node
A and is moving and finally entering the FOV of Node C. Suppose Node A is in a
particular state based on application defined or system variables. In that particular
state, the node tries out the actions and finds out a particular one which maximizes
the Q value. Then it moves to the next state after performing that action. Node
A sends the value function to its neighbors. Going to that state, it selects another
action which has maximum Q value. Now in this example, when an object enters
into the FOV of Node A, it receives a reward after executing tasks. So, Node A
learns after some times that it receives a positive reward for sensing if something in
its FOV. The object moves from the sensing range of node A and does not exist in
the range of any nodes. In this case, all nodes gets maximum reward by staying in
the sleeping mode. The object moves in to the field of view of node C and it receives

CHAPTER 4. TASK SCHEDULING METHODS Page 46

a higher reward for sensing. After that it will move to another state by calculating
the Q value. Node B has nothing to transmit or receive. So, Node B gets higher
reward by staying in sleeping at this particular state of the environment. In this
way, each node is able to decide on the best available tasks for a particular state in
a dynamic environment.

We consider two di↵erent application scenarios for finding the e�ciency of our
proposed approach based on cumulative reward over time, total number of execution
for each action, and the residual energy of the network over time.

In the first application scenario, we consider three variables which are “object in
field of view (FOV)”, “data to transmit (DTT)”, and “residual resource level (RL)”.
In the second application scenario, we consider the variables which correspond to
“number of generated packets”, the “timer of completing delivery of a packet”, the
“residual energy of the node”, the “transmit cost”, the “receive cost”, the “sense
cost”, the “sleep cost”, and the “number of connections to the neighbor nodes”. We
consider sleep, sense, transmit, and receive as our tasks set for our both application
scenarios.

First Application Scenario

Based on the system variables, we abstract the application by the following set of
states:

• FOV=0 and RL >=Minimum energy required for Transmission and DTT= 0

• FOV=0 and RL >= Minimum energy required for Transmission and DTT=1

• FOV=0 and RL < Minimum energy required for Transmission and DTT=1

• FOV=1 and RL >= Minimum energy required for Sensing and DTT= 0

• FOV=1 and RL < Minimum energy required for Sensing and DTT= 0

• FOV=1 and RL < Minimum energy required for Sensing and DTT=1

• FOV=1 and RL >= Minimum energy required for Sensing and DTT=1

• FOV=0 and RL < Minimum energy required for Transmission and DTT= 0

Suppose if the variable, object in field of view is equal to 1 that means there is
object in the sensing range of that node. In each state, the node tries out the tasks
from task sets and finds the task which has higher Q value. Task changes the state
variables. For example, after performing sense task in state 1, resource level will be
equal to (residual energy minus energy required for sensing) and field of view will
be equal to 1. Now to calculate the Q values we need reward. In this experiment,
we consider some static values for the reward. We assign the most reward to the

CHAPTER 4. TASK SCHEDULING METHODS Page 47

task which needs the least amount of energy. Here is the ascending order of tasks
for energy consumption: Sleeping, Sensing, Receiving, and Transmitting.

Tasks Reward
Sleeping 5 units
Sensing 4 units
Receiving 3 units for success

-3 units for not success
Transmitting 2 units for success

-2 units for not success
Discount factor, � 0.5
Learning rate, ↵ 0.5

Table 4.1: Reward values for application scenario 1.

Table 4.1 shows the values for the reward we consider for application scenario 1.
Here “success” means the node has the minimum energy to execute the task.

Second Application Scenario

In our second application scenario we consider a di↵erent set of states, the same tasks
set (sleep, sense, transmit, receive) and di↵erent rewards. This state space considers
more state variables. We consider a multi-target tracking systems. There are some
moving targets throughout the system. Each node is connected with neighbors like
a fully connected graph. If a target enters in to the sensing area of a particular
node, it generates a packet or data to transmit.

For the number of data to transmit, we use “sNodes.aPackets.Count”. For the
timer of completing delivery of a packet, we use “iTransmitting”. For the residual
energy of the node, we use “sNodes.iResidualEnergy”. For sensor cost, transmit
cost, receive cost and sleep cost we use “iSensorCost”, “iTransmitCost”, “ireceive-
Cost” and “iSleepCost” respectively. “sNodes.aconnections”denotes the number of
connections to neighbors for each node.

Based on these variables, we abstract the application with the following states:

• sNodes.aPackets.Count > 0 and sNodes.iResidualEnergy >= iSensorCost.

• sNodes.aPackets.Count> 0 and iTransmitting = 0 and sNodes.iResidualEnergy
< iTransmitCost

• sNodes.aconnection ! = NULL and sNodes.iResidualEnergy < iReceiveCost

CHAPTER 4. TASK SCHEDULING METHODS Page 48

Tasks Reward
Sleeping 0.05 units
Sensing 0.001 units
Receiving (0.3-iReceiveCost) for success

(-iReceiveCost) for not success
Transmitting (0.2-iTransmitCost) for success

(-iTransmitCost) for not success
Discount factor, � 0.5
Learning rate, ↵ 0.5

Table 4.2: Reward values for application scenario 2.

Table 4.2 shows the reward function we consider for the application scenario 2.

4.3.3 Target tracking using cooperative SARSA(�) learning
and Exp3 bandit solvers

We consider the following set of actions, states, and reward function for a target
tracking application using SARSA(�) and Exp3.

Set of actions
We consider the following actions in our target tracking application:

• Detect Targets: This function scans the field of view (FOV) and returns the
number of detected targets in the FOV.

• Track Targets: This function keeps track of the targets inside the FOV and
returns the current 2D positions of all targets. Every target within the FOV
is assigned with a unique ID number.

• Goto Sleep: This function shuts down the sensor node for single time period.
It consumes the least amount of energy of all available actions.

• Send Message: This function sends information about the target’s trajectory
to neighboring nodes. The trajectory information includes (i) the current
position and time of the target and (ii) the estimated speed and direction.
This function is executed when the target is about to leave the FOV.

• Predict Trajectory: This function predicts the velocity of the trajectory. A
simple approach is to use the two most recent target positions, i.e., (x

t

, y
t

)
at time t

t

and (x
t�1, yt�1) at t

t�1. Then the constant target’s speed can be
estimated as

v =
p

(x
t

� x
t�1)2 + (y

t

� y
t�1)2/(tt � t

t�1) (4.24)

CHAPTER 4. TASK SCHEDULING METHODS Page 49

• Intersect Trajectory: This function checks whether the trajectory intersects
with the FOV and predicts the expected time of the intersection. This function
is executed by all nodes which receive the “target trajectory” information from
a neighboring node. Trajectory intersection with the FOV of a sensor node
is computed by basic algebra. The expected time to intersect the node is
estimated by

t̃
i

= D
PiPj/v (4.25)

where D
PiPj is the distance between points P

j

and P
i

. P
j

represents the
point where the trajectory is predicted at node j and P

i

corresponds to the
trajectory’s intersection points with the FOV of node i (cp. Figure 4.2). v is
the estimated velocity as calculated by Equation 4.24.

Tracked Positions Inside the
FOV of Node j

Node j

Node i

Node k

Estimated Trajectory

Figure 4.2: Target prediction and intersection. Node j estimates the target trajec-
tory and sends the trajectory information to its neighbors. Node i checks whether
the predicted trajectory intersects its FOV and computes the expected arrival time.

We consider the advanced trajectory prediction and intersection for these meth-
ods. Inputs for this prediction task is the last few tracked positions of the target.

CHAPTER 4. TASK SCHEDULING METHODS Page 50

Here we consider last 6 tracked positions of the target based on simulation studies.
We linearize the trajectory which is given by the last 6 tracked positions of the
target considering the constant speed and direction. The speed is calculated by the
Equation 4.24.

Suppose (x1, y1), (x2, y2) . . . (xn

, y
n

) are tracked positions of the moving object
inside the FOV of the sensor node at time steps t1, t2 . . . t

n

.
The trajectory can be predicted by the regression line [58] in Equation 4.26

y = bx+ a+ ✏ (4.26)

where b is the slope, a is the intercept and ✏ is the residual or error for the calculation.
So residual, ✏ can be calculated by following

✏
i

= y
i

� bx
i

� a (4.27)

where i = 1, 2, 3, . . . , n.
If we sum up the squares of the residuals of all the points from the line we get is

a measure of the fitness of the line. Our aim should be to minimize this value.
So, the square of the residual as follows

✏2
i

= (y
i

� bx
i

� a)2 (4.28)

To calculate the sum of square residuals, we add all the individual square resid-
uals together as follows

J =
nX

i=1

(y
i

� bx
i

� a)2 (4.29)

where J is the sum of square residuals. n is the number of considered points.
We need to minimize the J in the Equation 4.29. The minimum value for J has

to occur when is first derivative is zero. The partial derivatives for J with respect
to the two parameters of the regression line b and a. We want these to be zero to
get the minimum [8].

@J

@b
=

nX

i=1

2(y
i

� bx
i

� a)(�x
i

) = 0 (4.30)

@J

@a
=

nX

i=1

2(y
i

� bx
i

� a)(�1) = 0 (4.31)

Equations 4.30 and 4.31 can be shu✏ed and divided by two and which as follows

nX

i=1

bx
i

+
nX

i=1

a =
nX

i=1

y
i

(4.32)

CHAPTER 4. TASK SCHEDULING METHODS Page 51

nX

i=1

bx2
i

+
nX

i=1

ax
i

=
nX

i=1

x
i

y
i

(4.33)

We can pull some constants out in front of the summations. The
P

n

i=1 a can
be written as na in the Equation 4.32. We can also pull out the b and a from the
Equations 4.32 and 4.33. These give us two equations as follows

b

nX

i=1

x
i

+ na =
nX

i=1

y
i

(4.34)

b
nX

i=1

x2
i

+ a
nX

i=1

x
i

=
nX

i=1

x
i

y
i

(4.35)

Now from the Equations 4.34 and 4.35, some simple substitutions between the
two equations provide as follows

a =

P
y

n
� b

P
x

n
(4.36)

b =
n
P

xy �
P

x
P

y

n
P

x2 � (
P

x)2
(4.37)

These formulas in Equations 4.36 and 4.37 do not tell us how precise the estimates
are. That is, how much the estimators a and b can deviate from the “true” values
of a and b. It can be solved by confidence intervals.

Using Student’s t-distribution with n�2 degrees of freedom [76], we can construct
a confidence interval for a and b as follows

b̂ 2
h
b� s

b

t⇤
n�2, b+ s

b

t⇤
n�2

i
(4.38)

â 2
h
a� s

a

t⇤
n�2, a+ s

a

t⇤
n�2

i
(4.39)

where â and b̂ are the new estimated values of a and b. t⇤
n�2 is the (1 � ⌧/2)-th

quantile of the t
n�2 distribution. For example, if ⌧ = 0.05 then the confidence level

is 95 percent. s
a

and s
b

are the standard deviations as follows

s
b

=

s
1

n�2

P
n

i=1 "
2
iP

n

i=1(xi

� x̄)2
(4.40)

s
a

= s
b

r
1

n

P
n

i=1 x
2
i

=

s
1

n(n� 2)
(
P

n

i=1 "
2
i

)

P
n

i=1 x
2
iP

n

i=1(xi

� x̄)2
(4.41)

where x̄ is the average of the x values.

CHAPTER 4. TASK SCHEDULING METHODS Page 52

In Figure 4.3, we observe that there are some tracked positions of the target
which is denoted by the “black” dots. At first, we predict the regression line and
find the middle line. Then we calculate the confidence band by which we get two
other lines.

For the intersection with the circles, we consider the line as follows

y = bx+ a (4.42)

where b is the slope, a is the intercept.
The line given by Equation 4.42 intersects a circle (sensing range is considered

as a circle) given by Equation 4.43

(x� u1)
2 + (y � v1)

2 = r21 (4.43)

where (u1, v1) is the center and r1 is the radius of the circle.
Substituting the value of Equation 4.42 in Equation 4.43 gives as follows

(x� u1)
2 + ((bx+ a)� v1)

2 = r21 (4.44)

Simply expanding the Equation 4.44 by algebraic formula gives as follows

(1 + b2)x2 + 2(ab� bv1 � u1)x+ (u2
1 + v21 + a2 � 2av1 � r21) = 0 (4.45)

Equation 4.45 is a quadratic equation of x and can be solved using the quadratic
formula. Labeling the terms of the Equation 4.45 like (1+b2) = A, 2(ab�bv1�u1) =
B and (u2

1 + v21 + a2� 2av1� r21) = C, we can get Ax2 +Bx+C, then we solve this
by following formula

x =
�B ±

p
B2 � 4AC

2A
(4.46)

if B2 � 4AC < 0 then the line misses the circle. If B2 � 4AC = 0 then the line is
tangent to the circle. If B2� 4AC > 0 then the line meets the circle in two distinct
points.

We can substitute x in Equation 4.42 from the Equation 4.46 to get the y values

y = b(
�B ±

p
B2 � 4AC

2A
) + a (4.47)

CHAPTER 4. TASK SCHEDULING METHODS Page 53

Figure 4.3: Trajectory prediction and intersection. Black dots denote the tracked
positions of a target. The middle line is drawn based on linear regression. The other
two lines are drawn by confidence interval.

Set of states
We abstract the application by three states at every node.

• Idle: This state indicates that there is currently no target detected within the
node’s FOV and the local clock is too far from the expected arrival time of
any target already detected by some neighbor. If the time gap between the
local clock L

c

and the expected arrival time N
ET

is greater than or equal to a
threshold Th1 (cp. Figure 4.4), then the node remains in the idle state. The
threshold Th1 is set to 5 based on our simulation studies. In this state, the
sensor node performs Detect Targets less frequently to save energy.

• Awareness: There is currently also no detected target in the node’s FOV in this
state. However, the node has received some relevant trajectory information
and the expected arrival time of at least one target is in less than Th1 clock
ticks. In this state, the sensor node performs Detect Targets more frequently,
since at least one target is expected to enter the FOV.

CHAPTER 4. TASK SCHEDULING METHODS Page 54

Idle
Tracking

Awareness

Figure 4.4: State transition diagram. States change according to the value of two
application variables N

t

and N
ET

. L
c

represents the local clock value and Th1 is a
time threshold.

• Tracking: This state indicates that there is currently at least one detected tar-
get within the node’s FOV. Thus, the sensor node performs tracking frequently
to achieve high tracking performance.

Obviously, the frequency of executing Detect Targets and Track Targets de-
pends on the overall objective, i.e., whether to focus more on tracking performance
or energy consumption. The states can be identified by two application variables,
i.e., the number of detected targets at the current time N

t

and the list of arrival
times of targets expected to intersect with node N

ET

. N
t

is determined by the task
Detect Targets which is executed at time t. If the sensor node executes the task
Detect Targets at time t then N

t

returns the number of detected targets in the
FOV. Each node maintains a list of appearing targets and the corresponding arrival
time. Targets are inserted in this list if the sensor node receives a message and the
estimated trajectory intersects with the FOV. Targets are removed if a target is
detected by the node or the expected arrival time with an additional threshold Th1

has expired.

CHAPTER 4. TASK SCHEDULING METHODS Page 55

Figure 4.4 depicts the state transition diagram where L
c

is the local clock value
of the sensor node and Th1 represents the time threshold between L

c

and N
ET

.

Reward Function
The reward function in our algorithm is defined as

r = �(E
i

/E
max

) + (1� �)(P
t

/P) (4.48)

where the parameter � balances the conflicting objectives between E
i

and P
t

. E
i

represents the residual energy of the node. P
t

represents the number of tracked
positions of the target inside the FOV of the node. E

max

is the maximum energy
level of sensor node and P is the number of all possible detected target’s positions
in the FOV.

CHAPTER

5

Implementation and Evalu-
ation

In this chapter, we describe our simulation environment first. We describe our exper-
imental setup. We implement our proposed methods in our simulation environment.
We show the results varying the balancing factor of the reward function, varying
the number of nodes, varying the target movement, and varying the sensing range.
We evaluate our proposed methods in terms of tracking quality/energy consumption
trade-o↵. Discussion of the results concludes this chapter.

5.1 Simulation environment

We implement and evaluate the task scheduling methods using a WSN multi-target
tracking scenario implemented in a C# simulation environment.

The simulator consists of two stages: the deployment of the nodes and the exe-
cution of the tracking application. In our evaluation scenario the sensor nodes are
uniformly distributed in a 2D rectangular area. A given number of sensor nodes
are placed randomly in this area which can result in partially overlapping FOVs
of the nodes. However, placement of nodes on the same position is avoided. Be-
fore deploying the network, the network parameters should be configured using the
configuration sliders.

The following network parameters can be configured by our simulator.

• Network size: Network size means the number of nodes in the network. In
current settings of the simulator, number of sensor nodes can be varied between
[3,40].

• Sensor radius: Sensor radius is the sensing range of the sensors in the network.
Sensor radius can be varied between [1,50].

• Transmission radius: Transmission radius is the maximum distance within two
sensor nodes communicating with each other. If set to a high value, nodes on
the opposite side of the rectangular area may be able to reach each other. If

56

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 57

set to a low value, nodes must be very close to communicate with each other.
Transmission radius can be varied between [1,50].

Once these network parameters are configured, the sensor nodes can be deployed
by pressing the “Deploy Network” button. After deploying the sensor nodes, the
simulation may be run by pressing the “Start Simulation” button with our selected
algorithm. The simulator shows the targets moving through the area and the sen-
sors. The progress of the network can be monitored via the “Simulation Status”
box. In this box, we observe the node status, running time of the simulation, re-
maining energy of the network, and number of sensors alive. A new simulation may
be run by stopping and restarting the simulation. The previous simulation may be
reviewed by pressing the “Replay Simulation” button. Figure 5.1 shows our simu-
lation environment. Some of the graphical parts of our simulation environment are
obtained from [78].

The network is displayed on the simulation environment as a set of red circles
surrounded by gray circles. The red circles denote the sensor nodes and the gray
circles denote the sensing range of the nodes. Each node is connected to nearby
nodes by black lines which represent the communication links. When a message is
being exchanged, it appears as red. The color in the center of the red circle represents
the battery status of the node, which gradually shifts from white to black. White
color denotes the nodes in full power and black color denotes the nodes with no
power. When a node loss all power, the node becomes completely black. The gray
area of the node shrinks and disappears. All of the communication links associated
with the node disappear as well.

Targets move around in the area based on a Gauss-Markov mobility model [1].
The Gauss-Markov mobility model was designed to adapt to di↵erent levels of ran-
domness via tuning parameters. Initially, each mobile target is assigned with a
current speed and direction. At each time step t, the movement parameters of each
target are updated based on the following rule

S
t

= ⌘S
t�1 + (1� ⌘)S +

p
1� ⌘2SG

t�1 (5.1)

D
t

= ⌘D
t�1 + (1� ⌘)D +

p
1� ⌘2DG

t�1 (5.2)

where S
t

and D
t

are the current speed and direction of the target at time t. S and
D are constants representing the mean value of speed and direction. SG

t�1 and DG

t�1

are random variables from a Gaussian distribution. ⌘ is a parameter in the range
[0, 1] and is used to vary the randomness of the motion. Random (Brownian) motion
is obtained if ⌘ = 0, and linear motion is obtained if ⌘ = 1. At each time t, the
target’s position is given by the following equations

x
t

= x
t�1 + S

t�1cos(Dt�1) (5.3)

y
t

= y
t�1 + S

t�1sin(Dt�1) (5.4)

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 58

Figure 5.1: Simulation environment.

In our simulation we limit the number of concurrently available targets to seven.
The total energy budget for each sensor node is considered as 1000 units. Table 5.1
shows the energy consumption for the execution of each action. Sending messages
over two hops consumes energy on both the sender and relay nodes. To simplify the
energy consumption at the network level, we aggregate the energy consumption to
10 units on the sending node only. We set the discount factors � = 0.5, �1 = 0.5 and
�2 = 0.5 for the online learning algorithms and vary the learning rate according to
Equation 4.18. We set ⇣ = 1 for calculating learning rate in Equation 4.18. We set
k = 0.25, ✏

min

= 0.1, ✏
max

= 0.3 and S
max

= 3 in Equation 4.15. We set � = 0.5 for
the eligibility trace calculation by Equation 4.17. We set the egalitarianism factor
 = 0.5 for Exp3. We consider the sensing radius as r

i

= 5 and communication radius
as R

i

= 8. We set these fixed values for the parameters based on our simulation
studies. For each simulation run we aggregate the achieved tracking quality and
energy consumption and normalize the tracking quality and energy consumption to
[0, 1].

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 59

Action Energy Consumption
Goto Sleep 1 unit
Detect Targets 2 units
Intersect Trajectory 3 units
Predict Trajectory 4 units
Send Message (one hop) 5 units
Send Message (two hops) 10 units
Track Targets 6 units

Table 5.1: Energy consumption of the individual actions.

5.2 Experimental setup

We implement the methods cooperative SARSA(�) learning (CRL) for one hop
and two hops, bandit solvers Exp3, and independent reinforcement learning (RL) in
our simulation environment (cp. Section 5.1 for more details). We set the discount
factors of the learning algorithms, egalitarianism factor for Exp3, eligibility trace
factor, learning rate parameters, exploration factors, number of concurrently avail-
able targets, total energy budget of each sensor node, energy consumption for each
task to fixed values based on simulation studies. We consider 5, 10, and 20 sensor
nodes which are placed randomly with partially overlapping FOVs of the nodes. We
set sensing radius and communication radius to fixed values based on simulation
studies. For each complete simulation run we aggregate the achieved tracking qual-
ity and energy consumption. We find out the achieved trade-o↵ between tracking
quality and energy consumption for our methods varying the balancing factor of
the reward function, number of sensor nodes, and randomness of target movement.
We also calculate the average execution time and average number of transferred
messages for RL, CRL, and Exp3.

We consider 3 fully connected sensor nodes without overlapping FOVs of the
nodes (cp. Figure 4.1) for cooperative Q learning and combinatorial auction method.
We set learning rate, discount factor, reward values, energy consumption for each
task to fixed values based on simulation studies. We calculate the cumulative reward
over time, residual energy of the network, total number of executions of each action
for cooperative Q learning.

We calculate the variance of the available energy for di↵erent methods, residual
energy of the network, and cumulative revenue of the network for combinatorial
auction method.

5.3 Simulation results

In this section, first we describe the results comparing our three methods CRL(one
hop), CRL(two hop), and RL in terms of tracking quality/energy consumption trade-

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 60

o↵ varying the balancing factor of the reward function, number of sensor nodes, and
randomness of target movement considering the system model of the Subsection 3.2.1
and the application scenario of the Subsection 4.3.3. We then show the results of co-
operative Q learning considering the system model of the Subsection 3.2.1 and both
application scenarios of the Subsection 4.3.2. After that, we show the results of the
combinatorial auction method considering the system model of Subsection 3.2.2 and
the application scenario of the Subsection 4.3.1. We compare cooperative Q learning
and combinatorial auction method with static and random scheduling of tasks. We
also compare our methods RL, CRL, and Exp3 in terms of tracking quality/energy
consumption trade-o↵ considering the system model of the Subsection 3.2.1 and the
application scenario of the Subsection 4.3.3 varying the balancing factor of the re-
ward function, number of sensor nodes, randomness of moving targets, and sensing
range.

5.3.1 Results of RL, CRL (one hop and two hop)

We perform three experiments with the following assumptions of parameters.

1. To find out the trade-o↵ between tracking quality and energy consumption, we
set the balancing factor � to one of the following values {0.10, 0.30, 0.50, 0.70, 0.90},
keep the randomness of moving target as ⌘ = 0.5 and fix the topology to five
nodes.

2. We vary the network size to check the trade-o↵ between tracking quality and
energy consumption. We consider three di↵erent topologies consisting of 5, 10,
and 20 sensor nodes. We keep the balancing factor � = 0.5 and the randomness
of the mobility model ⌘ = 0.5 constant for this experiment.

3. We set the randomness of moving targets ⌘ to one of the following values
{0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 0.9} and set the balancing factor � = 0.5
and fix the topology to five nodes.

Results varying the balancing factor

We vary the balancing factor � to one of these values {0.1, 0.3, 0.5, 0.7, 0.9}, keep
the randomness of moving target as ⌘ = 0.5, and fix the topology to 5 nodes.
Figures 5.2, 5.3, 5.4, 5.5, and 5.6 show the evaluation of tracking quality/energy
consumption trade-o↵ for cooperative reinforcement learning (CRL) (one hop), inde-
pendent reinforcement learning (RL), and cooperative reinforcement learning (CRL)
(two hop).

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 61

Figure 5.2: Achieved trade-o↵ between tracking quality and energy consumption for
� = 0.1.

Figure 5.3: Achieved trade-o↵ between tracking quality and energy consumption for
� = 0.3.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 62

Figure 5.4: Achieved trade-o↵ between tracking quality and energy consumption for
� = 0.5.

Figure 5.5: Achieved trade-o↵ between tracking quality and energy consumption for
� = 0.7.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 63

Figure 5.6: Achieved trade-o↵ between tracking quality and energy consumption for
� = 0.9.

Each data point in these figures represents the normalized tracking quality and
energy consumption of one complete simulation run. The square symbols represent
the average values among the 10 simulation runs for each method. For example with
� = 0.1 in Figure 5.2, the achieved tracking results vary within (0.69, 0.77) and the
energy consumption varies within (0.47, 0.58) for our one hop cooperative approach.
The average value for this setting is 0.73 and 0.53. It can be clearly seen from these
figures that our cooperative approaches outperform the non-cooperative approach
with regard to the achieved tracking performance. There is a slight increase in the
energy consumption especially for the two hop cooperative approach. Figure 5.7
shows the results of the evaluation of RL, CRL(one hop), and CRL(two hop) for
various network sizes.

Results varying the number of nodes

We vary the network size to check the trade-o↵ between tracking quality and energy
consumption. We consider three di↵erent topologies consisting of 5, 10 and 20
sensor nodes. We keep the balancing factor � = 0.5 and the randomness of the
mobility model ⌘ = 0.5 constant for this experiment. Figure 5.7 shows the tracking
quality/energy consumption trade-o↵ for various network sizes. Here, each data
point in this figure represents the average of the normalized tracking quality and
energy consumption of ten complete simulation runs. Here the same trend can be
identified, i.e., the cooperative approaches outperform the non-cooperative approach
with regard to the achieved tracking performance.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 64

Figure 5.7: Tracking quality versus energy consumption for various network sizes.

Results varying the target movement

Figures 5.8, 5.9, and 5.10 show the results of varying the randomness of target
movement.

Figure 5.8: Randomness of target movement, ⌘=0.1, 0.15, and 0.2

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 65

Figure 5.9: Randomness of target movement, ⌘=0.25, 0.3, and 0.4

Figure 5.10: Randomness of target movement, ⌘=0.5, 0.7, and 0.9

We set in our simulation the randomness of moving targets ⌘ to one of the
following values {0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 0.9}, set the balancing factor
� = 0.5 and fix the topology to five nodes for evaluating the CRL(one hop), RL,
and CRL(two hop). Here, each data point in this figure represents the average of
the normalized tracking quality and energy consumption of ten complete simulation
runs.

From these figures, it can be seen that our cooperative approaches outperform
the non cooperative approach in terms of achieved tracking performance. We can see

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 66

that for lower randomness, ⌘=0.5, 0.7, and 0.9, independent learning and one-hop
cooperative learning show very close results for tracking performance. But for higher
randomness, ⌘=0.1, 0.15, and 0.2, independent learning gives poor performance with
regard to tracking quality.

5.3.2 Results of cooperative Q learning

In Figure 5.11, we show that the cumulative reward over time of our approach is
greater than the other approaches considering the first application scenario (cp.
Subsection 4.3.2 for more details). Higher cumulative reward means that the node
has chosen tasks in such a way that it maximized the reward. As our reward is
defined to minimize the energy consumption, we will get less energy consumption
for tasks by getting a higher cumulative reward. We can see there are variations
in cumulative rewards. These are the Q values for each method. Q value has also
the consideration of the value function of the neighboring nodes which provides a
variation in cumulative rewards.

In Figures 5.12, 5.13, and 5.14, we show the task scheduling of node A, B, and
C considering the case of Figure 4.1 with cooperative Q learning. Each node has no
information about what tasks are better for them and try to learn over time based
on the utility of their tasks. For example, node A does not know that it needs to
sense as the object is in the field of view. Here each bar represents a task executed
at each time step. We represent “Receive”, “Transmit”, “Sense”, and “Sleep” tasks
in descending order of height of the bars. We can observe that node A immediately
learns that it is getting paid to sense as the object is in its field of view. In the
middle of the simulation time, as the target is out of reach of all sensor nodes, all
nodes will be rewarded for sleeping. Similarly, we can observe that for node C, it
will be rewarded for sensing after some times when the object is in its field of view.
After that when the object is out of reach of all sensor nodes, all the nodes will be
rewarded for sleeping.

In Figure 5.15, we show the number of executions of each task for each method.
We perform this experiment for all methods by considering the case of Figure 4.1.
Here we can see that in our approach the number of executions of sleep task is larger
than other methods. As sleeping requires less energy among all tasks, our approach
shows more energy e�ciency by performing more sleep action over time.

Figure 5.16 shows the comparison graph of our approach with the other ap-
proaches in terms of cumulative reward over time considering the second applica-
tion scenario (cp. Subsection 4.3.2 for more details). It shows a better cumulative
reward over time for our approach. We consider here the negative rewards with the
di↵erent set of application variables for states to prove the better e�ciency of our
system.

Figure 5.17 shows the comparison graph for the residual energy of the network.
We calculate the residual energy of the network at each time step. We assume energy
budget for each node as 1000 units. For sleeping we spend 2 units, for sensing 3

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 67

Figure 5.11: Cumulative reward over time by application scenario 1 (cp. Subsec-
tion 4.3.2).

units, for receiving 4 units and for transmitting 5 units of energy. We get better
result for cooperative Q learning comparing with other approaches. So, it helps to
increase the lifetime of the network.

From the simulation results and evaluation, we can say that by applying co-
operative Q learning it is possible to learn the usefulness of actions to perform in
di↵erent states. Cooperative Q learning helps to schedule the tasks in such a way
that the energy consumption is reduced. It also receives better cumulative reward
over time compared with other approaches.

5.3.3 Results of combinatorial auction method

The simulation results in Figure 5.18 shows that our proposed combinatorial auction
based algorithm gives better performance in terms of energy e�ciency comparing
with static and random scheduling of tasks. We calculate the variance of the avail-
able energy of the sensor nodes (cp. Subsection 4.3.1 for more details). Figure 5.19
shows the residual energy of the network at each time step. We can observe that our
proposed algorithm gives better performance comparing with other existing tech-
niques. In Figures 5.20, 5.21, and 5.22, we show the task scheduling of node A, B,
and C considering the case of Figure 4.1 with combinatorial auction based method.
Each node has no information of what tasks are better for them and try to learn

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 68

Figure 5.12: Tasks execution for Node A in Figure 4.1 by cooperative Q learning.

Figure 5.13: Tasks execution for Node B in Figure 4.1 by cooperative Q learning.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 69

Figure 5.14: Tasks execution for Node C in Figure 4.1 by cooperative Q learning.

Figure 5.15: Total number of execution for each action.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 70

Figure 5.16: Cumulative reward over time by application scenario 2 (cp. Subsec-
tion 4.3.2).

Figure 5.17: Residual energy of the network over time.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 71

over time based on the utility of their tasks.
For example, node A does not know that it needs to sense as the object is in

its field of view. Here each bar represents a task executed at each time step. We
represent “Receive”, “Transmit”, “Sense”, and “Sleep” tasks in descending order of
height of the bars. We can observe that node A immediately learns that it is getting
paid to sense as the object is in its field of view. In the middle of the simulation
time, as the target is out of reach of all sensor nodes, all nodes will be rewarded for
sleeping. Similarly, we can observe that for node C, it will be rewarded for sensing
after some times when the object is in its field of view. After that when the object
is out of reach of all sensor nodes, all the nodes will be rewarded for sleeping.

We also calculate the revenue of the network by NetLogo [87] simulator. Three
agents are considered for this simulation. On each agent, the proposed algorithm
is implemented. Figure 5.23 shows the cumulative revenue for the network with
three agents. We can observe the cumulative revenue of the network converges after
certain time periods. Here cumulative revenue is calculated by the summation of
revenues of all nodes in the network (cp. Subsection 4.3.1 for more details). This
revenue depends on the executed task of sensor nodes and their gained utilities.
There are variations in cumulative revenue due to the dynamics of the network and
the movement of the target.

From the simulation result and evaluation, we can say that by applying combina-
torial auction based method it is possible to learn the usefulness of actions to perform
in di↵erent states. Our proposed method helps to schedule the tasks in such a way
that the energy consumption is reduced. It also receives better cumulative revenue
over time compared with other approaches. The residual energy of the network also
remains more in our proposed approach compared with other approaches.

Figure 5.18: Variance of the available energy for di↵erent methods.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 72

Figure 5.19: Residual energy of the network.

Figure 5.20: Tasks execution for Node A in Figure 4.1 by combinatorial auction
method.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 73

Figure 5.21: Tasks execution for Node B in Figure 4.1 by combinatorial auction
method.

Figure 5.22: Tasks execution for Node C in Figure 4.1 by combinatorial auction
method.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 74

Figure 5.23: Cumulative revenue of the network with three agents.

5.4 Comparison of RL, CRL, and Exp3

We perform the evaluation of RL, CRL, and Exp3 considering the system model
described in the Subsection 3.2.1. For our evaluation we perform the following five
experiments with the following assumptions of parameters.

1. To find out the trade-o↵ between tracking quality and energy consumption,
we set the balancing factor � of the reward function between [0.1,0.9] in 0.1
steps, keep the randomness of moving targets as ⌘ = 0.5, set the egalitarianism
factor of Exp3 as  = 0.5 and fix the topology to five nodes.

2. We vary the network size to check the trade-o↵ between tracking quality and
energy consumption. We consider three di↵erent topologies consisting of 5, 10,
and 20 sensor nodes where the coverage ratio is 0.0029, 0.0057, and 0.0113,
respectively. The coverage ratio is defined as the ratio of the aggregated FOV
of all deployed sensor nodes over the area of the entire surveillance area. We
keep the balancing factor � = 0.5 and the randomness of the mobility model
⌘ = 0.5 constant for this experiment.

3. We set the randomness of moving targets ⌘ to one of the following values
{0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 0.9} and set the balancing factor � = 0.5
and fix the topology to five nodes.

4. We vary the sensing range r to one of these values {10,15,20,25,30,35,40,45}
for this experiment.

5. We evaluate RL, CRL, and Exp3 in terms of average execution time and aver-
age communication e↵ort. These values are measured from twenty iterations
and represent the mean execution times and the mean of Send Message task
executions.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 75

Figure 5.24 shows the tracking quality/energy consumption trade-o↵ for RL,
CRL, and Exp3 by varying the balancing factor, � between [0.1,0.9] in 0.1 steps.
Table 5.2 shows the evaluation of RL, CRL, and Exp3 based on tracking quality,
energy consumption, and average communication e↵ort varying the balancing factor
�. Each data point in these figures represents the average of normalized tracking
quality and energy consumption of ten complete simulation runs. We observe that
CRL and Exp3 provide similar results, i.e., the corresponding data points are closely
co-located. RL is more energy aware but is not able to achieve high tracking quality.

Figure 5.25 shows the tracking-quality/energy consumption trade-o↵ varying the
number of nodes to 5, 10, and 20. Table 5.3 shows the mean and variance values of
the tracking quality and energy consumption for the RL, CRL, and Exp3 varying
the number of nodes, N . In this experiment, each data point represents the average
of normalized tracking quality and energy consumption of ten complete simulation
runs. Here the same trend can be identified, i.e., the CRL and Exp3 achieve almost
similar results in terms of tracking quality/energy consumption trade-o↵ and RL
shows less tracking performance with higher energy e�ciency.

Figures 5.26, 5.27, and 5.28 show the results by varying ⌘ to one of these values
{0.1,0.15,0.2,0.25,0.3,0.4,0.5,0.7, and 0.9}. Each data point in these figures repre-
sents the average of normalized tracking quality and energy consumption of ten
complete simulation runs. From these figures, it can be seen that CRL and Exp3
outperform RL in terms of achieved tracking performance. We can see that for
lower randomness, ⌘=0.5, 0.7, and 0.9, RL and Exp3 show very close results for
tracking performance. But for higher randomness, ⌘= 0.1, 0.15, and 0.2, RL gives
poor performance with regard to tracking performance.

Figure 5.29 shows the results of tracking quality/energy consumption trade-o↵
of RL, CRL, and Exp3 for di↵erent coverage ratio. The coverage ratio is defined
as the ratio of the aggregated FOV of all deployed sensor nodes A

s

over the area
of the entire surveillance area A

n

. Here, each data point represents average of the
normalized tracking quality and energy consumption of ten complete simulation
runs. We can observe that higher the A

s

/A
n

ratio, less the tracking quality. Higher
A

s

/A
n

means more spaces are not covered by the considered sensor nodes and the
sensing radius r of each sensor node is smaller. We vary r to one of these values
{10,15,20,25,30,35,40,45} for this experiment. The surveillance area is a rectangle
with the height of 300 unit and width of 460 unit. Area of a particular node is
considered as ⇡r2. A

s

is the surveillance area considered as (height⇥width). From
the figure, it can be seen that Exp3 outperforms the RL in terms of tracking quality.
CRL shows higher tracking quality but poor performance with regard to energy
consumption.

Table 5.4 shows the comparison of RL, CRL, and Exp3 in terms of average exe-
cution time and average communication e↵ort. These values are derived from twenty
iterations and represent the mean execution times and the mean of Send message
task executions. We find that RL is the most resource-aware scheduling algorithm.
Exp3 requires 25% more and CRL requires 86% more execution time, respectively.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 76

The communication overhead is similar for both Exp3 and CRL.

Figure 5.24: Tracking quality/energy consumption trade-o↵ for RL, CRL, and Exp3
by varying the balancing factor of the reward function �.

RL CRL Exp3

TQ EC ACE TQ EC ACE TQ EC ACE
�=0.1 0.43 3.90 0 0.49 4.00 21 0.48 3.96 18

�=0.2 0.45 3.92 0 0.51 4.20 23 0.50 4.10 20

�=0.3 0.48 3.99 0 0.52 4.33 26 0.52 4.20 23

�=0.4 0.50 4.18 0 0.54 4.59 28 0.53 4.39 25

�=0.5 0.52 4.23 0 0.55 4.65 30 0.54 4.52 28

�=0.6 0.53 4.53 0 0.59 4.69 32 0.57 4.61 30

�=0.7 0.54 4.67 0 0.64 4.97 33 0.64 4.89 32

�=0.8 0.62 4.99 0 0.68 6.00 35 0.67 5.89 34

�=0.9 0.74 5.19 0 0.77 6.50 37 0.76 6.39 36

Table 5.2: Comparison of RL, CRL, and Exp3 based on Tracking Quality (TQ),
Energy Consumption (EC), and Average Communication E↵ort (ACE) by varying
the balancing factor of the reward function �.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 77

Figure 5.25: Tracking quality/energy consumption trade-o↵ for RL, CRL, and Exp3
by varying the network size.

RL CRL Exp3

TQ EC TQ EC TQ EC
Mean (N=5) 0.51 4.10 0.54 5.20 0.54 4.45

Variance (N=5) 0.0016 0.26 0.0012 0.23 0.0011 0.21

Mean (N=10) 0.69 5.10 0.78 6.01 0.78 5.49

Variance (N=10) 0.0016 0.26 0.0012 0.23 0.0011 0.21

Mean (N=20) 0.81 6.49 0.87 6.99 0.85 6.75

Variance (N=20) 0.0014 0.09 0.0013 0.07 0.0010 0.07

Table 5.3: Mean and variance of the tracking quality and the energy consumption
by varying the number of nodes, N=5, 10, and 20. Here TQ means Tracking Quality
and EC means Energy Consumption.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 78

Figure 5.26: Tracking quality/energy consumption trade-o↵ for RL, CRL, and Exp3
by varying the randomness of target movement, ⌘ = 0.10, 0.15, and 0.20.

Figure 5.27: Tracking quality/energy consumption trade-o↵ for RL, CRL, and Exp3
by varying the randomness of target movement, ⌘ = 0.25, 0.30, and 0.40.

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 79

Figure 5.28: Tracking quality/energy consumption trade-o↵ for RL, CRL, and Exp3
by varying the randomness of target movement, ⌘ = 0.50, 0.70, and 0.90.

Figure 5.29: Results varying the sensing radius

CHAPTER 5. IMPLEMENTATION AND EVALUATION Page 80

Avg. Execution Time Avg. Comm. E↵ort

RL 0.036 s 0

CRL 0.067 s 29

Exp3 0.045 s 27

Table 5.4: Comparison of average execution time and average number of transferred
messages (based on 20 iterations).

5.5 Discussion

All above results help us to reach the following decisions.

• Cooperative task scheduling methods (CRL (one hop and two hop), Coopera-
tive Q learning, Exp3) provide better performance, e.g., tracking quality than
non-cooperative or independent task scheduling method (RL).

• Cooperative approaches require more resources, e.g., energy due to the increase
communication e↵ort.

• By appropriately setting the balancing factor of the reward function � the
desired performance or energy consumption can be achieved.

• Further cooperation among neighboring nodes with the local observations
help to achieve better performance. CRL(two hop) outperforms the RL and
CRL(one hop) in terms of tracking quality.

• Online task scheduling methods outperform the o✏ine task scheduling meth-
ods in terms of remaining energy of the network.

• Our evaluation shows that di↵erent methods have di↵erent properties con-
cerning resource-awareness and achieved performance. The selection of the
scheduling algorithm thus depends on the application requirements and avail-
able resources of the WSN.

CHAPTER

6

Conclusion and future work

Resource-aware e↵ective task scheduling is very important for WSN to know the
best task to execute on next time slots. We propose two cooperative reinforcement
learning methods (cooperative Q learning and SARSA(�)), bandit solvers (Exp3),
and market based method for online scheduling of tasks in a way that the bet-
ter energy/performance trade-o↵ is achieved. We perform the evaluation of our
proposed cooperative methods (one hop and two hop distance neighbors) and non-
cooperative method. Our experimental results show that our cooperative scheduling
outperforms the non-cooperative scheduling in terms of tracking quality. We show
that cooperation among neighboring nodes improves the energy/performance trade-
o↵ comparing with the non-cooperative approach. We also perform the evaluation
of RL, CRL, and Exp3. We apply our methods in a target tracking application. We
find that RL, CRL, and Exp3 have di↵erent properties based on tracking quality
and energy e�ciency. The selection of a particular scheduling algorithm depends on
the requirement of the application and available resources of sensor nodes.

6.1 Summary of contributions

We propose cooperative Q learning for task scheduling in a WSN. This is our first
initiative to apply a reinforcement learning method for task scheduling. We assume a
set of tasks and a set of states for applying Q learning. To our best knowledge, this is
the first work to consider some cooperation among neighbors for task scheduling in a
WSN. We consider static values for the reward of the performed actions. We provide
higher reward values for the tasks which consume less energy for the execution. We
apply this method in a target tracking application and compare with static, random
and existing individual reinforcement learning method. We consider only three nodes
with a particular movement of a target. We consider two application scenarios with
two sets of reward values. We calculate the cumulative reward over time for all
methods. We find task execution at each time step considering three sensor nodes.
We calculate the total number of executions for each action and also the residual

81

CHAPTER 6. CONCLUSION AND FUTURE WORK Page 82

energy of the network over time. We find that our proposed cooperative learning
outperforms the existing approaches in terms of energy e�ciency.

We propose a combinatorial auction-based method for task scheduling in a WSN.
We have a set of tasks. Each task requires CPU cycle, energy requirements, and ideal
sleep time for execution. We calculate the variance of the available energy of the
sensor nodes. The higher variance value corresponds to the unbalanced available
energy among the sensor nodes which is not energy e�cient. We calculate the
residual energy of the network and perform the evaluation of our proposed approach
with the existing static and random task scheduling. We find out the task execution
for each considered node over time steps. We also calculate the revenue of the
network by a simulator. We observe that our proposed approach outperforms in
terms of energy e�ciency and task scheduling comparing with static and random
task scheduling.

We propose a cooperative SARSA(�) learning algorithm for task scheduling in
a WSN. For this work, we update our state and action space with the trajectory
prediction action and the awareness state. We consider a weighted reward function
to trade the application performance and energy consumption. We perform the
experiments to find out the trade-o↵ between application performance and resource
consumption by varying the balancing factor of the reward function. We also vary
the randomness of the target movement and the number of nodes to identify the
performance/resource consumption trade-o↵. We observe that proposed cooperative
approach outperforms the non-cooperative approach in terms of tracking quality.

We propose an exponential bandit solvers Exp3 for task scheduling in WSN.
We perform the evaluation of Exp3 with RL and CRL. We find the tracking qual-
ity/energy consumption trade-o↵ for methods. We observe that Exp3 and CRL
provide close results in terms of tracking quality/energy consumption trade-o↵. RL
provides the most energy e�ciency but less tracking quality. We also calculate
the average execution time and communication overhead for these methods. Here
we find that CRL and Exp3 provide close results in terms of execution time and
communication overhead.

We observe that cooperation among neighboring nodes helps to achieve better
performance. Cooperative task scheduling methods outperform the non-cooperative
or independent task scheduling methods in terms of tracking quality. Independent
scheduling methods provide better energy e�ciency compared with cooperative task
scheduling as there is no message exchange for the cooperation in independent learn-
ing methods. Online task scheduling methods help to learn the best next task to
execute based on past observed application behavior. We find that our proposed
methods have di↵erent properties based on resource-awareness and achieved perfor-
mance. The selection of the appropriate method depends on the application demand
and the remaining resources of the WSN.

CHAPTER 6. CONCLUSION AND FUTURE WORK Page 83

6.2 Future works

This thesis opens up so many issues based on resource-aware task scheduling in
WSNs. To find suitable methods for better application performance with optimized
resource consumption is one of the challenges. Future work includes the application
of our resource-aware scheduling approach to di↵erent WSN applications, the im-
plementation on our visual sensor network platforms [24] and the comparison of our
approach with other variants of reinforcement learning methods.

Currently we are using our task scheduling methods for a multi-target tracking
application. There are some other applications, e.g., routing protocols, medium
access control (MAC) protocols, etc. There are some existing works of RL-based
routing protocol design to find optimal routing paths [22] [25] [83]. There are some
existing RL-based MAC protocols [15] [56]. One of our future works is to apply our
proposed CRL for the routing protocol and MAC protocol design.

We have a plan to apply our proposed task scheduling methods on our visual sen-
sor network platforms [24]. Currently we are considering sensor nodes with limited
energy supply in a rectangular area for moving target tracking application.

We plan to compare our proposed RL method with the other variants of RL.
Currently we are using cooperative Q and SARSA(�) learning. There are some
other variants of RL like Q(�), temporal di↵erence (TD), TD(�) and SARSA [80].
We plan to evaluate our proposed methods with Q(�), TD, TD(�), and SARSA.

Bibliography

[1] T. Abbes, S. Mohamed, and K. Bouabdellah. Impact of Model Mobility in Ad
Hoc Routing Protocols. Computer Network and Information Security, 10:47–54,
2012.

[2] K. Akkaya and M. Younis. A survey of routing protocols in wireless sensor
networks. Ad Hoc Network (Elsevier), 3(3):325–349, 2005.

[3] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A survey on wireless multi-
media sensor networks. Computer Networks, 51:921–960, 2007.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Elsevier Computer Networks, 38:393–422, 2002.

[5] T. Arampatzis, J. Lygeros, and S. Manesis. A survey of applications of wire-
less sensors and wireless sensor networks. In Proceedings of IEEE Mediterrean
Conference on Control and Automation, pages 719–724, 2005.

[6] P. Auer, N. C. Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32:48–77, 2002.

[7] S. Ben-david, E. Kushilevitz, and Y. Mansour. Online learning versus o✏ine
learning. Computational Learning Theory, 904:38–52, 1995.

[8] N. Bery. Linear regression. Technical report, DataGenetics, 2009.

[9] A. Bharathidasan, V. Anand, and S. Ponduru. Sensor networks: An overview.
In IEEE Potentials, volume 22, pages 20–23, 2003.

[10] A. Blum. On-line algorithms in machine learning. In Proceedings of the Work-
shop on On-Line Algorithms, pages 306–325, 1996.

[11] O. Boyinbode, H. Le, A. Mbogho, M. Takizawa, and R. Poliah. A survey on
clustering algorithms for wireless sensor networks. In International Conference
on Network-Based Information Systems, pages 358–364, 2010.

[12] M. Bramwell. Implementing a mica2 mote sensor network. Technical report,
Crossbow-Mica2 Mote, 2006.

84

BIBLIOGRAPHY Page 85

[13] J. Byers and G. Nasser. Utility Based Decision making in Wireless Sensor
Networks. In Proceedings of the Workshop on Mobile and Ad Hoc Networking
and Computing, pages 143 – 144, 2000.

[14] L. Chen, B. K. Szymanski, and J. W. Branch. Auction-based congestion man-
agement for target tracking in wireless sensor networks. In Proceedings of the
IEEE International Conference on Pervasive Computing and Communications,
pages 1–10, 2011.

[15] Y. Chu, P. Mitchell, and D. Grace. Aloha and q-learning based medium access
control for wireless sensor networks. In International Symposium on Wireless
Communication Systems, pages 511–515, 2012.

[16] B. Coltin and M. Veloso. Mobile robot task allocation in hybrid wireless sensor
networks. In Proceedings on IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2932–2937, 2010.

[17] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. IEEE
Computer Society, pages 41–49, 2004.

[18] W. Dargie and C. Poellabauer. Fundamentals of Wireless Sensor Networks.
Wiley, 2010.

[19] R. Dechter and D. Frost. Backtracking algorithms for constraint satisfaction
problems. Technical report, University of California, Irvine, 1999.

[20] S. Denef, L. Ramirez, and T. Dyrks. Letting tools talk: Interactive technol-
ogy for firefighting. In Proceedings of ACM Conference on Human Factors in
Computing Systems, pages 4447–4452, 2009.

[21] S. Dhanani, J. Arseneau, A. Weatherton, B. Caswell, N. Singh, and S. Patek.
A comparison of utility based information management policies in sensor net-
works. In Systems Technology Integration Lab of the Department of Systems
and Information Engineering at the University of Virginia, Charlottesville, VA.,
pages 84–89, 2006.

[22] S. Dong, P. Agrawal, and K. Sivalingam. Reinforcement learning based ge-
ographic routing protocol for uwb wireless sensor network. In IEEE Global
Telecommunications Conference, pages 652–656, 2007.

[23] N. Edalat, W. Xiao, N. Roy, S. Das, and M. Motani. Combinatorial auction
based task allocation in multi application wireless sensor networks. In Proceed-
ings of the international conference on Embedded and Ubiquitous Computing,
pages 174–181, 2011.

BIBLIOGRAPHY Page 86

[24] L. Esterle, P. R. Lewis, X. Yao, and B. Rinner. Socio-Economic Vision Graph
Generation and Handover in Distributed Smart Camera Networks. ACM Trans-
actions on Sensor Networks, 10(2):24, 2014.

[25] A. Förster and A. Murphy. Froms: Feedback routing for optimizing multiple
sinks in wsn with reinforcement learning. In IEEE International Conference on
Intelligent Sensors, Sensor Networks and Information, pages 371–376, 2007.

[26] C. Frank and K. Römer. Algorithms for Generic Role Assignments in Wire-
less Sensor Networks. In Proceedings of the ACM Conference on Embedded
Networked Sensor Systems, pages 230–242, 2005.

[27] A. Galstyan. Resource allocation and emergent coordination in wireless sensor
networks. In Workshop on Sensor Networks at the The Nineteenth National
Conference on Artificial Intelligence (AAAI-04), pages 1–6, 2004.

[28] Z. Ghahramani. Unsupervised learning. In Advanced Lectures on Machine
Learning, pages 72–112. Springer-Verlag, 2004.

[29] S. Giannecchini, M. Caccamo, and C. Shih. Collaborative Resource Allocation
in Wireless Sensor Networks. In Proceedings of the Euromicro Conference on
Real-Time Systems, pages 35–44, 2004.

[30] A. Goldsmith and S. Wicker. Design challenges for energy-constrained ad hoc
wireless networks. IEEE Wireless Communications Magazine, 9:8–27, 2002.

[31] W. Guo, N. Xiong, H.-C. Chao, S. Hussain, and G. Chen. Design and Analysis
of Self Adapted Task Scheduling Strategies in WSN. Sensors, 11:6533–6554,
2011.

[32] A. Hac. Wireless Sensor Network Designs. John Wiley and Sons, 2003.

[33] V. Handziski, A. Kopk, H. Karl, and A. Wolisz. A common wireless sensor
network architecture? Technical report, Technical University of Berlin, 2003.

[34] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for infor-
mation dissemination in wireless sensor networks. In Proceedings of the Annual
ACM/IEEE International Conference on Mobile Computing and Networking,
pages 174–185, 1999.

[35] J. Huang, Z. Han, M. Chiang, and H. V. Poor. Auction-based resource al-
location for cooperative communications. IEEE Journal on Selected Areas in
Communications, pages 1226–1237, 2008.

[36] M. M. Islam, M. M. Hassan, G. W. Lee, and E. N. Huh. A survey on virtual-
ization of wireless sensor networks. Sensors, 12(2):2175–2207, 2012.

BIBLIOGRAPHY Page 87

[37] D. Jea and M. B. Srivastava. Channels characteristics for on-body mica2dot
wireless sensor networks. Technical report, Networked and Embedded Systems
Laboratory, University of California, Los Angeles, 2003.

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[39] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging challenges: Mobile
networking for smart dust. Journal of Communications and Networks, 2(3),
2000.

[40] A. E. Kateeb, A. Ramesh, and L. Azzawi. Wireless sensor nodes processor
architecture and design. In Canadian Conference on Electrical and Computer
Engineering, pages 1031–1034, 2008.

[41] M. I. Khan and B. Rinner. Resource Coordination in Wireless Sensor Networks
by Cooperative Reinforcement Learning. In Proceedings of the IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops,
pages 895 – 900, 2012.

[42] M. I. Khan and B. Rinner. Energy-Aware Task Scheduling in Wireless Sensor
Networks by Cooperative Reinforcement Learning. In Proceedings of the IEEE
International Conference on Communications Workshops, pages 871–877, 2014.

[43] M. I. Khan and B. Rinner. Evaluation of Resource-Aware Task Scheduling
Methods in Wireless Sensor Networks. IEEE Sensor Journal, page 2, 2014.

[44] M. I. Khan and B. Rinner. Performance Analysis of Resource-Aware Task
Scheduling Methods in Wireless Sensor Networks. Hindawi International Jour-
nal of Distributed Sensor Networks, page 9, 2014.

[45] M. I. Khan, B. Rinner, and C. S. Regazzoni. Resource Coordination in Wireless
Sensor Networks by Combinatorial Auction Based Method. In Proceedings of
the IEEE International Conference on Networked Embedded Systems for Every
Applications, pages 1–6, 2012.

[46] U. A. Khan and B. Rinner. Online Learning of Timeout Policies for Dynamic
Power Management. ACM Transactions on Embedded Computing Systems,
page 25, 2013.

[47] C. Kim and J. Ahn. Causally ordered delivery protocol for overlapping multicast
groups in broker-based sensor networks. International Journal of Computer
Science Issues, Vol 8, Issue 1, pages 46–54, 2011.

[48] L. Kleinrock. Distributed systems. Communications of the ACM, 28(11), 1985.

BIBLIOGRAPHY Page 88

[49] P. Klemperer. Auction theory: A guide to the literature. Journal of Economic
Surveys, 13(3):227–286, 1999.

[50] J. Ko, K. Klues, C. Richter, M. B. Wanja Hofer, Branislav Kusy, T. Schmid,
Q. Wang, P. Dutta, and A. Terzis. Low Power or High Performance? A Trade-
o↵ Whose Time Has Come (and Nearly Gone). In Proceedings of European
Conference on Wireless Sensor Networks, pages 98–114, 2012.

[51] S. Kogekar, E. Neema, O. Eames, X. Koutsoukos, A. Ledeczi, and M. Maroti.
Constraint-guided dynamic reconfiguration in sensor networks. In Information
processing in sensor networks, pages 379–387. ACM Press, 2004.

[52] H. Kopetz. Real-Time Systems - Design Principles for Distributed Embedded
Applications. Springer, 2011.

[53] B. Krishnamachari and S. Wicker. On the complexity of distributed self-
configuration in wireless networks. Journal of Telecommunication Systems,
pages 33–59, 2003.

[54] J. E. Lee, S. H. Cha, D. Y. Kim, and K. H. Cho. Autonomous management of
large-scale ubiquitous sensor networks. Emerging Directions in Embedded and
Ubiquitous Computing, pages 609–618, 2006.

[55] T. Liu and M. Martonosi. Impala: A middleware system for managing auto-
nomic, parallel sensor systems. In Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 107–118.
ACM Press, 2003.

[56] Z. Liu and I. Elhanany. Rl-mac: A reinforcement learning based mac pro-
tocol for wireless sensor networks. International Journal of Sensor Networks,
1(3):117–124, 2006.

[57] T. A. Malik. Target Tracking in Wireless Sensor Networks. PhD thesis, Ma-
harshi Dayanand University, 2003.

[58] D. C. Montgomery, E. A. Peck, and G. G. Vining. Introduction to Linear
Regression Analysis. Wiley, 2007.

[59] J. F. Nash. Equilibrium points in n-person games. In Proceedings of the National
Academy of Sciences of the United States of America, volume 36, pages 48–49,
1950.

[60] H. Park and M. B. Srivastava. Energy-efcient task assignment framework for
wireless sensor networks. Technical report, University of California, Los Ange-
les, 2012.

BIBLIOGRAPHY Page 89

[61] M. A. Perillo and W. B. Heinzelman. Wireless sensor network protocols. Tech-
nical report, University of Rochester, 2005.

[62] C. S. Raghavendra, K. M. Sivalingam, and T. Znati. Wireless Sensor Networks.
Springer, 2006.

[63] M. L. Rasneet Kaur. Wireless Sensor Networks: A Survey. International Jour-
nal of Electronics and Communication Technology, 4(3):102–106, 2013.

[64] Z. Ruyan, L. Huifang, H. Shijun, and W. Dongyun. Data processing and node
management in wireless sensor network. In International Symposium on Com-
puter Network and Multimedia Technology, pages 1–4, 2009.

[65] M. G. Sandra Sendra, Jaime Lloret and J. F. Toledo. Power saving and energy
optimization techniques for wireless sensor networks. Journal of communica-
tions, 6:439–459, 2011.

[66] K. Shah and M. Kumar. Distributed Independent Reinforcement Learning
(DIRL) Approach to Resource Management in Wireless Sensor Networks. In
Proceedings of IEEE Mobile Adhoc and Sensor Systems, pages 1–9, 2007.

[67] K. Shah and M. Kumar. Resource Management in Wireless Sensor Networks
Using Collective Intelligence. In Proceedings of Intelligent Sensors, Sensor Net-
works and Information Processing, pages 423–428, 2008.

[68] J. Shanbehzadeh, S. Mehrjoo, and A. Sarrafzadeh. An intelligent energy e�-
cient clustering in wireless sensor networks. In Proceedings of the international
multiconference of engineers and computer scientists, volume 1, pages 1–5, 2011.

[69] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless: an event driven energy
saving strategy for battery operated devices. In Proceedings of the 8th Annual
International Conference on Mobile Computing and Networking, pages 160–171,
2002.

[70] H. Shih, X. Zhang, D. S. L. Wei, K. Naik, and R. C. Chen. Design and im-
plementation of a mobile sensor network testbed using sun spots. Journal of
Future Computer and Communication, 2(2):115–120, 2013.

[71] S. S. Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD
thesis, Senate of the Hebrew University, 2007.

[72] A. Silberschatz, G. Gagne, and P. Galvin. Operating system concepts. Addison-
Wesley, 2008.

[73] P. Sivaram and S. Angadi. Wireless sensor networks: Routing protocols, chal-
lenges, solutions. Interantional Journal of P2P Network Trends and Technology
(IJPTT), 3(4):214–217, 2013.

BIBLIOGRAPHY Page 90

[74] K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor Networks: Technology,
Protocols, and Applications. Wiley, 2007.

[75] E. Soulas and D. Shasha. Online machine learning algorithms for currency
exchange prediction. Technical report, NYU CS Technical Report TR-2013-
953, 2013.

[76] M. Spiegel. Theory and Problems of Probability and Statistics. McGraw-Hill,
1992.

[77] W. Stallings. Operating Systems. Pearson Education, 2006.

[78] D. J. Stein. Wireless sensor network simulator v1.0, March 2005.

[79] I. Stojmenovic. Handbook of Sensor Networks, Algorithms and Architectures.
Wiley, 2010.

[80] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[81] Y. Tian, E. Ekici, and F. Ozguner. Energy-constrained Task Mapping and
Scheduling in Wireless Sensor Networks. In Proceedings of the IEEE Inter-
national Conference on Mobile Adhoc and Sensor Systems Conference, pages
210–218, 2005.

[82] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling large scale storage in
sensor networks with co↵ee file system. In International Conference on Infor-
mation Processing in Sensor Networks, pages 349–360, 2009.

[83] R. A. Valles, R. A. Rodriguez, A. G. Curieses, and J. C. Sueiro. Q-probabilistic
routing in wireless sensor networks. In IEEE International Conference on In-
telligent Sensors, Sensor Networks and Information, pages 1–6, 2007.

[84] J. M. Vidal. Multiagent coordination using a distributed combinatorial auc-
tion. In Proceedings of the AAAI Workshop on Auction Mechanisms for Robot
Coordination, pages 1–7, 2006.

[85] C. Watkins and P. Dayan. Q-Learning. Machine Learning, pages 279–292,
1992.

[86] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu
energy. In USENIX Conference on Operating Systems Design and Implemen-
tation, pages 13–23, 1994.

[87] U. Wilensky. NetLogo. Technical report, Center for connected learning and
computer based modeling, Northwestern University, Evanston, IL, 1999.

BIBLIOGRAPHY Page 91

[88] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
In Annual Symposium on Foundations of Computer Science, pages 374–382,
1995.

[89] K. L. A. Yau, P. Komisarczuk, and P. D. Teal. Reinforcement Learning for Con-
text Awareness and Intelligence in Wireless Networks: Review, New Features
and Open Issues. Journal of Network and Computer Applications, 35:253–267,
2012.

[90] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Journal
of Computer Networks, 52(12):2292–2330, 2008.

[91] E. Yoneki and J. Bacon. A survey of wireless sensor network technologies:
research trends and middleware’s role. Technical Report UCAM-CL-TR-646,
University of Cambridge, Computer Laboratory, Sept. 2005.

	Introduction
	Motivation
	Challenges
	Contributions
	Thesis outline

	Background and related work
	Wireless sensor networks
	Task scheduling
	Online learning
	Related work for task scheduling in WSN
	Reinforcement learning method
	Evolutionary-based method
	Rule-based method
	Constraint satisfaction method
	Market-based method
	Utility-based method

	Difference to own approach

	System model
	Formal problem definition
	System model
	Basic system model
	System model for combinatorial auction

	Set of actions
	Set of states
	Reward function

	Task scheduling methods
	Combinatorial auction
	Learning methods
	Reinforcement learning
	Bandit solvers

	Task scheduling for target tracking
	Target tracking using combinatorial auction
	Target tracking using cooperative Q learning
	Target tracking using cooperative SARSA() learning and Exp3 bandit solvers

	Implementation and Evaluation
	Simulation environment
	Experimental setup
	Simulation results
	Results of RL, CRL (one hop and two hop)
	Results of cooperative Q learning
	Results of combinatorial auction method

	Comparison of RL, CRL, and Exp3
	Discussion

	Conclusion and future work
	Summary of contributions
	Future works

	black Bibliography

