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Abstract

Agreeing on a common timing (synchronization) is beneficial for distributed entities
in a large number of applications. For instance, it enables synchronized distributed
measurements to track moving objects or the scheduling of communication in wireless
communication systems. Yet, how to provide synchronization for distributed systems
in a reliable way remains an open challenge: Communication between individual en-
tities is often subject to different individual delays, the network might be sparse, and
clocks might not be homogeneous. A promising approach to synchronize a network of
distributed entities is by only using local interactions and to communicate as little as
possible, for instance by exchanging pulse-like messages, which do not contain informa-
tion. It is well known that self-organizing processes may induce global synchronization
via local interactions, e.g. if all entities act individually by the same rules. How to
design these local rules to guarantee global synchronization, however, remains not well
understood.
So far, a general statement that guarantees global synchronization from local pulse-

interactions could not be achieved if facing the challenges mentioned above.
In this thesis we derive local interaction rules and mathematically guarantee global

synchronization using pulse-coupled oscillator networks. Specifically, we provide two
coupling schemes that address different system settings and prove network-wide conver-
gence to synchrony. These proofs hold for systems which face individual random signal
delays, inhomogeneous clock rates, arbitrary topologies, and stochastic pulse emission.
We also show the robustness of the synchronization process in case of faulty or random
pulse detection, incorrect assumptions about the environment and inaccurate oscillators.
We apply the self-organizing synchronization to wireless communication systems. We

demonstrate that the local interaction rules derived, enable self-organizing synchroniza-
tion in wireless communication systems. In our proof-of-concept applications, we address
distributed devices which use communication protocols with time slots. These slots are
then used for data communication. The devices exchange pulse-like radio or audio signals
and are designed to synchronize their time slots.
This insight on local interaction rules helps to better understand self-organizing pro-

cesses in a more general setting, including engineering and social sciences.
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Zusammenfassung

Eine zeitliche Anordnung verteilter Elemente ist für viele Anwendungen von Vorteil.
So lässt sich zum Beispiel mit der Verwendung synchronisierter Uhren ein bewegtes
Objekt durch verteilte Beobachtungen verfolgen oder eine Kommunikationsvorschrift
in drahtlosen Netzwerken koordinieren. Trotz vieler Anwendungsmöglichkeiten steht
die zuverlässige Synchronisation von verteilten Systemen noch vor Herausforderungen:
Bei der Kommunikation zwischen einzelnen Elementen entstehen oft unterschiedliche
Verzögerungen, das Kommunikationsnetz besteht oft aus nur wenigen Verbindungen
und die Uhren in den verteilten Elementen haben oft nicht die selbe Geschwindigkeit.
Nur lokale Kommunikation zuzulassen und diese auf ein Minimum zu reduzieren ist

ein vielversprechender Ansatz um verteilte Systeme zu synchronisieren. Das gelingt
beispielsweise durch die Verwendung von pulsähnlichen Nachrichten, die keinerlei Infor-
mation beinhalten. Selbstorganisation ist eine Möglichkeit, um mithilfe lokaler Inter-
aktion globale Synchronisation zu erzeugen. Dabei können individuelle Elemente unter
Berücksichtigung der gleichen Interaktionsregeln selbständig handeln. Wie genau das
Design für solche lokalen Interaktionsregeln auszusehen hat, um globale Synchronisa-
tion zu garantieren, ist noch nicht gänzlich verstanden.
Unter Einbeziehung obiger Herausforderungen konnte eine generelle Aussage zur garan-

tierten globalen Synchronisation durch lokale pulsähnliche Interaktionen bis dato nicht
getroffen werden.
Diese Arbeit zeigt lokale Interaktionsregeln auf und garantiert, mittels mathematis-

che Beweisführung, globale Synchronisation pulsgekoppelter Oszillatornetzwerke. Im
Speziellen werden zwei Kopplungsmethoden vorgestellt, die für unterschiedliche Rah-
menbedingungen globale Synchronisation garantieren. Sie gelten für Systeme mit un-
terschiedlicher individueller Verzögerung, unterschiedlicher Geschwindigkeit der Oszilla-
toren, beliebigen Netzwerken und stochastischer Pulsübertragung. Darüber hinaus wird
gezeigt, dass die so erreichte Synchronisation robust hinsichtlich zufälliger und falscher
Pulsdetektion und resilient hinsichtlich fälschlicher Randbedingungsannahmen und un-
genauer Oszillatoreigenschaften ist.
Diese Arbeit demonstriert die Umsetzung der vorgestellten selbstorganisierenden Syn-

chronisationsmethoden in Kommunikationsnetzwerken. Für Kommunikationsmethoden
mit Sendeintervallen zeigen die Implementationen die Konzepttauglichkeit der garantierten
Synchronisationsmethoden. Sie beinhalten Ausführungen auf Standardgeräten und auf
programmierbarer Hardware. Eine interaktive Demonstration veranschaulicht die Nutzung
selbstorganisierender Synchronisation mittels Audiosignalen.
Durch diese Arbeit konnten neue Einsichten, das Design und die Dynamik lokaler

Interaktionen betreffend, erlangt werden, die helfen, Selbstorganisation auch in einem
breiteren Anwendungsfeld zu verstehen.
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1 Introduction

1.1 Principles of Self-Organizing Synchronization

Self-organization is a building stone in nature, see for example [Yate 87, Bona 99,
Kenn 01, Cama 01]. Even though researchers from different disciplines have different
definitions of self-organization, it is commonly agreed that phenomena such as the alter-
nating stripes of zebras or the formation of fish schools emerge through self-organizing
processes [Cama 01, p. 7]. This self-organization is present in the process of pattern
formation or in the collective behavior.
A prime example of self-organization is the emergence of synchronized flashing of

fireflies [Stro 03]. In parts of South East Asia thousands of fireflies gather at trees at dawn
and perform periodic flashes [Buck 81]. The initial random flashing behavior is followed
by collective synchronized flashing. This phenomenon is of interest to researchers for
decades [Laur 17, Blai 15], and was first interpreted as a visual illusion [Laur 17] or
established by a centrally controlled command [Blai 15]. Over time, it was found out
that the collective flashing is self-organizing [Cama 01, p. 155]. Each firefly has its own
flashing rhythm but adjusts this rhythm whenever it receives flashes from other fireflies.
Therefore, there is neither a leading firefly that serves as conductor, nor a global firing
pattern that every firefly adjusts to.
On the one side, this phenomenon serves as an intuitive example for self-organization

as it shows how a very simple collective behavior, the coinciding flashes, emerges. This
synchronization of flashes evolves from distributed individual entities with identical local
rules [Stro 93]. On the other side, it is surprisingly difficult to understand why, even
for this example, synchronization is emerging. The underlying abstracted model which
describes this phenomena is called pulse-coupled oscillator (PCO) model. Each entity,
in our example each firefly, is described by an oscillator. It increases its phase and
periodically resets and emits a pulse, just as a turret clock emits a sound whenever its
minute hand passes the 60 minutes threshold. Whenever such an oscillator receives a
pulse it adjusts its phase according to some update rule.

1.2 Examples for Synchronization in Pulse-Coupled
Oscillators

The firefly phenomenon shows how elegantly and simple synchronization can emerge
from local rules. Mathematically, the synchronization is difficult to show. This contrast,
of intuitive demonstration and tough formalism, is nevertheless not the only motivation

1



1 Introduction

for studying pulse-coupled oscillators.
The pulse-coupled oscillator model is used to describe the rhythmic pulsation of cells

that work as a pacemaker for the heart [Pesk 75]. The pacemaker is responsible for the
pulsation of the heart. It, itself, consists of millions of cells that bundle their electrical
activity. This way the pacemaker is a very robust system, such that individual cells
might stop working, but the pacemaker still can provide reliable pulsation.
Neurons in the brain are also often described via pulse-coupled oscillators, see for

example [Timm 06, Kinz 08]. Neurons repeatedly emit electrical pulses, so called spikes
and thereby can form specific spiking patterns. These patterns can help us understand
how the brain connects observations and thereby learns. In this environment synchrony
of such oscillators is often less interesting than certain pulse emission patterns. Syn-
chronization can even be disadvantageous as it appears that certain synchronized firing
pattern are responsible for epileptic seizures [Hamm 07].

1.3 Self-Organizing Synchronization for Wireless
Communication Systems

The pulse-coupled oscillator theory can also be used in wireless communication systems.
To come to this insight we first illustrate a form of communication in wireless networks,
and the use of synchronization in such. Then, we outline why self-organization is inter-
esting for wireless systems and how pulse-coupling can be implemented in practice.
Imagine a vivid discussion in a class room. If everybody speaks at the same time, it is

unlikely that everybody hears all statements. If only one person speaks at a time, this
is much more likely. Often a moderator ensures that only one speaks and the others
listen. This person also decides whose turn it is to speak. In other words, the moderator
defines the modalities of conversation and schedules the speakers.
Within wireless communication systems, devices often experience a similar situation.

If several devices send messages at the same time, information might get lost. One way
for distributed wireless devices to communicate is by dividing time into time slots. A
communication time table then schedules the “right to speak” for every entity. This table
is either provided by a moderator or modalities are agreed upon by the devices. If the
entities stick to the time table, communication can be quite efficient. A synchronization
of time such that every entity knows when a time slot starts and ends can further strongly
improve this strategy.
Within communication systems, the task of synchronizing devices has been studied

for long, compare [Edso 59]. Early approaches focused on centralized algorithms, where
some or even just one distinguished entity dictates the time. Other entities have to
obey the rules, see for example [Mill 85]. Whereas this method has a simple and clear
structure it also has its drawbacks. If the central entity drops out, synchrony within
the whole network is lost. With the availability of distributed entities and distributed
algorithms a new attitude entered the synchronization world. Elements could agree on
a common time. They collect time stamps from all their neighbors, compare them with
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their own time and compute an averaged time. This way, synchronization can emerge
in a more self-organized manner.
In general, self-organization appears appealing for wireless communication [Preh 05,

Dres 07, ch. 3]. It provides

• simple local behavior. The task of an individual entity is very simple. Therefore,
it is of low computational effort and can be implemented easily.

• a distributed approach. The freedom of not needing to control from centralized
entities reduces overhead processes.

• an adaptable system. Each entity has an individual local behavior, hence it is able
to change this behavior without permission from a central entity.

• a scalable system. The local behavior is the same for all oscillators, hence increas-
ing the system size does not change the individual task.

• a robust system. The strategy provides the emergent property even if some indi-
vidual entities drop out and do not contribute.

This idea of collecting information from neighbors fits very well to the nature of
wireless communication where all elements in the vicinity of the sender receive a sig-
nal. Regarding synchronization, several entities can use the same timing message for
their synchronization process. However, exactly this advantage brings additional dis-
advantages. Whereas every entity can use information spread, it also has to cope with
this situation if messages overlap and information gets lost. A synchronization strategy
that both uses the advantageous effects of information spread but overcomes message
corruption is therefore highly valuable.

1.4 Pulses for Synchronization in Wireless
Communication Systems

One way to overcome message corruption due to broadcasting nature of wireless com-
munication is by further and further shortening the exchanged messages, converging to
messages that hardly contain any information. Such messages therefore only carry, im-
plicitly, the information of when they were received. This relates to the information of
when the messages were emitted. Compare this to the stroke of a gong. A single stroke
does not contain the information of its emission. If attached to a clock that emits a gong
every hour more information is available. A gong indicates that another hour passed
and when to expect the next stroke. In this sense such a stroke of a gong, or a pulse as
we call it, can help scheduling activities.
The gong does not contain information, but can be heard as a tone. Its pendant

the pulse in wireless communication is similar. It is a unique signal with finite time
duration that can be detected at the receiving unit. The longer the duration the better
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the detection but the longer the message. This is different to the definition of a pulse in
mathematical theory which describes it as a theoretical signal without time duration.
The time between two pulses is defined as a time slot and used for communication.

An entity starts sending a message at the beginning of a slot and stops doing so a the
end of a slot. The process of aligning the time slots within the entities is called slot
synchronization and can improve communication [Gold 05, p. 464].
The consequent question arises of how to achieve synchronization if only pulses can

be used for communication. This is how the self-organizing synchronization discovered
in nature became interesting for wireless communication systems.
However for wireless communication systems, different systems restriction apply, which

do not allow to directly apply the firefly findings on self-organizing synchronization.

1.5 Guarantees as Contribution to PCO Synchronization

In order to apply a self-organizing synchronization strategy to wireless communication
systems, its advantages need strong verification. Guaranteed synchronization contributes
to such. A wireless communication system is likely to experience the following situations:

• Positive pulse delays occur and are randomly distributed within a delay interval.

• The underlying network is meshed (not every device is linked to every other device)
and possibly varying with time.

• The individual phase rates of the oscillators are not uniform.

So far, there were no convergence proofs for pulse-coupled oscillator systems that include
two or more of these assumptions simultaneously.
Within this work, we guarantee synchronization for wireless communication systems.

We provide two different coupling schemes for different system assumptions.

• For all-to-all networks (every element in the network is linked to every other el-
ement in the network) with random individual delays and heterogeneous phase
rates, we prove exponentially fast convergence.

• For meshed networks with random individual delays and probabilistic pulse emis-
sion, we prove that synchrony emerges with probability 1.

These coupling strategies and convergence proofs have been published in four research
articles [1, 2, 4, 6]. One article is still under review [3]. All articles by the author are
referenced by numbers (e.g. [2]), all others alphanumerically (e.g. [Miro 90]).
These proofs are essential to support self-organizing strategies in wireless communica-

tion systems: a) Self-organizing systems are often difficult to monitor, which might be
necessary if systems do not perform the intended actions. If the performance is guaran-
teed monitoring is not needed. b) Small changes in the system assumptions can provoke
fundamentally different dynamics. A guarantee for more general assumptions still en-
sures proper functioning. c) For exploitation of self-organizing methods in standardized
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communication protocols, strong evidence is needed to show the use and benefit of such a
synchronization scheme. A synchronization proof is a substantial part of such evidence.
The theoretical insight that we gain in this work is also experimentally verified by

proof-of-concept implementations. The positive evaluation of the coupling strategies in
practice further supports that the general assumptions used for the proofs can be used
to predict practical system behavior.

1.6 Structure of the Thesis

This thesis provides guaranteed synchronization for pulse-coupled oscillator systems in
wireless communication environments. We start by describing how self-organizing syn-
chronization matches the needs in wireless communications. As the main contribution
we present synchronization schemes and prove convergence for general system environ-
ments. In a proof-of-concept we also demonstrate how the theoretical work can be
applied to hardware.
In Chapter 2, we provide background on synchronization. First, we give on overview of

how synchronization can be used in wireless communication systems. We show different
types of synchronization and algorithms that provide it. We show why self-organization
is an interesting concept and how it can be used for synchronization. Second, we in-
troduce the theoretical concept of pulse-coupled oscillators and describe its dynamics
when facing wireless communication environments. We describe some synchronization
protocols that already apply pulse-coupled synchronization, and how it can be imple-
mented in wireless communication. Third, by considering certain system restrictions we
describe how synchronization can be engineered.
In Chapter 3, we present a coupling strategy and prove synchrony for all-to-all net-

works. We introduce the SISA (synchronization with inhibitory coupling and self-
adjustment) synchronization strategy and prove its convergence. For system environ-
ments that allow all-to-all networks of arbitrary size, individual random delays and
heterogeneous phase rates we show that synchrony always emerges. The strategy uses
negative phase jumps only and synchronizes up to a convergence bound depending on the
system parameters. Its derivation is motivated and its functionality shown and proven.
Additionally, we study the robustness of the system. We show the influence of single and
repeated random firings and the robustness towards failure of firing detection. Finally,
we show the generalization bound of the system.
In Chapter 4, we provide synchrony for arbitrary connected networks. We introduce

a coupling strategy that uses both positive and negative phase jumps and stochastic
pulse emission called IES. We guarantee that it synchronizes with probability 1. This
applies to arbitrary connected and dynamic networks, systems with varying delays and
unreliable pulse transmissions. The proof is also independent of the network size. By
numerics, we show that the synchronization speeds up with growing network size. Addi-
tionally, we see that with a reduction in pulse emissions we can improve the convergence
time. Concerning robustness, we show that the system synchronizes even if noise and
heterogeneous phase rates are present.
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In Chapter 5, we give demonstrations of test-bed implementations of the pulse-coupling.
We show how the theoretical concepts can be applied to hardware. Implementations on
off-the-shelf hardware and on programmable hardware show direct applicability of the
coupling schemes. For demonstrations to the public we develop an application that
synchronizes devices via audio signals only. This allows users to interactively experi-
ence self-organizing synchronization. Finally, we reflect on the influence of imperfect
hardware and address its implications on the synchronization limits.
Chapter 6 concludes the thesis. We summarize the motivation and the solutions

described in this theses. We reflect the result in a bigger picture. The main contributions
are outlined and its implications on wireless communications given. For future work, we
address direct research questions and elaborate on how the theoretical synchronization
concept can be used in other research areas and generalized further.
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2 Background on Synchronization

The term synchronization is often uses in everyday life, and in different contexts, as
one can synchronize for example data, movements or clocks. Originally, synchronization
refers to the simultaneous performance of diverse actions. A beneficial effect of syn-
chronization can be seen for example if buses arrive at the station exactly according to
schedule. The buses are then considered to be synchronized. Such synchronized arrivals
are beneficial as it allows smart scheduling of timetables to provide short waiting times
when commuting with public transport.
The positive effect of increasing efficiency by providing synchronization of actions is

also used in wireless communication. Just as communication is almost impossible if
several people are speaking at the same time, wireless communication devices may suf-
fer from interfering signals. Whereas people can coordinate their time to speak also
non-verbally, there have to be consistent communication guidelines, so called protocols,
for wireless communication devices. Depending on the application, different types of
communication protocols and notions of synchronization are used. This thesis presents
strategies to achieve synchronization for wireless communication environments. Before
doing so, we give an overview of different notions of synchronization depending on dif-
ferent applications within wireless communication systems.

2.1 Synchronization in Wireless Communication
Systems

As mentioned before, different environments have different understanding of synchro-
nization. We give some examples of how synchronization is perceived and used and by
doing so clarify the definition and understanding of synchronization used in this work.

2.1.1 Synchronization

In everyday language, actions such as when flocks of birds turn all at once, musicians
start a piece of music in unison or people start speaking at the same time, are called
synchronous. This however refers to isolated events that are not interconnected, i.e. it
is not possible to estimate the next event. These phenomena hence have no information
to base a prediction on.
In this thesis we use a different understanding of synchronization. We want to use

synchronous events to improve the scheduling of events. This understanding is guided
by the statement of Pikovsky and Rosenblum in [Piko 01, p. 8]:
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“We understand synchronization as an adjustment of rhythms of oscillating
objects due to their weak interactions.”

This has some fundamental consequences. First, in order to schedule events in the future,
we need to have some common pace. Therefore, we study elements with recurring events
only. Second, we speak of synchronization as a process that leads to coinciding recurring
actions. A time unit such as a second, a minute or an hour are prime examples of such
recurring events. Synchronization in this context means the process of aligning the
seconds or minutes or hours of the different clocks. Also periodic actions can perform
synchronization such as bands walking in lock step, birds flapping their wings at the
same time, or people aligning their sleeping cycles.
The focus of this work is to provide synchronization for wireless communication sys-

tems. We concretize such systems in the following.

2.1.2 Wireless Communication Systems

The wireless communication systems we focus on in this work consist of electronic de-
vices, also called entities, that are able to communicate wirelessly. To do so they access
the wireless channel, i.e. they emit electromagnetic signals over the air [Stal 05, ch. 2].
For a detailed introduction see for example [Tse 05]. These devices have low compu-
tational power and are distributed in space. An ensemble of such devices is called a
system. The term “wireless communication systems” also addresses the conditions that
such a system encounters. These are for example the restrictions of an entity, which is
for example, battery driven, of low communication range and imperfect in transmitting
and receiving. The term also refers to the conditions of the network, e.g. the entities
are spread out in space, communication is unreliable and signals, which contain data
and information, can be delayed. Additionally, also situations such as malfunctions or
errors are possible. Roughly speaking, a wireless communication system represents all
possible situations a system of electronic devices can encounter during operation.

2.1.3 Benefits of Synchronization

For an ensemble of entities distributed in space, synchronization of actions can have
advantages as illustrated in the following examples.
Distributed sensors measure a certain property at different positions over time. In

order to get a global picture of the property distribution over space and time the mea-
surements need to be aligned. Synchronization amongst the entities allows to better
combine the measurements of the individual entities and to give a more precise evalua-
tion.
For communication within a distributed system, entities access the wireless channel

and emit signals. These signals can interfere, such that the contained information cannot
be detected at the receiver. Such signals are called corrupted. For a detailed introduction
to the signal detection theory see for example [Tree 01, ch. 4]. By using synchronization,
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future actions of entities can be anticipated and signals can be scheduled to reduce data
corruption.

2.1.4 Types of Synchronization for Wireless Communication
Systems

Depending on the application, three types of synchronization are used in wireless com-
munication systems [Meie 05, Rome 05, Osip 07, Weso 09, Tyrr 10a]:

• frequency synchronization or rate synchronization,

• time synchronization or offset synchronization,

• slot or frame or phase or tick synchronization.

The synchronization relates to the actions of a wireless device, which are timed via
internal clocks. Therefore, a synchronization of entities refers to the synchronization of
the internal clocks of the entities.
In order to elaborate on the types of synchronization we shortly address some prop-

erties of a clock. A clock is a device that measures time. Whereas time, also called
global time is considered a continuous quantity, a clock counts some periodic activities
and thereby maps the global time to its own local time, see for example [Kope 03]. We
call the periodic activity a cycle and the temporal length of a cycle the cycle length.
The clock speed describes how fast a clock changes its local time compared to the global
time. The clock offset describes the discrepancy between the local time and the global
time.
We shortly elaborate on the types of synchronization in the following. This overview

is based on [Meie 05, Rome 05, Osip 07, Weso 09, Tyrr 10a].

Frequency Synchronization

Frequency synchronization describes wireless entities that have clocks with identical
cycle lengths. In other words, as soon as all oscillators have the same clock speed
and cycle length, frequency synchronization is achieved. In order to achieve frequency
synchronization it is hence not necessary to have identical clock offset.
Here is a possible application: In order to have coherent measurements of distributed

devices about a commonly observed relative velocity or a time span, it is sufficient to
have frequency synchronization. The observation of an object regarding time duration
and velocity then matches those of other devices.
Note that in wireless communications the term “frequency synchronization” is also

used to describe the alignment process of both sender and receiver to the same frequency
of the electromagnetic wave used for signaling, see for example [Eber 09, ch. 5.3].
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Time Synchronization

Time synchronization implies that all entities in a system have identical cycle length
and identical clock offset. This means that at any point in time all clocks of the entities
show the same time. This time synchronization can be internal and relative to the global
time, or external and identical to the global time.
This kind of synchronization is often needed, for example for the general positioning

system (GPS). There, devices calculate their position using signals emitted by time
synchronized satellites, see for example [El R 02].
The first algorithms that provides synchronization in communication networks are

intended for wired networks and often use a hierarchical approach, see for example
the Network Time Protocol (NTP) [Mill 85] which is still used in the internet [Mill 10].
Decades later the demand for synchronization in wireless networks arises. One strategy is
to simply adjust hierarchical algorithms for the new restrictions. We shortly elaborate on
the Timing-Sync Protocol for Sensor Networks (TPSN) as an example of an extension of
NTP [Serp 09, p. 5]. A totally different strategy is to specifically use the broadcast nature
of the channel. As an example we present the Reference-Broadcast Synchronization
(RBS) protocol.
As one synchronization algorithm that is used in everyday life, we shortly address the

time synchronization as it is done within the cellular technology Long Term Evolution
(LTE) [Sesi 09].

Timing-Sync Protocol for Sensor Networks The Timing-Sync Protocol for Sensor
Networks [Gane 03] synchronizes entities in three steps. First, a root entity is elected
(via some specific election method). This entity serves as reference time. Second, a
hierarchical topology is formed, using a spanning tree, starting with the elected root.
The root entity is assigned level 0, all elements in its communication range are assigned
level 1 and so on. Third, the synchronization is initiated. Starting with the root entity, it
communicates sequentially with all its neighbors and by exchanging timing information
via time stamps (a data packet that contains the emission time), synchronization between
these two elements is achieved. As soon as all elements with level 1 are synchronized,
the process is continued for all elements of level 2 and so on.
This approach needs hierarchical ordering and does not use the broadcast properties

of wireless networks. However, it is frequently used, as is can provide high accuracy, and
in certain situations performs twice as good as the reference-broadcast synchronization
protocol, see [Gane 03].

Reference-Broadcast Synchronization The Reference-Broadcast Synchronization pro-
tocol [Elso 02] uses two types of communication strategies. First, a sender broadcasts
a message to all its neighbors. These neighbors store their reception time. Second, the
neighbors exchange information about this reception time amongst each other and syn-
chronize. The broadcast message does not need to contain information. The use of these
reception times allows good synchronization, as the delays due to the wireless channel
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and the reception event vary little. However, a lot of messages are needed to exchange
the reception times and to continue this process if entities are spread out far.

Time Synchronization in LTE Networks Within mobile phone networks such as LTE,
time synchronization is a pair wise process. A mobile device synchronizes to a stationary
reference, also called a base station. These stations are in higher hierarchical order than
the mobile devices and simply forward time stamps to synchronize the devices. This
time synchronization is not needed to synchronize internal scheduling [Sesi 09]. Hence,
time synchronization is an optional feature for operators.

Slot Synchronization

Slot synchronization is reached if all entities have the same cycle length and the same
offset except multiples of the cycle length. The internal time of the clocks is hence not
identical but identical up to multiples of the cycle length.
For wireless communication systems such slot synchronization is needed if communi-

cation is restricted to time slots. This restriction is quite natural. Let us consider a
conversation between Alice and Bob. While Alice is speaking, Bob is listening and thus
not speaking. At some point Alice stops speaking and it is Bob’s turn to speak. We can
divide the conversation into time slots within which Alice is speaking, no one is speaking
and Bob is speaking. These slots can have different duration and their different length
usually do not cause irritations as humans are usually able to recognize the end of a
spoken message. For wireless devices we can also divide the time into slots (usually of
fixed length since devices cannot perceive the end of a message) and provide communica-
tion protocols which give guidelines how communication can look like. This is necessary
since for wireless devices the sending of information at the same time can result in data
corruption, i.e. a receiver is not able to recover the transmitted information.
Two communication schemes that rely on slotted time intervals are the Slotted ALOHA

protocol and the TDMA protocol and are described in the following.

2.1.5 Applications for Slot Synchronization

Within the field of wireless communications, information needs to be exchanged between
entities. The rules for communication are defined in medium access control (MAC)
protocols. Such protocols either combine the individual information via multiplexing, or
they coordinate the medium access. The latter method is used for example in the cellular
technology GSM. The time for communication is divided into slots. Two protocols
manage the access, Slotted-ALOHA [Abra 70] randomly accesses the channel whereas
time division multiple access (TDMA) distributes the slots to devices [Gold 05, ch. 14.2].

Slotted ALOHA

The slotted ALOHA strategy is a simple communication protocol [Abra 77]. It divides
time into time slots and at the beginning of every such slot, every device decides whether
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Figure 2.1: Three examples of communication protocols (dotted lines indicate slots,
dashed frames). Panel a) depicts the ALOHA protocol, devices transmit data whenever
needed. Panel b) depicts the slotted ALOHA protocol. At the beginning of very slot,
devices transmit data if needed. Panel c) depicts the TDMA protocol. Devices are
assigned to time slots for communication.

to transmit a data packet which does not last longer than the time slot, see Figure 2.1b.
Data corruption might occur, but due to the time slotting this is a significant improve-
ment to the ALOHA protocol within which every entity can transmit at any point in
time, see Figure 2.1a and for example [Gold 05, ch. 14.3]. The protocol does not provide
the synchronization process, so for an efficient use of slotted ALOHA, all elements in
the system need to be slot synchronized.

TDMA

The time division multiple access protocol divides the time into time frames and further
into time slots. For a transmission a device is assigned a cyclically repeating time slot.
It then sends data packets at the assigned slot times, see Figure 2.1c. This protocol
provides channel access on a schedule based scheme. This protocol does not provide a
synchronization of frames and slots, so for an efficient use, all elements need to be slot
synchronized. For a more detailed introduction see for example [Gold 05, ch. 14.2].

2.1.6 Self-Organizing Synchronization

Synchronization methods for communication systems were first studied in wired net-
works. As certain synchronization methods have shown to be reliable they were adapted
for use in wireless communication, for example TPSN as an extension of NTP [Serp 09,
p. 5].
However this direct transfer of synchronization methods does not exploit the broad-

casting nature of wireless systems, i.e. the transmission of any emitted signal to all
entities in the emitter’s vicinity. One approach to make use of this effect is by applying
self-organizing methods to achieve synchronization. Self-organization is characterized as
follows, compare [Dres 07].

• All elements in the system have the same hierarchy. There are no master entities.

• All elements in the system perform their local rules. The interplay of all local rules
provides a globally emerging behavior.
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• The local rules are independent of the number of entities. Therefore, a self-
organizing strategy is scalable.

• As all entities perform individual local actions, the system is robust to individual
drop outs and highly adaptive to small changes.

Indeed, research on self-organizing strategies for wireless systems shows these benefi-
cial properties when applying for synchronization [Wern 05, Hong 05, Tyrr 10c, Tyrr 10b,
1, 2]. A basic theory for such strategies is the theory of pulse-coupled oscillators (PCO).
It describes an entity via an oscillator and the interactions between them via pulses. In
the following section we introduce the theory and show how it relates to synchronization.
Later in Section 2.3.3, we give examples of self-organizing synchronization methods for
wireless communication systems.

2.2 Networks of Pulse-Coupled Oscillators

As a first step we formalize the notion of an oscillator. As a visualization, imagine a
typical analogue clock, which only consists of a minute hand. The hand of the clock
rotates and repeatedly passes the 12 o’clock sign. We focus on the top of the minute
hand and track this point as is moves over time. Since the length of the minute hand
does not change, the positions of this top point repeatedly occur and form a circle.
For a mathematical model, we neglect the hand of the clock, concentrate on its top

point only, and describe its position by a sole parameter, the phase φ, which depends
on time t. For simplicity of notation we assume φ(t) to be in the interval [0, 1]. When-
ever the oscillator’s phase passes the threshold 1, the phase resets to 0. The point
rotates counterclockwise, as this is the mathematical positive rotation for polar coordi-
nates [Bron 07, p. 190]. This is a standard model to describe an individual oscillator
and can also be found for example in [Miro 90, Math 96, Timm 02, Timm 04] or in
different notation in [Pesk 75, Abbo 93, Vree 94, Vree 96, Erme 96, Erns 95]. As we
study a set of N ∈ N oscillators, we use a finite index set I and describe the state of an
oscillator i with its phase φi(t). For ease of notation we also use the set I to account
for the oscillators themselves. The interactions of an ensemble of oscillators are in the
focus of this work. To do so we start by showing an oscillator i’s individual dynamics.
In the following sections, we introduce the model assumptions and its notation.

2.2.1 Definition of an Oscillator

Let us start with a single fixed oscillator i, which we describe by its phase φi(t) ∈ [0, 1]
depending on time t. Its phase rate is defined via

φ̇i(t) :=
dφi

dt
= F (φ), (2.1)

where F (·) is a continuous function, mapping [0, 1] into R . Within this thesis we mainly
use constant phase rates in particular F (φ) = 1 as in [Miro 90, Timm 02, Nish 11,
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Figure 2.2: Two representations of the phase evolution. The phase increases linearly
until it is reset. Panel a) shows the periodic behavior and the phase jump upon reaching
the threshold 1. Panel b) show the a smooth transition of the phase upon reaching the
threshold, due to the circular representation via p(φ) as introduced in (2.13).

Nish 12] but also tackle the consequences of different F (·). All F (·) considered provide
periodic oscillations, we do not discuss chaotic oscillators. For an introduction on chaotic
oscillators see for example [Piko 01, ch. 5].

We denote ci ∈ [0, 1] as the initial condition of oscillator i with

ci := φi(0). (2.2)

Whenever oscillator i reaches the threshold φΘ = 1, it resets, i.e.

φi(t) = 1 ⇒ φi(t
+) = lim

s↘0
φi(t+ s) = 0, (2.3)

and emits a pulse as in [Miro 90, Timm 02, Nish 11, Nish 12, Timm 08], see Figure 2.2a.
The pulse emission is also called a firing event. We denote the time corresponding to
the nth firing event of the oscillator i with tni .

2.2.2 Pairwise Interaction of Oscillators

As we just introduced the emission of pulses, we now consider the reception of such.
At a reception event an oscillator immediately adjusts its phase in dependence on its
current phase, according to some update function H : [0, 1] &→ [0, 1]. To be more precise,
if an oscillator j receives a pulse from oscillator i at some time tr ∈ R+ := [0,∞), its
phase immediately adjusts with

φj(tr) &→ φj(t
+
r ) = H (φj(tr)) , (2.4)

compare [Miro 90, Abbo 93, Vree 94, Erns 95, Vree 96, Erme 96, Math 96, Timm 02,
Timm 04, Timm 08, Nish 11, Nish 12]. To simplify notation we address the time in-
stants of a reception event by tr throughout this work. The update function describes
the interactions of oscillators. We focus on two types of updates which are called exci-
tatory coupling, see for example [Erns 95], where incoming pulses increase the phases,

14



2.2 Networks of Pulse-Coupled Oscillators

φ(t)

0

1

trtr
t

excitatory inhibitory

(a)

p(φ(t)) 0
1

(b)

p(φ(t)) 0
1

(c)

Figure 2.3: Examples of the two different phase jumps according to the coupling scheme
for a) the phase φ and b) and c) the circular representation p(φ) as introduced in (2.13).
This demonstrates how the jump can be considered “backward” for inhibitory coupling
as in b) and “forward” for excitatory coupling, as in c).

as in [Miro 90], see Figure 2.3a, i.e.

φj(tr) < H (φj(tr)) ≤ 1, (2.5)

and inhibitory coupling [Erns 95], where phases are decreased, as in [Vree 94], i.e.

0 ≤ H (φj(tr)) < φj(tr). (2.6)

Depending on the coupling functions qualitatively different types of dynamics may
emerge, see Figure 2.4. We also call an excitatory phase adjustment a jump forward
and an inhibitory phase adjustment a jump backward, as will be explained in more
detail below.

2.2.3 Interaction of an Ensemble of Oscillators

The behavior of an individual oscillator and its pairwise interaction, also called the
coupling, is described above. For the interplay of several oscillators the overall coupling
between the oscillators, also called coupling strategy, needs to be defined. To this end,
we use basic notion from graph theory. For an introduction to graph theory see for
example [Boll 98]. A node is in relation with another node, if there is an edge that
directly links the nodes. The corresponding graph contains all nodes and edges within a
network, see Figure 2.5. For our set of oscillators this relates as follows.
Interactions within a set I of oscillators are possible if the corresponding oscillators

are linked: we identify each oscillator as a node in a graph G(t). At any time t, an
oscillator i is linked to another oscillator j, if there is an edge in G(t) from i to j, also
called link lij(t). Within the adjacency matrix these edges are stored. If there is an edge
or link between i and j, lij(t) = 1, otherwise lij(t) = 0. Note that the graph G(t) is time
dependent and can vary over time. This means that links can appear and disappear in
the network. However, we assume that the nodes, i.e. the oscillators, remain.
By definition, a link is unidirectional, also called directed, i.e. lij ̸= lji. We will also

consider bidirectional links, also called undirected, i.e. lij = lji. In case of constant
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Figure 2.4: System dynamics emerging from different coupling schemes. We plot the
phase evolution of three oscillators in an all-to-all network and delay-free environment,
with random initial conditions. a) We see aligning phases with an update function
H(φ) = min(1, 1.1φ). The coupling causes the oscillators to align their phases, as time
progresses. b) We see periodic patterns with the update function H(φ) = 0.7φ. Phases
adjust to each other but instead of aligning the phases a pattern emerges that causes a
periodic phase evolution.

Figure 2.5: Example of a graph G. A set of nodes, represented by dots, is linked via
edges, represented via lines.
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2.2 Networks of Pulse-Coupled Oscillators

networks we drop the time dependence in notation. For an oscillator i we define the set
of succeeding oscillators by

suci(t) := {j ∈ I : lij(t) > 0}, (2.7)

and the set of predecessors by

prei(t) := {j ∈ I : lji(t) > 0}, (2.8)

compare [Nish 11]. For a subset S ⊂ I of oscillators and for a point in time t ≥ 0 the
set of all predecessors of S is defined by

preS(t) := ∪k∈S(t)prek(t), (2.9)

and for a time interval T by

preS(T ) := ∩t∈TpreS(t). (2.10)

A similar definition applies for sucS(t) and sucS(T ). In case of undirected networks,
which is the focus in Chapter 3, we use the term neighboring oscillators which is defined
via

Ni(t) := {j ∈ I : lij(t) > 0}. (2.11)

For an index subset S ⊂ I, we define its edge set via

∂S(t) := {i ∈ S : ∃ j /∈ S s. t. j ∈ suci(t)} (2.12)

These are all nodes of S with a link to nodes outside of S.
We call two oscillators i and k connected, if there is a path from one to the other,

i.e. there are links lij , ljj′ , . . . , lj′′k > 0. If all pairs of nodes in a graph are connected,
i.e. every node is connected to every other node, we say that the graph or the network
is connected. Within this thesis we study the oscillator dynamics on different kinds of
networks, in particular the following.

All-to-all network
This is a very simple model for a network, every oscillator is linked to every other
oscillator.

Erdós-Re̋nyi random graph (ERG)
For an ensemble of oscillators, each link in the network exists with probability
plink ∈ (0, 1], see [ErdH 59].

Random geometric graph (RGG)
For an ensemble of oscillators, each oscillator is randomly positioned within the
unit square. Two oscillators are linked, if they are within a fixed range r ∈ [0,

√
2],

see [Penr 03].
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2 Background on Synchronization

Arbitrary connected network or meshed network
Any network that is connected.

2.2.4 Circular Representation

In order to represent the periodic behavior of the phases we also use a circular represen-
tation p(φ) of the oscillator phases. We map the phases to a circle of circumference of 1
via

p(φ) : φ(t) &→ 1

2π

(

cos (2πφ(t))
sin (2πφ(t))

)

, (2.13)

see Figure 2.2b, compare [Piko 01]. In this representation, the inhibitory coupling in-
duces a clockwise phase jump and the excitatory coupling a counterclockwise phase
jump, see Figure 2.3b and Figure 2.3c.

2.2.5 Delayed Pulses

Between the event of an oscillator’s phase passing the firing threshold and the reception
of a signal time passes. This time is called the packet delay or simply the delay of a
signal [Rhee 09]. It consists of four parts: the sending time, the time needed for a sender
to construct the message; the access time, which describes the time until the channel is
accessible; the propagation time, the time for a signal to propagate from the sender’s
antenna to the receiver’s antenna; and the receive time, which describes the time at the
receiver until a signal is decoded [Rhee 09]. Each of these has positive length, and we
specifically address delays within this work. Any pulse that is emitted by an oscillator i
is subject to some delay τij before it is received at a succeeding oscillator j. This delay
might depend on every receiving oscillator and every emission time.
To keep track of all pulse emissions in the system, we describe the nth firing event

among all oscillators by tn. Note, that this is a notational convention not to be confused
with the power operator.
As introduced in Section 2.2.3, the links and hence the succeeding oscillators might

change over time. Therefore, the transmission process of a pulse needs to be modeled
explicitly. We assume that a signal is only going to be received at oscillator j if the
corresponding link is available from emission until reception. This yields,

φi(t
n) = 1 ⇒ φj(t

n + τn+ij ) = H
(

φj(t
n + τnij)

)

for all j ∈ suci([t
n, tn + τnij]), (2.14)

compare for example [Gers 96]. For constant networks, suci is constant and we can drop
the time dependence. A timeline of these processes is shown in Figure 2.6.
Within this work we assume all delays τij are distributed within an interval [τmin, τmax],

0 ≤ τmin ≤ τmax < 1, with τmin corresponding to the smallest delay and τmax correspond-
ing to the largest delay in the system. We further assume that for every firing event, all
delays are uniformly drawn from this interval independently of each other. To emphasize
this independence we also use the notation τnij according to every firing event tn.
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Figure 2.6: An example of the effect of individual random delays. We plot the phase
evolution of two oscillators. At time ts oscillator 2 emits a signal which is received by
oscillator 1 with a delay τ21. The adjustment of oscillator i hence happens at ts + τ21.
Also, the pulse emitted by oscillator 1 at ts′ is delayed by τ12 and received at tr′. These
delayed adjustments can add stochasticity to the system dynamics.

Whenever needed, t̃ and t′ represent a time variable (just as t) and τ̃ and τ ′ a delay
(just as τ). The time period between two firing events, also called cycle, of a specific
oscillator i is

∆tni := tn+1
i − tni . (2.15)

For an isolated oscillator with φ̇ = 1 we hence have ∆tni = 1. In general however, ∆tni
can vary with n.

2.2.6 Synchronization of Oscillators

We define a distance between two oscillators i and j at time t by

dij(t) := min (|φi(t)− φj(t)|, 1− |φi(t)− φj(t)|) , (2.16)

compare [Bron 07, p.150f]. This can be interpreted via the circular representation as the
smallest arc between two points on the circle. We further define the precision for a set
I of oscillators at some time t via

Π(t) := max
i,j∈I

dij(t), (2.17)

compare [Kope 03]. Note that in Chapter 3 we need to modify the notion of precision,
due to the specific use. In Chapter 4 we again use the definition as introduced here.
A general definition would be possible but neither supports a simple notation nor the
understanding.
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Figure 2.7: An example of the distance as defined in (2.16).

The synchronization of oscillators is the process of aligning the oscillator phases.
Synchronization is achieved at some time t∗ if Π(t) = 0 for all t ≥ t∗. The terms
being synchronized, in synchrony or in a synchronous state are used equivalently. An
ensemble of oscillators is said to be in a close-to-synchrony state, if there is a bound
0 < Γ ≪ 1 and a time t∗ such that Π(t) ≤ Γ for all t ≥ t∗.
Note that the definition of synchrony is inconsistent in the literature. It sometimes cor-

responds to a close-to-synchrony state, whereas the synchronous state as defined above
is referred to as the oscillators being “fully synchronized”, see for example [Olmi 10].
This understanding is often used if full synchrony is not possible, for example due to
inhomogeneous phase rates.

2.2.7 Observations on the Synchronization Process

The introduction of pulse-coupled oscillators as defined in Section 2.2 leads to some
immediate observations:

• The instantaneous updates cause nonlinear and discontinuous dynamics.

• The individual and random delays at the signal transmission induce stochastic
effects.

• The connectivity of the underlying network may change non-deterministically. As
it directly influences the dynamics this induces further randomness to the system.

• A general synchronization statement needs to be independent of the stochastic
effects and underlying topology and has to hold for all initial conditions (2.2).

For these reasons differential equations do not provide a suitable description of this
system. Hence we use an event based approach to study the system dynamics. One
idea using such an approach is to transfer the synchronization problem to a fixed point
problem, as done by Mirollo and Strogatz e.g. in [Miro 90]. For a detailed introduction
to the fixed point theorem see for example [Rudi 76].

2.2.8 Other Applications of Pulse-Coupled Oscillators

The theory of pulse-coupled oscillators is a mathematical concept which can be used
to describe phenomena in different fields of research. It is being used to describe the
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2.2 Networks of Pulse-Coupled Oscillators

phenomena of synchronization and thereby serves as a model for self-organization. We
describe a few examples for illustration.

Zoology

The flashing rhythm of fireflies in South East Asia is considered a prime example of
a self-organizing synchronization phenomenon [Stro 03, Dres 07]. Thousand of fireflies
gather in trees at dawn and start to emit short light signals with some intrinsic frequency.
As the fireflies communicate their blinking, some species align their blinking and end up
in a synchronized flashing behavior.
Even though scientists tried to explain the phenomenon, it was not before the second

half of the last century that the idea of a self-organizing approach was anticipated, and
indicated via experiments [Winf 67, Hans 71, Buck 81, Cama 01]. In order to understand
how synchronization emerges, fireflies were described as oscillators and mathematical
models for the dynamics of these oscillators were introduced [Winf 67, Hans 71, Buck 81,
Cama 01]. Winfree [Winf 67] and Kuramoto [Kura 75] studied continuous-coupled os-
cillator systems, whereas Peskin [Pesk 75] introduced a pulse-coupled oscillator system
which appeared to be more suitable for the discrete coupling. Interestingly, Peskin’s
model originally stems from describing pacemaker cells for the heart. Peskin could show
that synchrony emerges for two oscillators, under very restricted assumptions. Guided
by this insight he postulated that also arbitrarily large sets of oscillators would eventually
synchronize [Pesk 75, Stro 93].

Mathematics

As pulse-coupled oscillators were subject to mathematical analysis, the non-linearity
and discontinuity induced by the pulse-coupling showed to complicate the understand-
ing of the underlying dynamics. It was relatively easy to understand the dynamics
for two oscillators, but analytical generalization was not achieved until 1990. That is
when Mirollo and Strogatz showed that starting from almost all initial conditions any
set of oscillators, for certain idealized system assumptions, eventually ends up in syn-
chrony [Miro 90]. Two considerations were essential for this proof. First, they studied a
discretized version, which means they only consider the system state at discrete times,
when a specific oscillator fires. In mathematical terms, these are called Poincaré maps,
see for example [Guck 02]. Second, they identified dynamics within these discrete maps
and demonstrated that the phases converge to the fixed point of full synchrony. This is
the case for almost all initial conditions.
Their work gave significant insight into self-organizing synchronization. However, their

result was bound to some simplifications and restrictions. They assumed that all oscil-
lators were connected to all other oscillators, that any pulse was received infinitesimally
short after emission, and that all oscillators have an identical and homogeneous phase
rate. Additionally, their proof only holds for a certain class of update functions and ex-
citatory coupling. Excitatory coupling is indeed the strategy for synchronization within
some types of fireflies. Others, however, use a combination of excitatory and inhibitory
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coupling for this goal [Cama 01]. Interestingly, further research on synchronization
tended to focus on excitatory coupling [Math 96, Hong 05, Tyrr 10b, Pagl 11], potentially
through the influence of the seminar work of Mirollo and Strogatz. Still, specific synchro-
nization statements using inhibitory coupling can be made [Vree 94, Timm 02], [1]. But
it was not until recently that interest and results on synchronization were achieved using
a combination of inhibitory and excitatory coupling [Nish 11, Nish 12, Wang 12], [2].

Neuroscience

The pulse-coupling oscillator model is also used to study pacemaker networks at the
heart or neuronal activities in the brain [Pesk 75, Brun 99]. Neurons are electrically
excitable cells that emit electrical signals, called spikes, and react to electrical signals.
Neuroscientists and physicists are interested in emerging firing patterns as they are
believed to be related to how the brain processes information and learns [Hint 92]. At the
same time synchronization is not always desirable, as the formation of synchronization
of neural dynamics may cause epileptic seizure [Neto 04]. As the theory of pulse-coupled
oscillators is studied in neuroscience great insight on certain dynamical effect was gained.
However, this insight is often not directly applicable for synchronization processes in
wireless communication systems as the theoretical system assumptions differ just like
the research focus.
Some areas of the brain consist of excitatory neurons, or inhibitory neurons or a

combination of both. This steered research in different directions such as studying the
interactions of purely inhibitory coupled oscillators. It appears that inhibitory coupling
can better provide synchrony under certain conditions, such as the presence of positive
transmission delays [Vree 94, Erns 95, Vree 96, Erns 98]. For example if all oscillators
emit a signal before the first receives one, global synchrony can be achieved [Timm 02].
Since neurons typically do not form all-to-all networks, the study of synchronization
within sparsely or not all-to-all networks was prevalent. This brought great insight
in terms of stable periodic patterns and the influence of inhibitory coupling on sta-
bility [Memm 10, Erns 98]. Also other effects such as the interplay of excitatory and
inhibitory neurons [Golo 01], or the aspect of unreliable links [Kinz 08], which is of
specific interest in Chapter 4, are studied.

2.3 Synchronization of Pulse-Coupled Oscillators

Research on synchronization of pulse-coupled oscillators started with idealized assump-
tions such as oscillators with interactions on an all-to-all network, also called all-to-all
coupling and delay-free environments. Within this section we explain and give examples
how the dynamics within a PCO system changes if the system confronts delays and
not all-to-all coupling. These generalizations increase the complexity of the system and
synchronization not necessarily emerges. This causes researchers to either change the
oscillator interactions such that a close-to-synchrony state still emerges or to focus on
more specific system dynamics without aiming at synchronizing the system.
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Table 2.1: Phase evolution of oscillators 1 and 2, and precision Π from (2.17) as in
Example 1.

t φ1 φ2 Π(t)
t1 1 1− ε ε
t1+ 0 1− ε ε
t2 ε 1 ε
t2+ ε 0 ε

t1 + τ τ τ − ε ε
t1 + τ+ τ α (τ − ε) τ − α(τ − ε)
t2 + τ ε+ τ α(τ − ε) + ε τ − α(τ − ε)
t2 + τ+ α(ε+ τ) α(τ − ε) + ε (2α− 1)ε

2.3.1 Generalizations on Delays

Early generalizations for pulse-coupled oscillator systems concentrated on delayed pulses
[Kura 91, Erns 95, Erns 98, Math 96, Gers 96]. Researchers addressed both constant
homogeneous delays as well as variably changing delays within some delay window. In
any case it turned out that as soon as signals are not received immediately after emission
the synchronous state does not emerge [Kura 91, Erns 95, Gers 96]. Moreover, even if
the system is initially in the synchronized state, small fluctuations due to noise lead to
a break up of the synchronized state [Erns 95, Erns 98].
Consider a system of two oscillators, which are very close to synchrony, and constant

delays. Assume both emit a signal and later on both adjust. The situation arises, that
when adjusting, both oscillators react to pulses from the past, but now, after resetting,
with a totally different phase. This can drive close oscillators further apart and thereby
hinder synchrony, see Example 1.

Example 1. Let us take a set of oscillators {1, 2}, identical phase rates, all-to-all cou-
pling, and an update function H(φ) = min(1,αφ) with α > 1, and constant pulse delays
with τ = 0.1. Let us further assume φ1(t1) = 1, and φ2(t1) = 1 − ε, 0 < ε < τ ,
hence the precision Π(t1) = ε. Oscillator 1 fires and resets at t1, so does oscillator 2
at t2. At reception time t1 + τ , we have φ1(t1 + τ) = τ , φ2(t1 + τ) = τ − ε and thus
φ2(t1+ τ+) = α(τ − ε). At t2+ τ we have φ1(t2+ τ) = ε+ τ with φ1(t2+ τ+) = α(ε+ τ)
and φ2(t2+ τ) = α(τ − ε)+ ε, see Table 2.1. Hence Π(t2+ τ+) = (2α− 1)ε > ε = Π(t1),
and the phase difference of the oscillators increases.

If the delays are not even homogeneous, two coinciding oscillators emit pulses at the
same time but receive the corresponding pulse from the other oscillator at different
times. The reception causes each oscillator to adjust and thereby synchrony is lost,
see Example 2. This situation could not occur if there were no delays, since then the
resetting would precede the adjustment.

Example 2. Consider two oscillators indexed by {1, 2} with identical phase rates, all-
to-all coupling, and an update function H(φ) = min(1,αφ) with α > 1, and individual
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Table 2.2: Phase evolution of oscillators 1, 2 and the precision Π from (2.17) as in
Example 2.

t φ1 φ2 Π(t)
t1 1 1 0
t1+ 0 0 0

t1 + τ12 τ12 τ12 0
t1 + τ+12 τ12 ατ12 α(1− τ12)
t1 + τ21 τ21 ατ12 + τ21 − τ12 α(1− τ12)
t1 + τ+21 ατ21 ατ12 + τ21 − τ12 (τ21 − τ12) (α− 1)

pulse delays with τ12 < τ21. Assume that the oscillators are synchronized with φ1(t1) =
φ2(t1) = 1, which yields the precision Π(t1) = 0. They both fire and reset, hence φ2(τ

+
12) =

ατ12 and φ1(τ
+
21) = ατ21 and consequently Π(t1 + τ21) = |ατ12 + τ21 − τ12 − ατ21| =

(α− 1)(τ21 − τ12) > 0, and synchrony is lost, see Table 2.2.

In order to overcome this effect, Kuramoto introduced a refractory period φref [Kura 91],
also called refractory interval, every time an oscillator emitted a pulse. As a consequence,
oscillators that just fired enter a phase interval within which no adjustments are done,
i.e.

φi(t0) = 1 ⇒

⎧

⎨

⎩

φi(t
+
0 ) = 0

φj(t0 + τ+ij ) = φj(t0 + τij) if φj ≤ φref ∀j ̸= i
φj(t0 + τ+ij ) = H (φj(tn + τij)) if φj > φref ∀j ̸= i

. (2.18)

The desynchronization illustrated in Example 2 depends on the delays. The refrac-
tory interval mitigates small delays and simulation results indicate that for any initial
condition the close-to-synchrony state is achieved [Math 96].
Adding a delay to pulse-coupled oscillator systems changes the dynamics fundamen-

tally. The fully synchronous state is not achievable anymore [Lund 84], as a consequence
of τ > 0. The firing order of the oscillators does not necessarily stay constant, as a con-
sequence of τij ̸= τik. The individually changing delays introduce a stochastic process
and can change the index sequence of firing oscillators. Hence the total dynamics can-
not be studied via repeating index sequences as it was done for example by Mirollo and
Strogatz [Miro 90]. Here is an example of such a twist in firing sequence.

Example 3. Consider a set of three oscillators indexed by {1, 2, 3} and all-to-all cou-
pling. Let oscillator 1 fire at t1 and the index sequence of firing oscillators is the repeating
tupel (1, 2, 3). So the next oscillator to fire would be oscillator 2, hence φ2(t1) > φ3(t1).
Oscillator 1 emits a signal to the other oscillators with the delays 0 < τ12 ≪ 1 and
0 < τ13 ≪ 1. If τ13 < τ12 and excitatory phase adjustments, it is possible that with
0 < φ2(t1) − φ3(t1) ≪ 1 we have φ3(t1 + τ+max) > φ2(t1 + τ+max). Hence the new index
sequence of firing is (3, 2, 1) which is equivalent to (1, 3, 2) and differs from the original,
see Table 2.3.

24



2.3 Synchronization of Pulse-Coupled Oscillators

Table 2.3: Phase evolution and phase ordering of oscillators 1, 2 and 3 as in Example 3.
t φ1 φ2 φ3 φ2 vs. φ3

t1 1 c2 c3 >
t1+ 0 c2 c3 >

t1 + τ13 τ13 c2 + τ13 c3 + τ13 >
t1 + τ+13 τ13 c2 + τ13 H(c3 + τ13) >
t1 + τ12 τ21 c2 + τ12 H(c3 + τ13) + τ21 − τ13 >
t1 + τ+12 τ21 H(c2 + τ12) H(c3 + τ13) + τ21 − τ13 <

Summarizing, delays can have negative effects on the synchronization of such pulse-
coupled systems. In order to still provide synchronized systems or close-to-synchrony
states in systems, researchers modify the coupling between the oscillators. This search
for appropriate coupling hence became an engineering task. Even though researchers in-
troduced new specific coupling strategies combining both inhibitory and excitatory cou-
pling with sole focus on wireless communication applications [Nish 11, Nish 12, Wang 12,
Naka 12], [1] this coupling concept is known to also exist in nature [Buck 81, Erme 96].

2.3.2 Synchronization in Arbitrary Connected Networks

In order to synchronize, information has to be communicated through the network. From
an analytical perspective, it is much easier to study synchronizing dynamics on all-to-all
networks than on arbitrary connected networks. This is not surprising, as an all-to-
all network provides far more homogeneous dynamics compared to arbitrary connected
networks. Also the variety of networks is much larger for arbitrary connected networks,
therefore it is also much more difficult to obtain a synchronization statement that is
valid on all of these. For specific situations statements were made: For example, Timme
et al. predict the speed of convergence and shows that there is speed limit for inhibitory
coupled systems on random networks. This limit depends on the pulse-coupling and
the topology [Timm 04]. Nishimura and Friedman show the emergence of synchrony for
as the network size goes to infinity [Nish 12]. Memmesheimer and Timme showed that
by designing the network structure certain dynamics are achievable [Memm 06], which
seams to be a promising start.

2.3.3 Self-Organizing Synchronization for Wireless Communications

Synchronization of pulse-coupled oscillators is a self-organizing process. As self-organizing
methods are also appealing in wireless communication systems, see Section 2.1.6, re-
searchers tried to apply the theoretical model to more realistic environments [Math 96,
Wern 05, Hong 05, Tyrr 06, Tyrr 10c, Tyrr 10b],[1, 2]. Whereas simulations and numer-
ical results could draw a promising picture about realizations, actual implementations
encountered further difficulties, see for example [Wern 05, Tyrr 10b]. The most prevalent
difficulty is the notion of a pulse. Whereas a pulse is an abstract concept as the Dirac
distribution δ(t) which is defined by

∫∞

−∞ δ(t)dt = 1 and δ(t) = 0, ∀t ̸= 0, it cannot be
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realized, compare [Tyrr 10b]. As an approximation of a pulse, a unique signal is used
in wireless communications. This signal is called a beacon or a sync-word. All entities
within a system use this beacon, which has non-zero length, to communicate the pulse.
By doing so two drawbacks arise. On the one hand the positive length creates an addi-
tional pulse delay. Since the devices exchange data additionally to the beacon, a device
has to differentiate if an incoming signal is a beacon or some data. This creates an
additional delay, since it takes the device time to make this decision. On the other hand
a beacon with positive length can get corrupted, just like any data can get corrupted
if several devices send data which interfere with each other. The probability for this to
happen might be small for small networks, but the larger the network the more likely
this becomes and eventually scalability has its limits.
Let us discuss two methods that cope with these limitations by transmitting time

stamps or exchanging pulse-like signals.

Exchanging Time Stamps

One way is to send a beacon and append some additional information such as a time
stamp. Whenever such a signal is picked up, the receiver can extract the emission time
of the beacon and, by using this emission time to process, the beacon can be considered
almost as a delay free signal [Dali 03, Wern 05, Leid 10]. By using such a time stamp the
algorithm is very close to the idealized environment, which might allow a better reasoning
to apply the convergence proof of Mirollo and Strogatz [Miro 90]. Additionally, some
identification of the emitter can be attached and every oscillator can decide if it trusts
the emitter or not. As a consequence a robust system is created that can - to some extent
- cope with erroneous elements [Dali 03, Wern 05]. As a disadvantage, such a system
is no more using pulses, which means, that one of the characteristics of pulse-coupling,
the sending of as little information as possible, is lost. Additionally, the appending of
data to the pulse-like-signal increases the whole signal length, and thereby increases the
probability of inferences and reduces the scalability advantages.

Exchanging Pulse-like Signals

The second method is to use a pulse-like-signal, i.e. a beacon, and a specific correlator
to detect the beacon. A receiver senses the channel, receives data and at the same
time correlates it with the beacon. So even if data is corrupted, there is a rather high
probability that the correlator can detect that within the corrupted data a beacon is
buried [Tyrr 10b]. This strategy allows a smooth transition of the pulse-coupled oscillator
theory to wireless environments, with all its advantages as described in Section 2.1.6.
On the down sides, additional hardware is needed, the correlator, which is not standard
for a wireless communication device. Additionally, the probability to detect such a pulse
is large but not 1, which the theory has to account for.
The finite length of the beacon also has it that a device needs time to emit the signal.

Since standard wireless devices only have one unit for transmitting and receiving, called
a transceiver, they cannot adjust while sending. This is called the half-duplex constraint.
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Figure 2.8: The two possible modes of an oscillator within the MEMFIS algorithm. The
modes change due to a scheduling process. Any device in the receive mode listens to the
channel and upon receiving a signal, adjusts its phase unless in refractory period. Any
device in the transmit mode sends data and includes the pulse-like sync-word.

We give an overview of two synchronization protocols that use pulse-like signals.

MEMFIS

The MEMFIS algorithm [Tyrr 10b] is a way to incorporate the synchronization process
into a packet transmitting procedure. It performs an excitatory coupled synchroniza-
tion procedure based on the Mirollo and Strogatz model, additionally using a refractory
period. It uses a beacon, also called sync-word, instead of a pulse, copes with time-
varying delays, and incorporates two modes, a transmitting and a receiving mode to
overcome the inability of simultaneous sending and receiving. Whenever a data packet
is to be sent, the beacon is included in the packet. This imposes a probabilistic synchro-
nization process, since data packets are issued by another application layer of an entity
and therefore follow some arrival distribution. All entities in the system that are not
assigned a transmission are in the receive mode. These entities adjust to the incoming
beacon. The basic outline can be seen in Figure 2.8, where the phase of an oscillator is
mapped onto a circle and the state of an oscillator is divided into the receive mode and
the transmit mode. Within the receive mode a device listens to the channel and adjusts
upon receiving a signal unless it is in the refractory period φref. This period represents
the deafness interval within which no adjustments are performed. In the transmit mode
the data transmission and the incorporated sync-word transmission is performed.

PCO Protocol

The pulse-coupled oscillator protocol (PCO protocol) [Pagl 11] also uses pulse-like signals
for synchronization and combines this process with communication. To overcome system
restrictions beacons are used instead of pulses, a refractory period is used to overcome
negative effects due to noise. Devices switch their transceivers to transmission when
about to fire and to receive otherwise. Potential negative synchronization effects caused
by switching are hindered by the use of a refractory time.
In order to include data communication two different modes are used. First within the

“PCO bootstrap” mode, no data except the beacons are exchanged. Synchronization
takes place within this mode. After a fixed amount of cycles the devices switch to the
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Figure 2.9: The two possible modes within the PCO protocol. After the PCO bootstrap
mode, all devices switch to the PCO maintenance mode.

“PCO maintenance” mode. This transition from one mode to the other can also be done
gradually. Within the second mode a large number of entities and cycles is used for data
communication, see Figure 2.9.

2.4 Design Principles for Self-Organizing
Synchronization

The theory of pulse-coupled oscillators can be used to design self-organizing synchroniza-
tion methods for wireless communication applications. Distributed devices exhibit local
actions and enable a global effect, the emergence of synchronization. The transition of
the theory from idealized assumptions to wireless communication systems however can
cease this emergence as shown in Section 2.3.1. Still, a guaranteed synchronization within
wireless communication systems is needed to actually use this self-organizing synchro-
nization approach for communication standards, such as the IEEE (Institute of Electrical
and Electronics Engineers) wireless communication standards, see for example [Gold 05,
p.23f]. This thesis addresses this need by providing synchronization schemes that guar-
antee to synchronize an ensemble of pulse-coupled oscillators. Including these schemes
in existing self-organizing synchronization methods such as the MEMFIS algorithm, see
Section 2.3.3, wireless communication systems are then guaranteed to synchronize. This
design approach is described in more detail in the following.

2.4.1 Modeling Approach

As a first step, we use the pulse-coupled oscillator theory and introduce general sys-
tem assumptions in order to address the wireless communication systems. We design
the pairwise interactions between oscillators such that synchronization is achieved. By
analytical proofs we guarantee that synchronization emerges.
In a second step, for a given wireless communication system with the need for synchro-

nization, we apply the synchronization scheme with the appropriate system assumptions
and intentionally design the coupling of the entities.
As a third step, we incorporate the synchronization scheme into existing communica-

tion protocols. By doing so, we rely on work from the literature for the actual realization,
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but are able to guarantee that the realization synchronizes the wireless communication
systems, as long as our system assumptions are met.

2.4.2 Designing Update Functions for Synchronization

As the system assumptions should be as general as possible, the only way to change the
dynamics of the system is by designing the update function which describes the pairwise
interaction between oscillators and hence the coupling. We use two different approaches
to design the update function.

Inhibitory Coupling

Guided by the synchronization statements from Timme et al. [Timm 02] we design a
coupling strategy which uses inhibitory coupling. For all-to-all pulse-coupled oscillator
systems with phase rate inhomogeneities and individual random delays, we prove that
synchronization emerges, see Chapter 3.

Inhibitory and Excitatory Coupling

Work regarding the design and use of a combination of inhibitory and excitatory cou-
pling can be found in the literature. Wang et al. [Wang 12] showed that an update
function that incorporates both inhibitory and excitatory coupling can improve the time
to synchronize. Nakada and Miura [Naka 12] revealed similar results for large delays.
Nishimura and Friedman showed that the fully synchronized state is stable if coupling
includes both inhibitory and excitatory coupling [Nish 11]. They further extended their
work and showed that for as the network size goes to infinity synchrony almost always
emerges for all initial conditions [Nish 12]. Nevertheless a coupling strategy that pro-
vides synchronization on arbitrary networks, independent of the initial condition was
not available.
We extend the work on inhibitory and excitatory coupling by additionally introducing

stochastic pulse emission. For the so designed coupling we prove that all systems of
pulse-coupled oscillators synchronize for all initial conditions. We give a motivation and
detailed proof in Chapter 4.

2.4.3 Synchronization Strategies

Depending on how the system assumptions are formed, different coupling schemes are
needed to provide synchronization. This characterizes our approach in Chapter 3 and
Chapter 4. Each chapter, independently of each other, provides a synchronization strat-
egy for specific system assumptions. It gives a self-contained picture and also marks
the limits of application. Within each chapter we first introduce the specific system
assumptions and then give specific coupling rules such that synchronization is emerging.
We prove that the specific coupling is guaranteed to emerge and elaborate on the sys-
tem’s dynamics regarding synchronization time and robustness. In Chapter 5 we show
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implementations of the coupling strategies and elaborate on the applicability and its
limitations.
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3 Synchronization with Inhibitory
Coupling

Within this chapter we introduce an inhibitory coupling scheme that synchronizes pulse-
coupled oscillator systems started from arbitrary initial conditions, and independent of
the number of oscillators. This coupling scheme is proven to synchronizing using the
following assumptions

• all-to-all network,

• arbitrary initial condition,

• arbitrary number of oscillators,

• random individual delays,

• heterogeneous phase rates.

In case of homogeneous phase rates and a delay-free system, we guarantee full synchrony.
For heterogeneous phase rates and random individual delays a close-to-synchrony state
is reached. The results presented in this chapter have been achieved in cooperation
with Christian Bettstetter and Marc Timme and are published in [1, 6, 4]. Parts of this
chapter are taken from [1].
The following observation was the key motivation for the use of inhibitory coupling

for synchronization.

3.1 Motivation

3.1.1 Beneficial Synchronizing Effects

For the design of an update function we first show two examples which demonstrate
some dynamics caused by inhibitory coupling.

Example 4. Let us assume a set of oscillators {1, 2, 3}, a delay-free system, homo-
geneous phase rates, an all-to-all network and the update function H(φ) = (1 + α)φ.
At some time t1 oscillator 1 fires and emits a pulse to oscillators 2 and 3. We de-
fine φ2(t1) = c2 and φ3(t1) = c3. After pulse reception we have φ2(t1+) = (1 + α)c2 and
φ3(t1+) = (1+α)c3. Hence |φ2(t1+)−φ3(t1+)| = |(1+α)c2−(1+α)c3| = (1+α)|c2−c3| =
(1 + α)|φ2(t1)− φ3(t1)|. Therefore the difference between the two oscillators increases if
α > 0, which is an excitatory coupling, and decreases if α < 0, which is an inhibitory
coupling.
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3 Synchronization with Inhibitory Coupling

We see that in Example 4 inhibitory coupling decreases the phase difference of the re-
ceiving oscillators. This is a positive effect for synchronizing dynamics and can contribute
to the robustness of the synchronization process. Additionally, inhibitory coupling can
keep up the oscillators’ order, as can be seen in the following example.

Example 5. Let us assume a set of oscillators I = {1, 2, 3, . . . , 10}, a delay-free system,
homogeneous phase rates, an all-to-all network and the update function H(φ) = (1+α)φ,
with −1 < α < 0. Further let us assume that at time t1 we have φ10(t1) = 1 and the
oscillators are in ascending order such that φi(t1) ≤ φi+1(t1), for i ∈ {1, . . . , 9} and
define φi(t1) = ci for all i. Oscillator 10 fires and resets and emits a pulse to all other
oscillators. These adjust and we have φi(t1+) = (1+α)ci for all i ∈ I \{10}. We observe
that for all i ∈ I \ {9, 10} we have (1 + α)ci ≤ (1 + α)ci+1, and thus the firing event did
not change the order of the oscillators {1, . . . , 9}.

The example shows a very interesting property for this inhibitory coupled network.
The order of the oscillators does not change for all not-firing oscillators. In both examples
the firing oscillator does not provide the properties which are beneficial for synchroniza-
tion and causes inhomogeneities. Since we intend to design a synchronization scheme
and apply the algorithm to a wireless communication system, we modify the resetting
behavior. We simply define that an oscillator upon firing, does not reset. Instead, it
inhibitorily updates its own phase as if the pulse was from another oscillator, i.e. it
self-adjusts. This introduction of self-adjustment totally changes the dynamics of the
system. We see that if we demand self-adjustment for the firing oscillator, the Example 4
and Example 5 both provide homogeneous behavior. To be more precise, the phase dif-
ference of all oscillators decreases compare Example 4 and also the order of all oscillators
is kept after a firing event, compare Example 5.

3.1.2 Outline of the Proof

This minor change in coupling scheme shows to have great effects on the synchronization
behavior. Here is a rough overview of these two effects for delay-free, all-to-all coupled
systems with homogeneous phase rates, as shown in the examples above.
If all elements in the system adjust to a pulse, all phase differences decrease. This

holds for every pulse emission and provides a monotonically decreasing precision. As
the precision is bounded by zero from below, the phase differences converge to zero.
Example 4 even indicates an exponential decay.
The second effect, the conservation of the firing order, simplifies the modalities for

the proof. As the order of oscillators does not change, the oscillator that fires first, will
continue to stay in the lead. Hence this oscillator repeatedly fires and oscillators with
lower phase will never fire. As a consequence we can focus on the firing events of the
first oscillator and consider these as a strictly decreasing sequence.

These effects are the core arguments for the proof on synchronization. As we will see
in the following, we can even relax the system assumptions up to those given in the
beginning of this chapter and still prove synchronization. This generalization, however,
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causes a lot of technical specifications and distinction of cases. In order to still keep
the line of arguments easy to follow, we start with a convergence statement for two
oscillators. This provides all necessary steps and argumentation principles needed for an
ensemble of oscillators, which leads to the main synchronization theorem in this chapter.

3.2 Specifying the System Settings

The general system setting is defined in Section 2.2, which introduces the pulse-coupled
oscillators. As explained in Section 2.4.3, we need to individually specify the systems
settings in order to give synchronization statements. Here is a compact description of
the system assumptions used in this chapter.

3.2.1 Oscillator Properties

We use a set I of N oscillators. Concerning their phase rates, compare (2.1), we assume
constant but possibly different phase rates. Hence, for the phase rate of oscillator i we
have

dφi

dt
(t) := φ̇i(t) := κi with κi ∈ [1− ν, 1 + ν], 0 ≤ ν ≪ 1, (3.1)

where ν is the maximum phase rate deviation. For the further analysis we consider
small deviations only. Let us assume an all-to-all network, i.e. Ni = I \ i for all i ∈ I,
and individual random pulse delays within a delay window [τmin, τmax]. We assume
τmax <

1
1+ν

(1−H(1)).

3.2.2 Oscillator Coupling

We introduce the self-adjustment, such that also the firing oscillator adjusts to its fire
instead of resetting. Hence at a firing event of oscillator i at time tn we have

φi(t
n) = 1 ⇒

{

φi(tn+) = H (φj(tn))
φj(tn + τ+ij ) = H (φj(tn + τij)) ∀j ̸= i

. (3.2)

For the update function H(·) we assume a twice continuously differentiable function

with H(0) = 0, 0 ≤ H(φ) ≤ 1 and d2H(φ)
dt

≤ 0 for all phase values φ(t) ∈ [0, 1]. We define

H ′(φ) = dH(φ)
dφ

, H ′
max = maxφ H ′(φ) and H ′

min = minφ H ′(φ). We show an example of
such a function in Figure 3.1a. Following this update function, upon pulse reception,
an oscillator always performs non-positive phase jumps, i.e. the system is inhibitorily
coupled.
Due to this modification, the phase interval of an isolated oscillator is now [H(1), 1]

after the first firing event. The interactions of two coupled oscillators i and j can be
seen in Figure 3.1b. Oscillator i reaches the threshold, fires, and performs a phase jump
to H(1). After some delay τij , oscillator j receives the fire pulse and adjusts its phase
as well. It jump to a phase lower than H(1). As both oscillators again increase their
phases, oscillator i fires again, and the adjustments repeat.
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(a) Example of an update function H(·).
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(b) Phase evolution of two oscillators using in-
hibitory coupling.

Figure 3.1: Update function and phase evolution with inhibitory coupling and self-
adjustment.

Algorithm 1 Synchronization with inhibitory coupling and self-adjustment.
1. An oscillator i increases its phase φi from 0 to 1 (∀ i ∈ I).

2. Whenever an oscillator i reaches φi(t)=1, the oscillator sends a pulse and adjusts
its phase to φi(t+) = H(1) (instantaneous self-coupling).

3. The refractory interval is φref = H(1) + 2(1 + ν)τmax.

4. Whenever an oscillator j receives a pulse from i (reception time t+τij):

a) It adjusts its phase to φj(t+τ
+
ij ) = H(φj(t+τij)) if φj(t+τij) /∈ [0,φref ] (∀j ̸= i).

b) It keeps its phase at φj(t+τ+ij ) = φj(t+τij) if φj(t+τij) ∈ [0,φref ] (∀j ̸= i).

3.2.3 Refractory Interval

In order to overcome negative coupling effects as described in Example 1 and Example 2
we use a refractory interval, compare (2.18). Without a refractory interval, synchronized
oscillators can adjust to each others pulses due to different propagation delays, see
Example 2, this is called an echoing effect. The refractory interval is constructed such
that any oscillator phase does not experience these echoing effects. To do so, the cycle
interval of an isolated oscillator, which is [H(1), 1] after the first firing event, has to be
taken into account. The same applies for the maximum delay τmax, and the maximum
possible phase rate 1 + ν. Consequently, at a firing time tn, the refractory interval is
set to [0,φref ] with

φref = max
i∈I

{φi (t
n + 2τmax)} = H(1) + 2(1 + ν)τmax . (3.3)

All oscillators with their phases in this interval do not adjust upon reception of a pulse.
The entire synchronization scheme is summarized in Algorithm 1 and denoted as

synchronization with inhibitory coupling and self-adjustment (SISA).
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Figure 3.2: Circular phase representation, using p(φ) from (2.13), with inhibitory cou-
pling as defined in (3.2) and (3.3). The dark dot represents the phase position of the
firing oscillator. Panel a) visualizes the phase jumps of a firing oscillator and an adjust-
ing oscillator. Panel b) shows an example of an ensemble of oscillators at a firing event
at time tn. Panel c) illustrates the phase positions of the example from panel b) right
after the phase adjustments at tn+ in a delay-free system.

3.2.4 Alternative Circular Representation

Using the circular phase representation from (2.13), the system dynamics of the coupling
from (3.2) and (3.3) can be shown on a circle. Upon a firing event the firing oscillator
self-adjusts. Upon a reception event an adjusting oscillator jumps backward on the
circle. An example is given in Figure 3.2a.
The main idea of the circular representation is to have a smooth phase representa-

tion of a firing oscillator, in particular when the firing oscillator resets. With the phase
representation from (2.13), this is not the case, as visualized in Figure 3.2a. To still
provide such a smooth phase evolution we introduce an alternative circular representa-
tion p̃ : [0, 1] &→ [0,ω), with ω = 1 − H(1). We account for the phase interval for an
isolated oscillator, which is [H(1), 1] and cycle length ω, and provide a smooth phase
representation. We define

l(φ) :=
(

φ−H(1)
)

mod ω, (3.4)

and the alternative circular representation via

p̃(φ) := p

(

l(φ)

ω

)

. (3.5)

This representation brings a smooth transition for the self-adjustment,see Figure 3.3a.
It is also applicable for an ensemble of oscillators, see Figure 3.3b and Figure 3.3c. We
will need this representation later on in Section 3.7. For the adjusting oscillators this
representation brings a new interpretation of the coupling scheme. Via p̃(φ) the adjust-
ing oscillators (disregarding the self-adjusting ones) can be considered as performing a
positive phase jump see Figure 3.3b and Figure 3.3c. However, the phase of such an
adjusting oscillator j after adjustment at time tr is φj(t+r ) < H(1) and hence it does not
fire when passing the p̃(φj) = ω threshold.
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Figure 3.3: Alternative circular representation using p̃(φ) from (3.5). The dark dot
represents the phase position of the firing oscillator. Panel a) shows the smooth transition
of the firing oscillator upon self-adjustment. Panel b) depicts an example for an ensemble
of oscillators at a firing event at time tn. Panel c) illustrates the phase positions right
after the adjustments at time tn+ for a delay-free system.

3.2.5 Leading Oscillator

Let us define an index permutation γi, i ∈ {1, . . . , |S|}, such that p̃(φγi) ≤ p̃(φγi+1
) for

all i. In other words, we position the oscillators on a circle of circumference ω, and
denote them in ascending order of their phases, see Figure 3.4. Then oscillator i∗ with

i∗ := arg max
i=1,...,|S|

{

φγi+1
− φγi for i < N

1− φγi + φγ1 for i = N
, (3.6)

is called the leading oscillator or leader. Figuratively speaking, this is the oscillator
that starts the pulse emission for the set of oscillators for a cycle, for examples see the
dark dot in Figure 3.2b, Figure 3.2c, Figure 3.3b and Figure 3.3c. This definition of
the leading oscillator is only valid for any time after the first firing event. The leading
oscillator is used to characterize a cycle for the whole set of oscillators. This leading
oscillator might change over time due to the different phase rates and due to the initial
conditions. However, as soon as the fastest oscillator is in the lead, it will stay in the
lead, as we will see in Lemma 3. The firing time of the leading oscillator in the nth cycle
is denoted by tn◦ .

3.2.6 Sample Synchronization Process

By visualizing a sample synchronization process we identify the key argument for the
convergence statements. A set of oscillators starts from random initial conditions in a
delay-free system with homogeneous phase rates and coupled as defined in (3.2) and
(3.3), see Figure 3.5. With every firing event the oscillators move closer together. Ad-
ditionally, we see the advantage of introducing (3.5), as the contracting property within
the system becomes more visible. In Figure 3.6 the corresponding alternative circular
representation p̃(φ) is shown. This also demonstrates how the introduces alternative
circular representation can be used to visualize the contracting dynamics of the system.
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Figure 3.4: The index permutation of the oscillators. According to the alternative cir-
cular representation p̃(φ) from (3.5) the oscillators are denoted in ascending order. The
oscillator at the largest arc is denoted by i∗, as in (3.6).
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Figure 3.5: Example of a synchronization process. On the top plot we see the phases
φi(tn) of the oscillators at firing event ti and right after the adjustment at t+i . In
the lower plot the corresponding phases are mapped via (3.4) to l (φi(tn)). Starting
from random initial conditions the synchronization process starts immediately (In this
example: N = 10, delay-free system, homogeneous phase rates, H(φ) = 1

2φ, φref = 1
2 ,

ω = 1
2).
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t1 t1+ t2 t2+ t3 t3+

t4 t4+ t5 t5+ t6 t6+

Figure 3.6: Example of a synchronization process via the circular representation p̃(φ)
using (3.5). At each firing event ti, and right after the adjustment at t+i the correspond-
ing phase positions are shown. The displayed synchronization process is the one from
Figure 3.5.

Our goal is now to prove the synchronizing behavior of the inhibitory coupling algo-
rithm, i.e., its convergence to a synchronized state. To this end, the contraction that we
can see in Figure 3.5 is going to be of main importance. In the following, we describe
some contraction properties and limits when delays and heterogeneous phase rates are
present.

3.3 Prerequisites

3.3.1 Definition of Precision

We generalize the notion of precision at time t, taking into account the new cycle length
ω. We define

Πω(t) := max
i,j∈I

min { ω − |l(φi(t))− l(φj(t))| , |l(φi(t))− l(φj(t))| } . (3.7)

Note that for ω = 1 this definition is the same as in (2.17).

3.3.2 Steady State

With the assumption of heterogeneous phase rates, random individual delays and the
use of a refractory period, it is not possible to achieve full synchrony. In the following we
show a converging behavior of the system, called the transient state, when the precision
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of the system is monotonously decreasing. As soon as this monotonicity breaks up, the
precision starts to fluctuate and the system is called to be in the steady state, compare
[Kura 91]. The precision then fluctuates within some interval [0,Γ], where Γ is the
synchronization bound or precision limit, the system is then considered to be in a close-
to-synchrony state as defined in Section 2.2.6. In Theorem 1 and Theorem 2 we use such
bounds.

3.3.3 Approach for the Convergence Proof

We use an upper bound of the precision, the maximum phase difference to describe the
convergence of the system to its steady state, i.e.

Πω(t) ≤ max
i,j∈I

|φi(t)− φj(t)|. (3.8)

In the following, we show that within a transient state the maximum phase difference
monotonously decreases. This convergence holds until a steady state is reached, which
describes the close-to-synchrony state. We show that this precision limit is depending
on the system parameters ν and τmax and the update function H(·).

3.3.4 Properties of the System

To capture the system performance and rigorously show the dynamics within the tran-
sient state and the steady state, we use some observations.
First, we track the phases of the oscillators as long as no phase updates are performed.

Relating to (3.1), the phase of an oscillator i at time instant t can be described as

φi(t) = φi(t̃) + κi(t− t̃), (3.9)

where tn+1
i ≥ t̃ ≥ t ≥ tni for any n unless a phase jump is performed. In other words,

unless phase adjustments are happening, the phase can be described via a linear function
between two of its firing events.
Second, we narrow down the time intervals within which phase updates are performed.

Lemma 1 (Adjustment Period). The time interval [tn◦ , t
n
◦ + 2τmax] is the time window

wherein all adjustments upon a firing event of the current cycle [tn◦ , t
n+1
◦ ) take place.

Proof. We have to consider three oscillator situations: the oscillator that fires and initi-
ates a new cycle, oscillators that do not fire, and oscillators that fire but do not initiate
a new cycle.

• An oscillator i fires at time tn◦ and initiates a new cycle, i.e. it becomes the leader
of the new cycle. It immediately adjusts its phase to φi(tn+◦ ) = H(1) and enters
the refractory interval. It exits the refractory interval at phase φi(t) = φref , which
happens at tn◦ + 2τmax the earliest. Within the refractory interval the oscillator
does not adjust.
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• An oscillator j does not fire and adjusts at time tn◦ + τij to a phase φj(tn◦ + τ+ij ) =
H(φj(tn◦ + τij)). It then remains in refractory interval until φj(t) = φref which
happens at tn◦ + 2τmax the earliest.

• An oscillator k fires shortly after tn◦ . To do so, it has to fire before it adjusts to the
fire of oscillator i at tn◦ + τik, when it enters the refractory interval. So if oscillator
k fires at the latest possible time, it fires at tn◦ + τ−ik , and immediately adjusts to
φk(tn◦ + τik) = H(1) and enters the refractory interval. It leaves this interval with
φi(t) = φref at time tn◦ + 2τmax. In the worst case where τik = τmax, oscillator k
emits a pulse at tn◦ + τ−max, which arrives at the other oscillators, again in the worst
case, at tn◦ + 2τmax. Any oscillator at that time, however, will be in the refractory
interval and thus not adjust.

Summing up, due to the refractory interval any oscillator will only adjust to one firing
event within a cycle [tn◦ , t

n+1
◦ ).

These observations help to capture the behavior of the system within its transient
state. Due to the inhomogeneities in phase rates (3.1), a fully synchronized system does
not stay fully synchronized. We investigate how much the phases of an ensemble of
oscillators can diverge within a cycle. This gives a lower bound for the bound Γ and
hence for the steady state which describes the precision of the system.

Lemma 2 (Synchronization Precision Bound). Independent of the dynamics of the sys-
tem, the synchronization precision can increase up to the value

max
i,j∈I

|φi − φj| ≤ Γτ := (1− ν) τmax + 2 ν
1−H(1)

1− ν
, (3.10)

within the time interval of a cycle.

Proof. We need to find the worst case precision that can be reached by a synchronization
method under the given modeling assumptions. Consider two oscillators i and j with
unknown delay τij in between. Their phase difference |φi − φj| may change over time
due to phase jumps after firing events and due to different phase rates. Let oscillator
i fire at time tn◦ , so that oscillator j receives the pulse at time tn◦ + τij. Oscillator j
will not adjust its phase if being in refractory period at time tn◦ + τij. The worst case
in terms of precision occurs if oscillator j fired itself at time tn◦ + τ−ij , i.e., immediately
before it received the pulse from i. In this case, the phase difference |φi − φj| = κiτij
at time tn◦ + τij, and evolves to |φi − φj| = κiτij + (κi − κj)(tn+1

◦ − tn◦ − τij) at time
tn+1
◦ . This phase difference is maximal if oscillator i has the fastest possible phase rate
κi = 1 + ν and oscillator j has the slowest possible phase rate κj = 1 − ν. This yields
|φi−φj| = (1−ν) τij+2ν (tn+1

◦ −tn◦ ). The maximum possible delay is τmax. To obtain the
maximum possible time period between to subsequent events ∆tn◦ = tn+1

◦ − tn◦ , we take
the whole phase interval [H(1), 1] and calculate the time it takes the slowest oscillator
to run through. This yields
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∆tn◦ ≤ 1−H(1)

1− ν
. (3.11)

The derivation so far considered two arbitrary oscillators and thus also holds for the
ones with maximum difference. Combining these considerations, we formulate 3.10.

As mentioned in Section 3.2.5, we can identify a leading oscillator for a cycle. This
leader has the following property.

Lemma 3 (Leading Oscillator). The leader (3.6) in a system of pulse-coupled oscillators,
with highest phase rate, remains leader.

Proof. Consider the oscillator with the highest phase rate in a set of oscillators. This
oscillator is called i in the following; it has a phase rate κi and phase φi(t). Upon
reaching the threshold 1 at time tn◦ , it fires and self-adjusts to φi(tn+◦ ) = H(1). At time
tn◦ + τmax all oscillators will have adjusted. There are two different adjustment reasons.
First, oscillators may adjust due to their reaction to the fire pulse from oscillator i. Such
an oscillator j is not in the refractory phase at reception time tn◦ + τij, i.e., its phase
φj follows φref < φj(tn◦ + τij) < 1 before adjusting. The phase after adjustment follows
H(φref) < φj(tn◦+τ+ij ) < H(1) < 1 due to the inhibitory coupling. The phase of the firing
oscillator i at this time is φi(tn◦ + τ+ij ) = H(1) + τijκi > H(1). Thus, φi > φj is ensured,
and oscillator i remains in the lead as it has the highest phase rate. Second, alternatively,
the oscillator j fired itself before receiving the fire pulse from i and performed a self-
adjustment to φj(t̃) = H(1), where t̃ denotes the time instance of the adjustment with
t̃ ∈ (tn◦ , t

n
◦ + τij]. The phase of oscillator i at this time is φi(t̃) = H(1) + κi

(

t̃− tn◦
)

.
Again, φi > φj is ensured and oscillator i stays in the lead.

3.4 Synchronization Convergence for Two Oscillators

We gave an outline for the synchronization proof in Section 3.3.3. Still, an overview
is difficult to obtain as the proof is very technical since the heterogeneous phase rates
and the individual delays need rigorous case distinction. In order to see the underlying
argumentation we narrow down these differentiations and first prove convergence for two
oscillators in Theorem 1. In Section 3.5 we then extend for an ensemble of oscillators.

Theorem 1 (Upper Bound of Precision for Two Oscillators). Two oscillators i, j with
inhibitory coupling and self-adjustment as defined in (3.1) – (3.3) synchronize up to a
precision Γ2, i.e. ,

|φi − φj| ≤ Γ2, (3.12)

where the bound Γ2 is given by

Γ2 := (1 + ν) τmax +
2ν

1−H ′
max

· 1 +H(1)

1− ν
. (3.13)
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3 Synchronization with Inhibitory Coupling

Table 3.1: Phase evolution of oscillators i and j
t φi φj

tn◦ 1 1− c
tn+◦ H(1) 1− c

tn◦ + τij H(1) + κiτij 1− c+ κjτij
tn◦ + τ+ij H(1) + κiτij H(1− c+ κjτij)

Proof. We consider two oscillators i and j with phase rates κi and κj and arbitrary
initial phases. To show an improvement of the synchronization precision over time, we
consider (3.8) and prove that the oscillator phase difference between two consecutive
firing events of the leading oscillator tn◦ and tn+1

◦ decreases, i.e.,

|φi(t
n+1
◦ )− φj(t

n+1
◦ )| < |φi(t

n
◦ )− φj(t

n
◦ )|. (3.14)

As soon as (3.14) does not hold anymore the steady state is reached.

The evolution of a phase is linear over time for all non-event times and is given by
(3.9). Hence, the phase difference at time tn+1

◦ can be expressed by the phases at a
previous time instant t̃ < tn+1

◦ . This yields

∣

∣φi(t
n+1
◦ )− φj(t

n+1
◦ )

∣

∣ =
∣

∣φi(t̃)− φj(t̃) + (κi − κj)
(

tn+1
◦ − t̃

)
∣

∣ (3.15)

for t̃ ∈ (tn◦ + τij, tn+1
◦ ) according to Lemma 1.

Let us consider the evolution of the two phases over time, see Table 3.1. Without
loss of generality, we assume that a firing event occurs at time tn◦ at oscillator i, so that
φi(tn◦ ) = 1 and φi(tn+◦ ) = H(1). The phase at this time instant at oscillator j can be
written as φj(tn◦ ) = 1 − c with c ∈ [0, 1]. Oscillator j receives the firing pulse after a
transmission delay τij. During that time period, its phase evolved at phase rate κj to
φj(tn◦ + τij) = φj(tn◦ ) + κjτij. Upon reception of the firing pulse, it adjusts its phase to
φj(tn◦ + τ+ij ) = H(1− c+κjτij), if c > τmax. Otherwise φj may enter the refractory period
and may not adjust, see (3.3) and the proof of Lemma 1. The phase of the firing oscillator
i evolved with rate κi during this time period and yields φi(tn◦ + τ+ij ) = H(1) + κiτij.
Given this, substituting t̃ by tn◦ + τ+ij in (3.15), we get |φi(tn+1

◦ )− φj(tn+1
◦ )| =

|H(1) + κiτij −H(1− c+ κjτij) + (κi − κj)
(

tn+1
◦ − tn◦ − τij

)

| (3.16)

= |H(1)−H(1− c+ κjτij) + (κi − κj)∆tn◦ + κjτij| (3.17)

with ∆tn◦ = tn+1
◦ − tn◦ > 0.

Let us now make use of the mean value theorem [Bron 07, p. 389]. It states that there
is a phase ξ in the interval [1− c+ κjτij, 1] with

H ′(ξ) =
dH(ξ)

dξ
=

H(1)−H(1− c+ κjτij)

c− κjτij
. (3.18)
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3.4 Synchronization Convergence for Two Oscillators

Using this expression, (3.17) becomes

∣

∣φi(t
n+1
◦ )− φj(t

n+1
◦ )

∣

∣ = |H ′(ξ) (c− κjτij) + (κi − κj)∆tn◦ + κjτij| . (3.19)

We demand that (3.14) holds. As |φi(tn◦ )− φj(tn◦ )| = c, we obtain the condition

|H ′(ξ)c−H ′(ξ)κjτij + (κi − κj)∆tn◦ + κjτij| < c . (3.20)

To dissolve the absolute value, we have to consider two cases. First, assume that
the expression within the absolute value bars on the left hand side of (3.20) is positive.
This means that the oscillators do not change order, i.e., no overtaking is performed but
oscillator i stays leader. Solving (3.20) without the absolute value bars for c yields

κjτij +
(κi − κj)∆tn◦
1−H ′(ξ)

< c . (3.21)

Singularities cannot occur, since H ′(φ) < 1 holds independently of φ. As long as this in-
equality is fulfilled, the phase difference between two consecutive firing events decreases.
This phase contraction ceases once both sides of (3.21) are equal. Thus, the left hand side
of (3.21) is a lower bound for the phase difference needed to achieve a phase contraction
in the subsequent cycle.

Second, we assume that the expression within the absolute value bars of (3.20) is
negative. This means that the oscillators change order, i.e., oscillator j overtakes i. We
specifically conclude κj > κi. This yields

−κjτij (1−H ′(ξ)) + |κi − κj|∆tn◦
1 +H ′(ξ)

< c . (3.22)

Singularities cannot occur, since H ′(φ) ≥ 0 holds independently of φ. The same state-
ments concerning phase contractions can be made as in the first case. Overall, a con-
traction can be guaranteed as long as the phases fulfill (3.21) and (3.22).

Now we generalize the derived inequalities (3.21) and (3.22) to hold for any possible
case, including the worst case. We will then be able to guarantee the contracting dy-
namics of the system for arbitrary initial conditions as long as the inequalities hold. The
parameter combinations turning the inequalities into equalities serve as synchronization
bounds. For generalizing, we take into account the maximum delay τmax ≥ τij and the
maximum possible phase rate difference |κi − κj| ≤ 2ν. We apply the upper bound
(3.11) for ∆tn◦ and recall the maximum slope H ′

max = maxξ H ′(ξ) and the minimum
slope H ′

min = minξ H ′(ξ) of the update function. An upper bound for the left hand side
of (3.21) is given by Γ2 as shown in (3.13), and an upper bound for the left hand side of
(3.22) is

Γ̃2 :=
2ν

1 +H ′
min

· 1 +H(1)

1− ν
. (3.23)

A phase contraction in the form of (3.14) is given at least as long as Γ2 and Γ̃2 are
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3 Synchronization with Inhibitory Coupling

smaller than the phase difference |φi(tn◦ )− φj(tn◦ )| of the previous cycle.
Finally, we note that Γ2 > Γ̃2, since 1 − H ′

max < 1 + H ′
min, and of course Γ2 ≥

τmax as otherwise no adjustments are ensured. Hence, the term Γ2 is an upper bound
for the phase difference of the two oscillators at which no further contraction can be
guaranteed. Until the phase difference of Γ2, Lemma 3 guarantees that we can apply
this analysis repeatedly for tm◦ , m > n, m ∈ N, which yields 3.12. It is not possible for any
phase difference to jump above Γ2 that is already below. This is due to the monotonic
increasing and continuous function H(·), and the fact that we already consider the
maximal possible drift due to different phase rates.

3.5 Synchronization Convergence for an Ensemble of
Oscillators

We generalize the argumentation of Theorem 1 to hold for an ensemble of oscillators.
Almost the same statement holds.

Theorem 2 (Upper Bound of Precision). A system of oscillators with inhibitory coupling
described as in (3.1) and self-adjustment as in (3.2) and (3.3) synchronizes up to a
precision

Π(t) ≤ Γ, (3.24)

where the bound Γ is given by

Γ :=

(

1 + ν −H ′
min (1− ν)

)

τmax + 2ν 1+H(1)
1−ν

1−H ′
max

. (3.25)

Proof. We generalize the proof of Theorem 1 for a system of more than two oscillators,
i.e., we apply the used argumentation for the whole set I. To account for the precision of
the system we use (3.8) and point out that the maximum phase difference is determined
by two oscillators, namely the leading oscillator and the hindmost oscillator at a given
time instant t. Again, we study the change of the phase difference within one cycle,
i.e., from tn◦ to tn+1

◦ but now we must consider the maximum phase difference over all
oscillators. It is important to note that both the leading and hindmost oscillator may
in general change within a cycle due to shifted updates caused by different individual
delays, or due to overtaking events with other oscillators.
In both cases, the firing order of the oscillator changes. We now focus on these events,

when the leading oscillator is overtaken by a faster oscillator, or the hindmost oscillator
is exchanged due to a delayed adjustment or a slower oscillator. All possible cases can
be described with a set of four oscillators as illustrated in Figures 3.7 and 3.8. In all
cases, the leading oscillator at time tn◦ is called i, and the hindmost oscillator at time tn◦
is called j. The other oscillators are called k and l.
Figure 3.7 shows phase evolutions in which oscillator i is not overtaken by oscillator j.

Figure 3.7a shows the simplest case, where—although the oscillators may have different
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Figure 3.7: Examples of phase evolutions. Starting right after the phase adjustment at
t+r = tn◦ + τij, the phases evolve until the next firing event at tn+1

◦ . Depending on the
phase rates the leading and hindmost oscillator changes: a) no changes, b) change of
leading oscillator, c) change of the hindmost oscillator, d) change of both hindmost and
leading oscillator.

phase rates—oscillator i remains leader, and oscillator j remains hindmost oscillator at
time tn+1

◦ . Hence, the evolution of the maximum phase difference is determined by these
two oscillators and we can apply Theorem 1 with the synchronization bound Γ2.

In Figure 3.7b, the leader changes, as oscillator i is overtaken by a faster oscillator k
(κk > κi). Thus, to compare the maximum phase differences at time tn◦ and tn+1

◦ , we
have to compare |φi(tn◦ )−φj(tn◦ )| with |φk(tn+1

◦ )−φj(tn+1
◦ )|. If more than one oscillators

overtakes i, we consider the one leading at tn+1
◦ . Denoting the time instant of the

overtaking event by t̃, then φk(t̃)− φi(t̃) = 0 holds, and we have

∣

∣φk(t̃)− φj(t̃)
∣

∣ =
∣

∣φi(t̃)− φj(t̃)
∣

∣ . (3.26)

This phase difference changes over time due to different phase rates, and yields at time
tn+1
◦ the expression

∣

∣φk(t
n+1
◦ )− φj(t

n+1
◦ )

∣

∣ =
∣

∣φi(t̃)− φj(t̃)
∣

∣+ (κk − κj) ·
(

tn+1
◦ − t̃

)

. (3.27)

If t̃ > tn◦ + τij we can substitute t̃ for tn+1
◦ in (3.19) to state

|φi(t̃)− φj(t̃)| = H ′(ξ) (c− κjτij) + κiτij + (κi − κj) · (t̃− tn◦ − τij) . (3.28)

If we now exchange κi with κk, where κk > κi, we obtain an upper bound for (3.28).
Combining (3.27) and (3.28) yields

∣

∣φk(t
n+1
◦ )− φj(t

n+1
◦ )

∣

∣ ≤ H ′(ξ) (c− κjτij) + κiτij + (κk − κj) ·
(

tn+1
◦ − tn◦ − τij

)

. (3.29)

If t̃ ≤ tn◦ + τij, using the phase difference at tn◦ + τij shown in Table 3.1 and the argument
from (3.27), we derive

|φi(t̃)− φj(t̃)| = H ′(ξ) (c− κjτij) + κiτij − (κk − κj) · (tn◦ + τij − t̃) . (3.30)
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Figure 3.8: Examples of phase evolutions when both hindmost and leading oscillator
change. Starting right after the phase adjustment at t+r = tn◦+τij, the phases evolve until
the next firing event at tn+1

◦ . Depending on the phase rates the leading and hindmost
oscillator changes. Panel a) - d) show different situations how both leading and hindmost
oscillators can change due different phase rates.

The term (κk − κj) · (tn◦ + τij − t̃) is always positive, thus we can bound (3.30) by (3.29).
Since we demand

|φi(t
n+1
◦ )− φj(t

n+1
◦ )| < |φi(t

n
◦ )− φj(t

n
◦ )| (3.31)

and assume |φi(tn◦ )− φj(tn◦ )| = c, we get the contraction condition

(

κi −H ′(ξ)κj

)

τij + (κk − κj) (∆tn◦ − τij)

1−H ′(ξ)
< c . (3.32)

We again make worst case assumptions to give a synchronization bound in this case.
Using the same argumentation as in the proof of Theorem 1, we obtain Γ as given in
(3.25) as an upper bound for the lhs of (3.32).

For a change of the hindmost oscillator, we need to consider two situations. First, the
hindmost oscillator changes due to different phase rates (see Figure 3.7c), then the same
argumentation as before holds. Second, the hindmost oscillator changes due to adjust-
ments caused by different individual delays. In this case the worst case argumentation
that lead to Theorem 1 holds. A certain delay that causes a not-hindmost oscillator to
become hindmost, has even worse effects (on the precision) for the hindmost oscillator
itself. Overall, the same arguments as above hold. These are also applied for a change
of both hindmost and leading oscillator (see Figure 3.7d). Thus, also in these cases, the
bound Γ holds.

Figure 3.8 shows phase evolutions in which oscillator i is overtaken by oscillator j. In
Figure 3.8a, the additional oscillators do not influence the phase difference at time tn+1

◦ ,
which enables us to apply the results for two oscillators with Γ2. Figure 3.8b shows a
change in the leading oscillator. The supposed leader j is overtaken by oscillator k, who
becomes the leader at tn+1

◦ . This case is similar to that of Figure 3.7d. In both cases
the leading and hindmost oscillators i and j are exchanged by others namely, (k and l)
and (k and i), respectively. Thus the argumentation of Figure 3.7d can be applied by
exchanging the oscillators’ names. Figures 3.8b and 3.8d follow the same argumentation.
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3.6 Performance and Robustness

By the exchange of the leading and hindmost oscillator we can use the considerations of
Figure 3.7d. We rename the oscillators at tn+1

◦ and apply the same argument as before
to obtain the bound Γ.
Comparing (3.13) and (3.25) we observe that Γ > Γ2. Hence, for the general case with

an arbitrary number of oscillators, the bound Γ as given in (3.25) holds for all possible
cases, leading to Theorem 2.

Corollary 1. As a special case, Theorem 2 also proves that within a delay-free system
homogeneous oscillators (τmax = 0, ν = 0) synchronize with precision Π = 0 from any
initial condition with exponential convergence.

3.6 Performance and Robustness

So far we showed that by using the inhibitory coupling with self-adjustment algorithm
(SISA) synchronization emerges and a steady state with bound Γ is reached. These were
theoretical insights. In this section we use numerics to calculate the actual precision limit
and to see how fast the steady state is achieved. We also see how the evolution in the
steady state looks like. To better demonstrate the performance of the SISA algorithm
we compare its precision evolution with that of the excitatory coupling as described
in (2.18). Moreover, we compare the analytical precision bound Γ with the precision
obtained by these simulations.
Part of the motivation was to increase the robustness by using inhibitory coupling,

see Example 4. Within this section we also discuss the impact of false firing events
and failure of firing detection on the synchronization precision. Additionally, we show
that the proposed algorithm can have positive effects on the precision for appropriate
parameter choices. Such faults in networked systems may occur, for example, due to
defective oscillators or malicious members that intrude the system or by errors on the
communication channel. In specific we study the system behavior in three scenarios:

• a single erroneous firing event is inserted at a random point in time;

• a series of erroneous firing events are randomly distributed over a specific time
interval;

• and probabilistic failures of firing detection.

These situations cause disturbances to the system and we investigate the system’s capa-
bility to recover. The system’s response to such erroneous behavior indicates some of its
robustness properties. Let us note that due to the convergence statement we know that
the system is robust in the sense that the close-to-synchrony state is reached as soon as
erroneous behavior ends. Still it is of interest how the system evolves while erroneous
behavior is present. Since various erroneous behavior is studied in the literature, the
three situations listed above are not intended to cover all situations, but are also studied
by other researchers. For example, [Hong 05] take into account firing detection in noisy
environments; [Baba 07] study the impact of churn and message loss; and [Tyrr 10b]
analyze missed and false firing detection.
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3 Synchronization with Inhibitory Coupling

3.6.1 Normalized Precision for Fair Comparisons

We are going to compare the synchronization performance of the inhibitory coupling of
the SISA algorithm with that of the excitatory coupling as in (2.18). While for excitatory
coupling the cycle length is 1, the effective cycle length for the SISA algorithm is 1−H(1),
compare Section 3.2.2. This difference affects a comparison in two ways. First, the cycles
do not have the same length, hence comparing absolute time periods for synchronization
is not a fair approach. Second, the precision as defined in (3.7) is not compatible as it
is not relative to the used cycle length.
In order to give a fair comparison we normalize the precision and compare the number

of cycles needed to reach synchrony. Denoting the length of the cycle interval by ω, a
normalized precision is

Π⋆(t) :=
1

ω
Πω(t) , (3.33)

such that 0 ≤ Π⋆(t) ≤ 0.5.
Using the SISA algorithm, the cycle length is ω = 1 −H(1) and the non-normalized

precision Πω(t) is defined as in (3.7). Consequently, the normalized precision bound for
inhibitory coupling with self-adjustment is

Γ⋆ :=
Γ

1−H(1)
, (3.34)

with Γ given by (3.25). Using excitatory coupling, the cycle length is ω = 1 and
Expression (3.7) for the precision simplifies to (2.17).
The precision of both systems is measured at the end of each cycle infinitesimally

before a firing event takes place and a new cycle starts (i.e., at times tn◦ ). Also, we only
do measurements if every emitted pulse has already been received.
We consider the system in its steady state, if the precision of the system varies little

over time and starts to fluctuate. Also if the precision is below Γ⋆, we consider the
system to be in the steady state. The precision of this steady state is computed by
averaging over the precision of 40 cycles within which the system is in steady state.
This steady state mean precision is denoted by Π

⋆
.

3.6.2 Simulation Setup

For the simulations done in this chapter we used the parameters of Table 3.2. The update
function is chosen to be linear with H(φ) = (1 + α)φ and coupling strength α ∈ (−1, 1)
such that the requirements from Section 3.2.2 are fulfilled. For α > 0, we have excitatory
coupling. For negative α, we have inhibitory coupling. Concerning excitatory coupling
this yields a cycle length of ω = 1, and ω = |α| for inhibitory coupling. We restrict
the coupling parameter α to two values, a very strong coupling with |α| = 0.99 and a
weaker coupling with |α| = 0.5. This weaker coupling strength can also be found in the
literature, compare [Rhou 01].
For an individual simulation run the phase rates and initial phase values are drawn

from a uniform distribution on the interval [0, 1] for the phase value and [1 − ν, 1 + ν]
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Table 3.2: Parameter values for the simulations in Section 3.6.
Parameter Value
Update function H(φ) (1 + α)φ
Coupling strength α ∈ (−1, 1) |α| ∈ {0.50, 0.99}
Maximum phase rate deviation ν 0.005
Number of oscillators 10
Delay [τmin, τmax] [1%, 4%]
Refractory phase φref

- Excitatory 0.081
- Inhibitory with α = −0.99 0.091
- Inhibitory with α = −0.50 0.550

for the phase rate with ν = 0.005. All pulse delays are also individually drawn from
a uniform distribution on the interval [τmin, τmax]. The minimum delay is 1% and the
maximum delay is 4% of the cycle length. For the refractory interval we use φref >
2 (1 + ν) τmax = 0.0804 with excitatory coupling and φref > 1 − |α| + 2 (1 + ν)ω τmax =
1− 0.9196 |α| with inhibitory coupling. All these values are listed in Table 3.2.
All figures show the mean normalized precision, i.e. ⟨Π⋆(t)⟩, and its standard deviation

derived from at least 1000 simulation runs.

3.6.3 Synchronization Performance

We start by analyzing the synchronization behavior of both inhibitory and excitatory
coupling. Sampling over different random initial conditions, we show the mean normal-
ized precision performance and its standard deviation, see Figure 3.9. Both coupling
schemes converge to low precision. This low precision shows to vary little indicated by
low mean value and small standard deviation. This is what we call the steady state. As
can be expected, the convergence process is faster for stronger coupling. Interestingly for
weaker coupling the inhibitory coupling scheme takes significantly longer to synchronize
than for excitatory coupling. The steady state mean precision however is of the same
magnitude for both coupling strengths.
We also observe that the synchronization precision is better than the upper bound Γ⋆,

see (3.34) (also see Table 3.3). The bound is rather tight for high |α| but very loose
for low |α|. Table 3.3 summarizes the achieved steady state mean precisions Π

⋆
. It also

shows that the bound Γ⋆ is actually very close to the minimal possible bound Γ⋆
τ .

Table 3.3: Steady state mean precision and precision bounds.
Excitatory Inhibitory coupling

Coupling strength Π
⋆

Π
⋆

Γ⋆ Γ⋆ − Γ⋆
τ

(a) |α| = 0.99 0.034 0.035 0.051 7 · 10−4

(b) |α| = 0.5 0.034 0.042 0.142 5 · 10−2
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Figure 3.9: Evolution of the mean normalized precision ⟨Π⋆(t)⟩ starting from random
initial conditions. We see synchronizing behavior for the coupling strategy at the firing
times tn. Panel a) shows the system performance for coupling strength αexcitatory = 0.99
and αinhibitory = −0.99. Panel b) shows the system performance for coupling strength
αexcitatory = 0.5 and αinhibitory = − 0.5.

3.6.4 Robustness

For any application of this self-organizing synchronization method to any wireless com-
munication system, the robustness of the scheme needs to be investigated. To do so we
study the system’s behavior in case of disturbances, and compare the performance of
inhibitory coupling as in SISA to that of the excitatory coupling. We address the case of
single erroneous firing events and repeated erroneous firing events as well as erroneous
firing detection.

Single Random Firing

We first investigate the precision after a false firing event at a random point in time. We
start the simulation with random initial conditions, let it run until the system reaches
the steady state, then broadcast a random firing pulse. We measure its influence on the
precision in the following cycle. The firing event happens randomly within the phase
interval [φref, 1), which differs for excitatory coupling and inhibitory coupling, see also
Table 3.2.
Figure 3.10a shows the evolution of the precision disturbance

〈

Π⋆(t)− Π
⋆
(t)

〉

over

time, where the system is already in its steady state at cycle 1 and the firing event occurs
in cycle 5.
If the coupling is strong with |α| = 0.99 as shown in Figure 3.10a, the difference

in disturbance is most prevalent. For excitatory coupling the random firing in average
deteriorated the precision. For inhibitory coupling on the other side the random firing
improved the precision. Overall, both couplings regain the steady state within a few
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Figure 3.10: Precision disturbance from the synchronized state as a reaction to a false fire
at cycle 5. Panel a) shows the performance for coupling strength αexcitatory = 0.99 and
αinhibitory = −0.99, panel b) for coupling strength αexcitatory = 0.5 and αinhibitory = −0.5.
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Figure 3.11: Precision measurement points for a) excitatory coupling and b) inhibitory
coupling.

cycles. We interpret the jump in precision for the inhibitory coupling as follows. For the
inhibitory coupling, an additional adjustment improves the precision unless in steady
state, as designed in (3.31). For excitatory coupling, an additional pulse may cause a
decrease in precision. As the adjustment frequency in the following stabilizes again we
observe a convergence to the steady state thereafter.
Figure 3.10b shows the performance of a weaker coupled system with |α| = 0.5. The

qualitative behavior after a false firing is similar in this case. The mean normalized
precision deteriorates for excitatory coupling and improves for inhibitory coupling. The
standard deviation increases significantly for inhibitory coupling.1

Repeated Random Firing

We now investigate the impact of repeated firing events on the precision of coupled
oscillators. To do so, we have to clarify the precision measurement points. Measurements
are done at the end of each cycle unless its end is caused as an immediate reaction to a
false firing, see Figure 3.11. To ensure this, a single false firing event is injected between
two measurement points. This approach provides a fair comparison as it would be
unfair to allow the inhibitory-coupled system to have several adjustments between two
measurement points. The time instants of false firing events are sampled from uniform
random distribution between two measurement points. A firing pulse is neglected by a
receiving oscillator if the oscillator is in refractory interval. Hence, it is possible that for
some cycles practically no false firings are experienced between two measurement points.
On the contrary, due to the restriction of no firings in translation, it is also possible to
receive several false firing pulses between two measurement points.
Given a system of coupled oscillators in synchronized state, we inject a series of ran-

dom firing events for a duration of 20 measurement periods. We observe the system
precision during and after this period. Figure 3.12 shows the resulting disturbance in
precision over time. For a high coupling strength |α| = 0.99, inhibitory coupling shows
a smooth evolution of the mean normalized precision, see Figure 3.12a. Moreover, the

1This performance differs from that in [1], as we here significantly increase the number of simulation
runs (104 instead of 103).
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3.6 Performance and Robustness

mean normalized precision improves with the additional firings. Excitatory coupling
on the contrary shows fluctuating mean normalized precision and higher standard de-
viation. The overall plot gives rise to the interpretation that inhibitory coupling copes
better with the disturbance in this scenario. As for the single false firing, the preci-
sion of inhibitory coupling temporarily improves and then smoothly stabilizes again.2

Overall, both coupling schemes can cope with the additional firing pulses and regain the
synchronized state.
Systems with weak coupling, as shown in Figure 3.12b with |α| = 0.5, show a com-

pletely different behavior. Here, the disturbance of the excitatory-coupled system is
very low. For inhibitory coupling, both mean and standard deviation increase sharply
with the beginning of the disturbance. Over time inhibitory coupling copes with the
repeated random firing. Excitatory coupling on the other side deviates little throughout
the disturbance. Interestingly, for both coupling schemes, the steady state for the mean
normalized precision is regained even while random firings are present.

Failure of Pulse Detection

Let us finally assume that oscillators are sometimes unable to detect firing events. Such
failures occur in wireless communication systems due to temporarily bad channel condi-
tions caused by fading or interference, see for example [Tyrr 10b]. To be more specific,
we simulate each received pulse to be lost with a certain probability q = 0.02, 0.05, or
0.1, see Figure 3.13. Qualitatively speaking, the mean normalized precision performs a
smooth transition from its starting value to a steady state below the bound Γ⋆. The
steady state precisions are in the same order of magnitude as those with perfect channel
conditions, but the number of cycles needed for synchrony increases compared to perfect
channel conditions. The synchronized state is achieved in about five cycles (q = 0.02),
seven cycles (q = 0.05), and nine cycles (q = 0.1), respectively, for α = −0.99. This
behavior demonstrates a certain robustness against failures in detecting a fire.

2The temporal improvement can be explained by the increased update frequency. Due to multiple
updates, the deviation of phases due to different phase rates cannot evolve as strong as before.

53



3 Synchronization with Inhibitory Coupling

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

1 10 20 30

〈

Π
⋆
−
Π̄

⋆
〉

n

SISA
exc.

(a)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

1 10 20 30

〈

Π
⋆
−
Π̄

⋆
〉

n

SISA
exc.

(b)

Figure 3.12: Normalized precision deviation from the synchronized state as a reaction
to repeated false firings. The false firings are injected at cycles {6, 7, . . . , 25}. Panel
a) show the mean system performance for the coupling strength αexcitatory = 0.99 and
αinhibitory = −0.99. Panel b) shows the performance for coupling strength αexcitatory = 0.5
and αinhibitory = −0.5.
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(b) pdrop = 0.02, |α| = 0.99
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(c) pdrop = 0.05, |α| = 0.5
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(d) pdrop = 0.05, |α| = 0.99
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(e) pdrop = 0.1, |α| = 0.5
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(f) pdrop = 0.1, |α| = 0.99

Figure 3.13: Failure of pulse detection. We show the mean normalized precision, starting
from random initial conditions. Wit a probability pdrop a received fire is dropped by
an oscillator. We see that both algorithms can cope with the faulty behavior. The
lower pdrop, and the higher the coupling strength, the better the performance. With
|α| = 0.5 the convergence of excitatory coupling is significantly faster, with |α| = 0.99
this difference vanishes.
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3 Synchronization with Inhibitory Coupling

Table 3.4: Phase evolution of oscillators 1, 2 and 3 from Example 6. Due to the line
topology φ2 gets inhibited repeatedly and does not fire itself. That is why at t2 the
phases of oscillator 1 and 3 are the same as at t0, and oscillator 2 never fires.

t φ1 φ2 φ3

t0 1 c2 c3
t0+ 1

2
c2
2 c3

t1 3
2 − c3

c2
2 + 1− c3 1

t1+ 3
2 − c3

1
2(

c2
2 + 1− c3)

1
2

t2 1 c2
4 + c3

2 c3
t2+ 1

2
1
2

(

c2
4 + c3

2

)

c3

3.7 Inhibitory Coupling in Meshed Networks

For all-to-all networks, synchronization is emerging. The proof highly relies on the
condition that Πω(tn+1

◦ ) < Πω(tn◦ ) holds for the transient state. This is guaranteed by
the update of all oscillators. In meshed networks it is possible that only a subset of
oscillators updates. Hence, the precision Πω(t) is not continuously decreasing. This not
only does not allow the main argument for the proof, but also certain networks cannot
be synchronized by the SISA algorithm, see Example 6.

Example 6. Let us take an ensemble of three oscillators {1, 2, 3} with homogeneous
phase rates and within a delay-free system. The oscillators follow a line topology, i.e.
N1 = {2}, N2 = {1, 3}, N3 = {2}. Let us assume φ1(t0) = 1, φ2(t0) = c2 and φ3(t0) = c3
with c1 > c3 > c2 > H(1). Then for the firing event of oscillator 1 at t0 oscillator 2 is
updating to φ2(t0+) < H(1) and 3 is not updating. As at t0+, φ3 > φ2 oscillator 3 is next
to fire at t1 which causes oscillator 2 to update and oscillator 1 not to update and hence
φ1(t1+) > φ2(t1+), consequently oscillator 1 is next to fire. As oscillator 2 is updating
at every firing event, it is repeatedly inhibited and never fires, see Table 3.4 for more
details. We see that there is no information transport from oscillator 1 to oscillator 3
and vice versa. Hence their phase difference c1−c3 does not change and synchronization
is impossible.

This example shows that the inhibitory coupling can inhibit information spread. This
situation can also occur in larger networks with time delays and heterogeneous phase
rates. This observation leads us to the following statement:

Conjecture 1. For any pulse-coupled oscillator system, that uses

• a monotonous update function H(·) and inhibitory coupling, i.e. H(φ) < φ for
φ ∈ [0, 1],

• emits pulses at every cycle, i.e. (2.3) holds,

a specific network and initial conditions can be found such that synchronization is not
possible.
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3.8 Summary

An intuitive argument is as follows: Any inhibitory coupling reduces the phase values.
If this happens often enough information cannot be handed over as in the line topology
of Example 6.

3.8 Summary

By introducing a synchronization scheme with inhibitory coupling and self-adjustment
called SISA we proved that synchronization is achieved. Full synchrony is achieved for
arbitrary initial conditions, a delay-free system and homogeneous phase rates. If gener-
alized to heterogeneous phase rates and random individual delays, a close-to-synchrony
state is guaranteed to achieve, starting from arbitrary initial conditions. The bound Γ
on the precision depends on the coupling strength, the inhomogeneities in phase rates
and the delays. The convergence time is exponentially fast.
The derived synchronization bounds are close to the steady state mean values of the

simulations for strong coupling.
Regarding robustness, numerical studies show that fast convergence and a certain level

of robustness is achieved. This includes randomly injected false firing events and missed
firing events. This illustrates a certain level of resilience against faulty or malicious
members in wireless communication systems and against errors caused by the wireless
channels.
The synchronization guarantee holds for all-to-all networks. If the network is not

all-to-all, the convergence guarantee does not hold. Moreover there are networks within
synchronization with the SISA algorithm is not possible.
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4 Synchronization with Inhibitory and
Excitatory Coupling

In Chapter 3 we showed a coupling scheme that synchronizes all-to-all networks, however
as Section 3.7 shows, this idea does not work for networks that are not all-to-all coupled.
Within this chapter we provide a coupling scheme that synchronizes under the following
assumptions

• arbitrarily connected networks,

• dynamically changing networks,

• individual random delays within a delay interval [τmin, τmax], τmin ≥ 0,

• stochastic pulse emission,

• homogeneous phase rates.

The following convergence proof also allows random delays with τmin > 0. This is
noteworthy, as a convergence statement for a system with τmin > 0 needs more specific
treatment than with τmin ≥ 0, see [2, 3].
These assumptions are a generalization of all but one of those used in Chapter 3. For

the following convergence proof we need homogeneous phase rates. We will illustrate the
need for the assumption later on. However, simulation results show that the algorithm
still works if heterogeneities in phase rates are low. The results within this chapter have
been achieved in cooperation with Christian Bettstetter, Christoph Kirst and Marc
Timme and are published in [2, 3] and filed for a patent [7]. Parts of this chapter are
taken from [2, 3].

4.1 Motivation

In Chapter 3 we see the advantageous effects of inhibitory coupling. However as shown
in Example 6, inhibition can prevent information to be transmitted over the network.
With excitatory coupling on the other side this example would not be possible. That is
why we are looking for a coupling scheme that provides both inhibitory and excitatory
coupling.
Within this section we motivate the specific update function used in Section 4.2.2. We

will need certain system dynamics for the convergence proofs later on. The following
update function will provided these. We now pinpoint certain beneficial effects of this
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λ

1
2

1

0 1
2 1

H (φ)

φ

Figure 4.1: Motivation for the update function. The black line indicates H (φ), the
dashed line represents the identity and dotted lines are supplemental.

coupling for idealized assumptions such as a delay-free system with an all-to-all network.
We use the update function

H(φ) =

{

λ φ if φ ≤ 0.5
1− λ(1− φ) if φ > 0.5

, (4.1)

with 0 < λ < 1, see Figure 4.1 for an example.
Using this coupling a firing event causes an improvement in precision Π (2.17) if all

oscillators are in [0, 12 ], , or if all oscillators are in (12 , 1]. Demonstrations of these effects
are given in Figure 4.2. If the phases are scattered over [0, 1] the precision worsens, see
Figure 4.3a–c for an example.
The examples in Figure 4.2 indicate that as soon as all phases are within an arc of

maximum length 1
2 , any firing event causes a decrease in precision. This is indeed the

case, as will be shown for a more general case later in this Chapter. As a second step,
we need to ensure that the oscillator phases gather in such an arc. To do so we set λ < 1

2
and see that after a single firing event all phases will gather on the “right half” of the
circle, i.e. in (34 , 1] ∪ [0, 14 ], see Figure 4.3d–f. From that point in time on the length of
the arc does not increase anymore.
These observations are the main arguments for the proof of synchronization. In the

following sections we further generalize the system assumptions and show that the same
arguments hold and lead to Theorem 3.
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Figure 4.2: Demonstration of phase positions upon a firing event at time tn. The top
row, panel a) – c) sketches the phase positions before the adjustment and the phase jump
direction. The bottom row, panel d) – f) show the phase positions after the adjustment.
In panel a) all phases are in [0, 12 ], in panel b) all phases are in (12 , 1] and in panel c) all
phases are in (34 , 1] ∪ [0, 14 ]. If all phases are in these intervals the precision decreases.
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Figure 4.3: Demonstration of phase positions upon a firing event at time tn. Setup as in
Figure 4.2. At firing time all phases are spread over the whole interval [0, 1], see panel a)
and b). In the first column, panel a) and c), the precision increases upon adjustments for
low coupling strength. In the second column, panel b) and d), a large coupling strength
gathers the oscillator phases within (34 , 1] ∪ [0, 14 ].
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4.2 System Settings

4.2 System Settings

4.2.1 Network

We consider a set of N oscillators with index set I := {1, 2, . . . , N}. The connections
between the oscillators are based on a directed graph G(t) which models the network at
time t, see Section 2.2.3. The graph may dynamically change over time, but is supposed
to be constant and connected for recurring time intervals with length of at least σG > 0.

4.2.2 Oscillators

The oscillator is defined as in Section 2.2, with homogeneous and normalized phase rates.
Hence for every oscillator i this yields

d

dt
φi = 1, (4.2)

as modeled in [Miro 90, Timm 02, Nish 11, Nish 12]. We assume the delays vary randomly
within the interval [τmin, τmax], where τmin ≥ 0 is the minimal delay and τmax ∈ [τmin,

1
8)

is the maximum possible delay, and define

τδ := τmax − τmin and τ∆ := τmax + τmin. (4.3)

An essential assumption for the synchronization of the system is that delays arbitrarily
close to τmin occur repeatedly. We illustrate an implication of a deviation from this
assumption in Section 4.4.6.
Whenever an oscillator j receives a pulse from oscillator i and is not resetting at the

same time, it performs a phase update according to

φj

(

tn + τn+
ij

)

= H
(

φj

(

tn + τnij
))

, (4.4)

where H(·) is the phase update function (equivalently called coupling function) [Pagl 11],
compare (2.14). We introduce the relation

H (φ) = H̃ (φ− τmin mod 1) + τmin mod 1, (4.5)

with the auxiliary function,

H̃(φ) =

⎧

⎨

⎩

φ φ ≤ τmax

h1(φ) τmax < φ ≤ 1
2

h2(φ)
1
2 < φ ≤ 1

, (4.6)

where the functions h1(φ) and h2(φ) are smooth functions and satisfy dh1

dφ
,dh2

dφ
> 0;

h1(τmax) = τmax, h1(
1
2) ≤

1
4 − τmax− τmin; and h2(

1
2

+
) ≥ 3

4 + τδ, h2(1) = 1. We abbreviate
ξ := limx↗1 H−1(x). Examples of such coupling functions and auxiliary functions are
shown in Figure 4.4. Due to the construction of the update function, an adjustment is
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Figure 4.4: Examples of the functions in (4.5) and (4.6) that lead to synchrony. a)
Update function H(φ) with b1 =

1
4 − τmax and b2 =

3
4 + τmax. b) Auxiliary function H̃(φ)

with b1 = 1
4 − τmax − τmin and b2 = 3

4 + τδ. Each color represents a possible coupling
function.

called inhibitory if φ(t) ∈ (τ∆,
1
2 + τmin] ∪ (ξ, 1] such that φ(t+) < φ(t) and excitatory if

φ ∈ (0, τmin) ∪ (12 + τmin, ξ] such that φ(t+) > φ(t).

The modification of the coupling function, compared to (4.1), goes along with the
generalization of system assumptions, compare Section 4.1. In simple terms, the gener-
alization for allowing positive delays only (not a single delay-free pulse possible) accounts
for (4.5). The use of the refractory period in (4.6) is caused by considering delays. This
entire synchronization scheme is called inhibitory and excitatory coupling with stochastic
pulse emission (IES).

With system settings as in this Section, we will prove later on that in any such system
synchronization emerges with probability 1.

4.2.3 Prerequisites

We use the circular representation as in Section 2.2.4, and the notion of distance (2.16).
In order to simplify the notation to account for the oscillation of the phases we introduce
an interval notation between two points φi and φj on the circle by

[φi,φj)1 :=

{

[0, 1] \ [φj,φi) if φi > φj

[φi,φj) if φi < φj
. (4.7)

This definition is analogous for closed and open intervals. Additionally, let Dkj denote
the smallest phase interval that contains a path on the circle from φk to φj, i.e. if φk > φj
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Figure 4.5: Definitions. Examples of properties for a set S := {γ1, γ2, . . . , γ|S|}. We show
the distance dij from (2.16), the index permutation γi as used for (3.6) and (4.10), the
diameter dS from (4.10), the smallest phase interval Di,j from (4.9) on a circle, and the
indices γtop and γbottom used for the boundary sets B↑ in (4.11) and B↓ in (4.12).

then

Dkj :=

{

[φk,φj ] if φj − φk ≤ 1/2
[φk,φj ]1 if φj − φk > 1/2

, (4.8)

Similarly if φj > φk then

Dkj :=

{

[φj,φk] if φk − φj ≤ 1/2
[φj,φk]1 if φk − φj > 1/2

. (4.9)

Note that by this definition we have dij = µ (Dij) where µ is the uniform Lebesgue
measure on the circle, see [Rudi 87, ch. 2] for an introduction to measure theory.

As in Section 3.2.5 we rename the oscillators in ascending order of their phases for
any subset S ⊂ I. In mathematical terms, we define an index permutation γi, i ∈
{1, . . . , |S|}, such that φγi ≤ φγi+1

for all i. The diameter of S is then defined via

dS := 1− max
i=1,...,|S|

{

φγi+1
− φγi for i < |S|

1− φγi + φγ1 for i = |S|
. (4.10)

With a corresponding maximizing index i∗ we define top = i∗ and bottom := (i∗ mod |S|)+
1. The boundary sets responsible for the diameter are

B↑(t) := {j ∈ I : φj(t) = φγtop(t)} , (4.11)

B↓(t) := {j ∈ I : φj(t) = φγbottom(t)} . (4.12)

For an illustration see Figure 4.5 (see also Figure 4.7a where we have j ∈ B↑ and k ∈ B↓

and k ∈ B↑ and j ∈ B↓ in Figure 4.7d, and examples of Dij in Figure 4.8a).
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4 Synchronization with Inhibitory and Excitatory Coupling

4.3 Proof of Convergence

We now prove that any PCO system with dynamics as defined in (4.2)–(4.6) synchronizes
with probability 1. This proof is made in two main steps. First, in Section 4.3.2, we
identify a condition on the diameter dI of all oscillators I and reveal some consequences
that follow: if the condition holds for a point in time t∗, it then holds for all t ≥ t∗,
and yields dI(t) ≤ dI(t∗). In addition, employing stochastic pulse emission, we show
that dI(t) reaches 0 with probability 1. Second, in Section 4.3.3, we show that the
condition on the diameter is met at some point in time with probability 1. We prove
this by constructing a sequence of events that leads to the condition and show that this
sequence of events has positive probability of occurring at any reception event.

4.3.1 Properties of the System

Before we begin the main proof let us note some properties of the system.

Lemma 4. The update function H(·) from (4.5) determines five update areas Uk, k ∈
{1, . . . , 5} for the phases, such that if oscillator j receives an incoming pulse at time t
and φj(t) ∈ Uk, the updated phase φj(t+) has the following properties, see Figure 4.6:

• U1 := (0, τmin), excitatory phase jumps, φj(t) < φj(t+) < τmin and φj(t+) ∈ U1.

• U2 := [τmin, τ∆], no phase jumps , φj(t+) = φj(t) and φj(t+) ∈ U2.

• U3 := (τ∆,
1
2 + τmin], inhibitory phase jumps, τ∆ < φj(t+) < φj(t) and φj(t+) ≤

1
4 − τmax, hence φj(t+) ∈ U3.

• U4 := (12 + τmin, ξ), excitatory phase jumps, φj(t) < φj(t+) and φj(t+) ≥ 3
4 + τmax

φj(t+) ∈ U4.

• U5 := [ξ, 1), inhibitory phase jumps, φj(t+) < φj(t) and φj(t+) ∈ U1.

Proof. The phase jumps follow directly from the definition of H(·) in (4.5) via the
stepwise definition of H̃(·) from (4.6) and the modulo operation used in (4.5), compare
Figure 4.4a.

Lemma 5. If at some time t′, oscillator i is at the threshold with φi(t′) = 1, then for
all t ∈ (t′, t′ + τmax], φi(t) ∈ [0, τ∆] and for all t ∈ (t′ + τmin, t′ + τmax], φi(t) ∈ U2 holds.

Proof. Take a time t′ and an oscillator i such that φi(t′) = 1. Then oscillator i will reset
and we have φi(t′+) = 0. If oscillator i will not receive a pulse within (t′, t′ + τmax], we
have for all t ∈ (t′, t′ + τmax], φi(t) ≤ τmax, due to (4.2). If there is a reception event at
some time tr, we see that φi passes through U1 and U2. U1 can only cause positive phase
jumps, see Lemma 4. Thus the minimum phase that oscillator i attains at t′ + τmin

and at t′ + τmax is bounded from below by φi(t′ + τmin) = τmin and φi(t′ + τmax) =
τmax. For an upper bound, larger phases are obtained if phase updates occur within U1.
Therefore, the maximum phase is bounded by choosing φi(t′+) = τmin and due to (4.2)
φi(t′ + τmax) = τmin + τmax.
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Figure 4.6: The update areas for the different phases. Within each update area the phase
adjustment is either inhibitory (U3, U5), excitatory (U1, U4) or refractory (U2).

Corollary 2. Whenever a pulse is received at some tr, there is an oscillator i with
φi(tr) ∈ U2.

Proof. If an oscillator j receives a pulse at tr, there has to be some oscillator i that
emitted the pulse and reset at t′ ∈ [tr − τmax, tr − τmin] and we can apply Lemma 5.

Lemma 6. For all pairs of oscillators (i, j) ∈ I2, any distance dij only changes due to
a reception event.

Proof. At any point in time t′, one of the following situations occurs: (a) none of the
oscillators receives a pulse; (b) at least one oscillator receives a pulse. Assuming (a), due
to the uniform phase shift (4.2) and the circular definition of the distance (2.16) there
are no changes in distance. This also includes situations where oscillators reset. Hence,
if a distance between oscillators changes it has to change via (b).

Corollary 3. The boundary sets B↑ and B↓ do not change with time except at times of
reception events.

Proof. This is a direct consequence of Lemma 6. Distances are defined via phase posi-
tions as are boundary sets. Hence they can only change if distances change.

Lemma 7. For every oscillator i ∈ I, the time of its nth fire event is finite almost
surely, i.e.

P
[

tin < ∞
]

= 1 . (4.13)

Proof. We first show that every oscillator resets arbitrarily often: Assume there is an
oscillator i that does not reset arbitrarily often. Then there has to be a time t′ from which
on it does not reset anymore. Since (4.2) holds for oscillator i, this can only be achieved
by repeated pulse receptions which retard φi. As the frequency of each oscillator, i.e.
the number of resets it experiences per time, is bounded (cf. [Ashw 05]), oscillator i
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4 Synchronization with Inhibitory and Excitatory Coupling

receives only a maximum finite number M of pulses within a unit time interval. As the
probability of emission of each pulse is psend < 1, oscillator i is retarded in a unit time
interval with some probability of at most some ζ < 1. Thus, the probability that i is
repeatedly retarded for m subsequent unit time intervals is at most ζm, which tends to
zero as m → ∞. Hence, oscillator i reaches threshold and resets within some finite time,
yielding

P [φi(t) < 1 , ∀t ≥ t′] = 0 . (4.14)

Thus, oscillator i resets arbitrarily often and emits a pulse with probability psend when-
ever it resets. The probability of m resets of i not emitting a pulse is (1− psend)m, and
thus tin is finite with probability 1.

4.3.2 Synchronization Condition

As outlined at the beginning of this Section, we divide the dynamics of the system in
two parts. This distinction is based on the synchronization condition. We say that at
some point in time t∗ the synchronization condition holds if

dI (t∗) ≤
1

2
− τmax . (4.15)

We now show that certain properties of the system hold if this condition is fulfilled.

Lemma 8. If the synchronization condition (4.15) holds, then for any pair (j, k) ∈ I2

and an oscillator i ∈ I that “lies in between” oscillators j and k, see Figure 4.7, i.e. for
which

φi ∈ Djk , (4.16)

we have Djk = Dji ∪Dik and thus

djk = dji + dik . (4.17)

Proof. Djk is the smallest interval that contains a path from k to j. Take b↓ ∈ B↓ and
b↑ ∈ B↑ then µ

(

Db↓b↑

)

= dI < 1/2 due to (4.15). Moreover, by definition of the diameter
we must have φk,φj ∈ Db↓b↑ and therefore also Djk ⊂ Db↓b↑ , i.e. djk = µ (Djk) < 1/2.
As φi ∈ Djk we thus must have Dji ∪ Dik = Djk and Dji ∩ Dik = {φi}. Hence also
djk = µ (Djk) = µ (Dji) + µ (Dik) = dji + dik.

Lemma 9. If (4.15) holds, then at any reception event at time tr ≥ t∗, for all j ∈ B↑(tr)
we have τmin ≤ φj(tr) ≤ 1

2 + τmin.

Proof. Let us assume an oscillator j receives a pulse at time tr with j ∈ B↑(tr), and
(4.15) holds. Due to Corollary 2 we have an oscillator i that emitted the corresponding
pulse and φi(tr) ∈ [τmin, τ∆]. Let us now consider the extreme scenarios, when φj(tr) is
smallest or largest. If φj(tr) is smallest, then φj(tr) = φi(tr) ≥ τmin. If φj(tr) is largest
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Figure 4.7: Representation of oscillators on a circle. Four different arrangements of
oscillators. In all four situations oscillator i is “in between” oscillator j and k, see
(4.16).

then dI(tr) =
1
2 − τmax holds, and φi(tr) = τ∆. Then we have for oscillator j:

τmin ≤ φj(tr) ≤ τ∆ +
1

2
− τmax =

1

2
+ τmin . (4.18)

We now show that the diameter dI does not increase:

Lemma 10. If the synchronization condition (4.15) holds at time t∗ then for all t ≥ t∗
we have

dI (t) ≤ dI (t∗) . (4.19)

Proof. Due to Lemma 6, a change in the diameter is only possible via a reception
event. Thus consider such an event at time tr ≥ t∗ in which oscillator j receives a
pulse generated at time te by oscillator i. By Lemma 5 we have φi (tr) ∈ U2 and
thus by Lemma 4 φi (t+r ) = φi (tr). Take b↑ ∈ B↑ (tr) and b↓ ∈ B↓ (tr). Using the
synchronization condition we have φj (tr) ∈ Db↑b↓ (tr) and also Db↑b↓ (tr) = Db↑i (tr) ∪
Db↓ (tr), see Figure 4.8a. Hence either φj (tr) ∈ Db↓i (tr) or φj (tr) ∈ Dib↑ (tr). Moreover,
again using (4.15) and φi (tr) ∈ U2 we conclude Db↓i (tr) ⊂ U2 ∪U3 and Db↓i ⊂ U4 ∪U5 ∪
U1 ∪ U2. By Lemma 4 we have in the former case φj (t+r ) ∈ U2 ∪ U3 and in the latter
φj (t+r ) /∈ U3. In both situations dij (t+r ) ≤ dij (tr), see Figure 4.8b. As other distances do
not change we have for all k ∈ I, dik (t+r ) ≤ dik (tr) and using Lemma 8 with j ∈ B↑ (t+r )
and k ∈ B↓ (t+r ) we arrive at (4.19).

Lemma 11. If (4.15) holds and for all t ≥ t∗ the diameter dI (t) = c > 0 stays constant
the boundary sets B↓ and B↑ can only loose elements, i.e. for all t ≥ t∗, B↓ (t) ⊂ B↓ (t∗)
and B↑ (t) ⊂ B↑ (t∗).

Proof. By Lemma 6 the boundary sets can only change during a reception event at
time tr. By Lemma 5 there is an oscillator i with φi (tr) ∈ U2 and thus by Lemma 4
φi (t+r ) = φi (tr). By the same argument as in Lemma 10 we have φk (t+r ) ≤ φk (tr) for all
k ∈ B↑ (tr) and thus B↑ (t+r ) can only contain oscillators j /∈ B↑ (tr) if for all oscillators
k ∈ B↑ (tr), φk (t+r ) < φk (tr), such that φj (t+r ) ≥ φk (t+r ). Via the same arguments used
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Figure 4.8: An example for a phase adjustment as in Lemma 10. a) If dI fulfills the
synchronization condition (4.15) then at a reception event at time tr there is an oscillator
i with phase in U2, dI = Db↑i ∪Dib↓ . b) If at tr an oscillator j or j′ receives a pulse, it
adjusts according to Lemma 4, indicated by the colored arrows, and moves closer to i.

in Lemma 10 we further conclude that for all l ∈ I the distances to i do not increase,
i.e. dil (t+r ) ≤ dil (tr). This in total implies a decrease in the diameter dI (tr) < dI (t+r )
in contradiction to our assumption of constant dI . We arrive at a similar contradiction
when considering B↓.

Lemma 12. If (4.15) holds and for all t ≥ t∗ the diameter dI (t) = c > 0 stays constant
the boundary sets B↓ and B↑ will loose elements with probability one.

Proof. We construct a line of events in which B↓ looses an element and show that it has
positive probability. Therefore, consider a time t1 ≥ t∗ in which the following conditions
hold:

1. The network topology is constant in the time interval TG = [t1, t2] of length t2−t1 ≥
σG > 0. By assumption on the dynamics of the network structure this event has
positive probability, see Section 4.2.1.

2. Set B↓ (TG) := ∩t∈TG
B↓ (t). Then using the definition from (4.12), B↓(t) is never

empty and by Lemma 11 B↓ (TG) is also non empty. Due to 1.) and the assumption
that the network is strongly connected we have that prek (TG) is non empty for all
k ∈ B↓ (TG). Moreover, as the diameter is positive, dI > 0, and again due to the
strongly connectedness of the network there is a k ∈ B↓ (TG) and i ∈ prek (TG)
such that dik (t1) = ε > 0.

3. We choose oscillators k and i as in 2.) and assume that i emitted a pulse at
some time te ≤ t1 which is received at time tr ∈ [te + τmin, te + τmin + ε] ∩ TG by
oscillator k. By Lemma 7 and using the assumption that delay times arbitrary
close to the lower bound τmin have positive probability this event in total has
positive probability, see Figure 4.9 and Figure 4.10 for illustration.
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Figure 4.9: A zoom onto the circle around 0. We show an example for the phase update
as in Lemma 12.
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Figure 4.10: Example of a time line according to the construction of conditions in
Lemma 12. It leads to a decrease in the size of the boundary set. The gray shaded
area indicates the time window to decrease the distance between the two oscillators i
and k.

Analog to the reasoning in Lemma 7 we have φk (tr) /∈ U3 and hence dik (t+r ) < dik (tr).
By assumption the diameter stays constant which using Lemma 8 is only possible if
k /∈ B↓ (t+r ), i.e. B↓ (t+r ) has lost at least an element.

Lemma 13. If (4.15) holds, then

P

[

lim
t→∞

dI(t) > 0
]

= 0 . (4.20)

Proof. Assume (4.20) does not hold. Since Lemma 10 holds, this means that there is a
t′ such that for all t > t′ we have dI(t) = c. If so, Lemma 11 says |B↓(t)| cannot increase
with time, and Lemma 12 says it decreases with positive probability, which means |B↓(t)|
vanishes with time which is a contradiction to its definition in (4.12). Hence (4.20) has
to hold.
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4.3.3 Inevitability

In the above Section we showed that synchronization is emerging, as soon as the synchro-
nization condition holds. We now show that for all initial conditions, the synchronization
condition is always reached with probability 1:

Lemma 14. There is a 0 ≤ t∗ < ∞ such that

P

[

dI(t∗) ≤
1

2
− τmax

]

> 0 . (4.21)

Proof. Assume at time t0, (4.15) does not hold for I. We define a subset S ⊂ I with
dS(t0) ≤ 1

2 − τmax. In the following, we show that there is a positive probability that
for some t′ ≥ t0, |S(t′)| = N holds: Take S ̸= ∅. As dS(t0) = 0 for S = {i}, i ∈ I, this
is always possible. For any finite time interval TS, there is a positive probability that
no pulse from preS(TS) is received by all members of S, since psend < 1. For that time
we hence identify S as an independent subset and (4.15) applies. Therefore Lemma 13
applies and there is a positive probability that for some t′ > t0, dS(t′) ≤ τmin. With
some positive probability an oscillator i from the edge set ∂S fires at te > t′ and the
pulse is received by all k ∈ suci at tkr ∈ [te+ τmin, te+ τmax], and no other oscillator emits
a pulse within [te, te + τmax]. If φk(tkr) ∈ U2 ∪ U3 we apply Lemma 4 and Lemma 5 and
see dik(tk+r ) ≤ 1

4 − τmax − τmin. If φk(tkr) ∈ U4 ∪U5 ∪U1 we see with Lemma 4 dk(tkr) ≤ 1
4 .

Hence with Lemma 8 we have

dsuci∪{i}(tr + τ+max) ≤
1

2
− τ∆ . (4.22)

This yields, defining S ′ = S ∪ suci:

dS′(tr + τ+max) ≤ dS(tr + τ+max) + dsuci∪{i}(tr + τ+max) (4.23)

≤ τmin +
1

2
− τ∆ =

1

2
− τmax .

We augment S to S ′ and see that condition (4.15) has a positive probability to hold on
dS′ for all t > tr + τmax > t′. We hence repeat this argument for S ′ until (4.15) holds for
dI . Every assumption within this proof holds with some positive probability. Since we
only need finitely many steps to reach S = I, the whole process happens with positive
probability.

Theorem 3. Any self organizing oscillator system following (4.2)-(4.6), with individual
delays and connected dynamically changing networks as described in Section 4.2.1 and
4.2.2, synchronizes almost surely, i.e.

P

[

lim
t→∞

Π(t) = 0
]

= 1 . (4.24)

Proof. Lemma 14 ensures a positive probability that for all elements in the system and
for some point in time t∗, (4.15) and hence Lemma 13 holds. Thus, the probability that
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Figure 4.11: An example of the synchronization process with |I| = 30. On the top
half we plot the phase positions at individual firing events tn according to φ̃i := (φi +
0.5 mod 1)− 0.5) for all i ∈ I. As time evolves the phases gather around 0 and thereby
synchronize. On the bottom half we show the evolution of the diameter dI . Within a
set S we collect all oscillators such that dS satisfies (4.15). We see that as soon as all
oscillators are within S, dS monotonically decreases.

(4.15) does not occur within the time interval TI is some β < 1 and hence for n ∈ N

such time intervals, it is less or equal to βn. This yields P [limn→∞ t∗ /∈ nTI ] = 0 and
hence (4.24).

Figure 4.11 shows an example of such a synchronizing chain of events.

4.3.4 Bounds for Further Generalizations

Theorem 3 guarantees synchronization with probability 1. This statement is optimal in
the following sense: We demonstrate via Example 7 and Example 8 that the synchro-
nization process has to involve a stochastic process. Hence a deterministic convergence
statement is not possible. On the contrary, via Example 9 we see that for a more general
statement the stochastic convergence has to be “weaker”, compare [Vaar 98, Thm. 2.7].

Example 7. Take a set of N > 4 oscillators on a static star graph, i.e. a central
oscillator c is linked to any other oscillator in the system and no further links exist,
hence for all i ∈ I with i ̸= c we have for all t, suci(t) = {c}. Assume psend = 1 and
τmin = 0, τmax ≤ 1

8 . Furthermore we assume that at t0 all phases are equally spaced with
φc(t0) = 0. If no interactions happen we have for all firing events tn+1 − tn ≤ 1

N
. After

the first firing event we have φc(t1) <
1
2 − τmax and after the reception time tr,1 we have

φc(t
+
r,1) ≤ 1

4 − τmax. At t2 we have φc(t2) ≤ 1
4 − τmax+

1
N

< 1
2 and after the reception time

tr,2 φc(t
+
r,2) ≤ 1

4 − τmax. Hence, for all t > t0, we have φc(t) <
1
2 . Therefore oscillator c
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will never fire, and no other oscillator than c adjusts. Hence synchronization does not
emerge.

Example 7 shows that if we want a guarantee for a coupling strategy as proposed
in (4.5) and (4.6), that holds for all connected networks, we need psend < 1. Hence, a
synchronization guarantee can only hold in a probabilistic sense.

Example 8. Take a set of 3 oscillators with the following graph properties: pre2 = {1, 3}
and pre1 = pre3 = ∅. The network is weakly connected and has two sources. Since
both oscillator 1 and 3 have no possible inputs, they operate as if isolated. Hence, it is
impossible for them to synchronize.

Example 8 shows that it is not possible to synchronize all weakly connected networks.
Hence, our convergence statement for strongly connected networks cannot be generalized
to hold for all weakly connected networks.

Example 9. Assume a set I of oscillators with inhomogeneous phase rates, i.e. for all
i ∈ I: dφi

dt
(t) = κi, with κi ∈ [1− ε, 1 + ε], 0 < ε ≪ 1. Assume psend < 1 and for a time

t > 0, dI(t) = 0. Due to the different phase rates, and the probabilistic pulse emission,
there is always a point in time t′ > t, such that with positive probability dI(t′) > 0 holds.
Hence, a synchronization guarantee with probability 1 is infeasible.

Example 9 shows that if we want to additionally consider heterogeneous phase rates
we have to relax the convergence statement.
When introducing the system assumptions in Section 4.2.2 we noted, that delays close

to the lower bound are essential. We now show an example that for certain initial
conditions and networks synchronization does not emerge if delays close to τmin do not
occur.

Example 10. Consider a set of N oscillators on a directed line graph, i.e suci = {i+1}
for all i in I and pre1 = ∅, sucN = ∅. For the initial conditions we have c1 = 1 and
ci = i · τmin for i > 1. Assume the coupling function uses a 0 < τmin < τmax but only
delay of τmax occur. At time t1 oscillator 1 emits a pulse to oscillator 2. At tr = t1+τmax

oscillator 2 receives the pulse from oscillator 1 which yields φ2(tr) = τmax + τmin. Hence
not adjustment occurs at oscillator 2. The same argument holds for oscillator 3 and
so on. Since oscillator N does not have a successor, no oscillator adjusts. Hence, the
oscillators remain with their initial diameter which is at least Nτmin.

This example shows, that if we give a convergence statement for all directed networks
we need to assume that delays arbitrarily close to the lower bound reoccur arbitrarily
often.

4.4 Performance and Robustness

The above convergence proof gives a qualitative statement that synchrony is reached
using the given PCO synchronization scheme. However, as probabilistic events are in-
volved, our proof does not offer practically useful information about the synchronization
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speed of the system. This section analyzes such synchronization time by means of simu-
lations, including the impact of network size, average node degree, dynamically changing
networks, synchronization bound, and pulse emission probability. We also compare the
synchronization behavior of our algorithm with that of Pagliari and Scaglione [Pagl 11].
Finally we investigate on the system’s robustness against phase rate deviations.

4.4.1 Simulation Setup

The synchronization time Tsync is the dimensionless time it takes a system to reach a
specific synchronization bound θ, i.e.

Tsync := min
t

{t ∈ R+ : max
i,j∈I

dij ≤ θ} . (4.25)

This time is, in general, different for each individual simulation run of the dynamics,
i.e., it depends on initial phase positions, network topologies, propagation times, and
the stochastic emission of pulses. For a set of M simulation runs, we study the mean
synchronization time ⟨Tsync⟩ and the standard deviation of Tsync.
In a typical wireless system such as a mobile phone network a cycle is in the order of

a few milliseconds [Eber 09, p. 66].
The synchronization bound is set to θ = 0.02 and the pulse emission probability

to psend = 0.5 unless mentioned otherwise. We use the phase update function H(·)
from (4.5) with auxiliary function H̃(·) from (4.6) with h1 = 0.3261φ + 0.0270 and
h2 = 0.46φ + 0.54 (see red line in Figure 4.4a). The delay is modeled to be uniformly
distributed within [0.02, 0.04]. A simulation runs for 2 · 104 cycles, M ≥ 103.
We perform synchronization on two network types, see Section 2.2.3:

• undirected Erdős-Rényi random graphs (ERG)

• undirected random geometric graphs (RGG)

To compare the two types of networks we use the average node degree ι, which computes
as ι = Nplink for ERGs and as

ι = Nr2π

(

1− 8

3π
r +

1

2π
r2
)

(4.26)

for RGGs [Bett 04].
In the following comparison we fix all but one parameter to a reasonable value in order

to study the influence of one parameter at a time.

4.4.2 Impact of Network Size and Node Degree

Let us start with static networks. We assume the networks to be connected. Figure 4.12a
shows the mean synchronization time as a function of the number of network nodes. For
both network types, ERGs and RGGs, we can state: the more nodes the network has,
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Figure 4.12: Mean synchronization time depending on the network size. Panel a) shows
decreasing synchronization time with increasing network size (ι = N

2 ). Panel b) shows
moderate increase of the mean number of total firing events < Fsync > to reach synchro-
nization with increasing network size (ι = N

2 ).

the faster synchrony is reached, representing a very favorable scalability property. In a
network with N = 100 nodes, the synchronization time is below 10 cycles.
Even though the synchronization time decreases with increasing N , the number of

firing events Fsync needed to reach that goal increases, as shown in Figure 4.12b.
Figure 4.13a shows the mean synchronization time as a function of the average node

degree ι, for a network with 100 nodes. The restriction to connected networks does not
significantly change the node degree distribution [5]. The synchronization time decreases
with increasing ι.

4.4.3 Impact of Synchronization Bound

All simulations terminate at a manually chosen synchronization bound θ. Figure 4.13b
shows how Tsync scales with decreasing θ. The shown continuous dependence suggests a
continuous dependence of all numerical findings on different θ.

4.4.4 Impact of Dynamically Changing Networks

Exploring dynamically changing networks, we consider graphs that change all their links
every σG time units, see Section 4.2.1. In other words, every σG time units the whole
network changes to another random graph or random geometric graph created with the
same parameters. Recall, that a pulse emitted by oscillator i at time tn is received at
oscillator j only if j ∈ suci(t) for all t ∈ [tn, tn + τij], see (2.14).
Figure 4.14 illustrates how the dynamically changing network influences the synchro-

nization time. Starting with quasi static networks at σG ≥ 100 we observe a relatively
constant synchronization time. If the network changes more often, as σG decreases, the
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Figure 4.13: Dependence of mean synchronization time. Panel a) shows a decreasing
mean synchronization time with increasing average node degree ι (N = 100). Panel
b) shows an increase of < Tsync > with decreasing synchronization bound (N = 100,
ι = 30).

synchronization time can significantly decrease. Dynamically changing networks can
hence support synchronization. In Fig. 4.14a, synchronization occurs faster in RGGs;
in Fig. 4.14b, synchronization occurs faster in both network types. If networks change
extremely fast, such that σG < τmax, the synchronization time increases sharply, as the
probability for a pulse not to be received increases.

4.4.5 Impact of the Pulse Emission Probability

Theorem 3 guarantees synchrony for arbitrary positive psend < 1. We investigate a favor-
able parameter value that minimizes the number of firing events Fsync needed to achieve
synchrony. This is important as the number of firing events relates to signaling over-
head needed for synchronization, in terms of messages and energy. Figure 4.15a shows
the results. Interestingly, the smaller psend the less firing events are needed. However,
as shown in Figure 4.15b, this comes with the cost of increasing synchronization time.
The optimal parameter setting for wireless communication systems hence depends on
the trade-off between the amount of energy spent on pulse emission and the need of fast
convergence. The closer psend is to 1 the larger the standard deviation in synchronization
time, but still synchrony is reached. This demonstrates the need of probabilistic firing
events since for psend = 1, not all simulation runs synchronize, compare also Example 7.

4.4.6 Robustness to Delay Spread Assumptions

We assume the delays to be distributed in a bounded interval with reoccurring delays
arbitrarily close to the lower bound. For wireless communication systems, it might not be
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Figure 4.14: Mean synchronization time depending on the graph renewal time σG, which
is the length of the time intervals after which the network topology changes. a) Networks
with N = 100 and ι = 50. b) Networks with N = 10 and ι = 5.

possible to identify such a definite minimum delay. Hence we study the synchronization
performance and robustness of the proposed algorithm if the theoretical delays are within
[τmin, τmax] whereas the delays in practice are within [τ̃min, τmax] with τ̃min < τmin. In
Figure 4.16 we show an example of such a synchronization process. We see that dI
can increase, hence Lemma 12 does not hold anymore. Numerically, a certain level
of synchrony is still obtained. This example shows that under such conditions dI can
fluctuate. A certain synchronization level can hence not be guaranteed, but shows to vary
little. In Figure 4.17a we see that for θ ≥ 5 ·10−3 synchronization time is showing similar
behavior and the mean synchronization time for τ̃min < τmin is even a bit lower. For lower
θ, however, the synchronization time for environments with τ̃min < τmin increases much
faster than that for correct minimum possible delay. Figure 4.17b supports the resilient
behavior for mismatched parameters. The fraction ρ of simulation runs that synchronize
is 1 as long as θ ≥ 5 · 10−3, for lower θ the resilient behavior is lost.

4.4.7 Comparison with Pagliari-Scaglione Approach

The synchronization algorithm by Pagliari and Scaglione [Pagl 11] also uses a pulse-
coupled oscillator system with stochastic pulse reception. We now compare the two
approaches. To do so, we have to restrict our system settings by demanding that τmin =
τmax = 0.02. The phase adjustment in [Pagl 11] works as follows: Assume oscillator i
receives a pulse at time tr then

φi(t
+
r ) =

{

φi(tr) φi(tr) ≤ φref

min(1, a1 · φi(tr) + a2) φi(tr) > φref
. (4.27)
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Figure 4.15: Synchronization performance depending on 0 < psend ≤ 1, in terms of a)
mean firing events and b) mean synchronization time. We only consider simulations
runs that synchronize, which only affects the performance at psend = 1 (for all other
parameters psend < 1, all runs synchronized) (N = 100, ι = 50).

with a1 = exp(χ) and a2 = exp(χ)−1
exp(1)−1 . We use χ1 = 1, and χ2 = 1 + 1/(Nplink) as in

[Pagl 11]. Note that this algorithm was designed for stochastic pulse reception and posi-
tive probability for any link within the network. Here, we use arbitrarily connected and
static networks, stochastic pulse emission, and ensured pulse reception. The achievable
close-to-synchrony state for this algorithm is bounded by φref with φref ≥ 2τmax. Better
synchronization than Π(t) ≤ φref is in general impossible. Figure 4.18a compares the
synchronization time for simulation runs that synchronize for different synchronization
bounds θ. The figure only depicts simulation runs that actually synchronized. The
version with χ1 synchronizes faster, the version with χ2 synchronizes slower than the
introduced algorithm. The parameter χ1 refers to extreme coupling, which makes the
algorithm fast but not robust. Figure 4.18b shows the fraction ρ of simulations that
synchronize within the observation window of 2 · 104 cycles. For θ < 0.06, ρ decreases
drastically, hence the Pagliari-Scaglione algorithm is not able to synchronize most net-
works. The synchronization method proposed here, however, still synchronizes all net-
works. This demonstrates the main improvement of the coupling scheme combining both
inhibitory and excitatory coupling and stochastic pulse emission. It synchronizes arbi-
trary networks for all synchronization bounds or topologies, which is a major achievement
compared to [Pagl 11]. This convergence is proven for very general conditions and also
works for individual random delays, another major difference to the work in [Pagl 11].

4.4.8 Robustness to Noise

To study the robustness of the system we add noise to the intrinsic frequencies of the
oscillators which captures both noise in phase and phase rates. For wireless communi-
cation systems, drifts in phase rates usually occur. Therefore we assume that instead of
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Figure 4.16: Example of a convergence process with real minimal transmission delay
τ̃ = 0.01, whereas the theoretical bound is τmin = 0.02. We show a close up when a
certain level of synchrony is achieved. Due to the inaccurate delay bounds for H(·) we
see that dI can increase. Note the small scale of fluctuations. Notation as in Figure 4.11
(N = 100, ι = 30, ERG).

10-1

100

101

102

103

 0.002  0.005  0.02  0.2
θ

⟨T
sy
n
c
⟩

τ̃min < τmin

τ̃min = τmin

(a)

 0

 0.3

 1

 0.002  0.005  0.02  0.2
θ

ρ

τ̃min < τmin

τ̃min = τmin

(b)

Figure 4.17: The different synchronization performances if delays in practice (τ̃) match
or mismatch the theoretical ones (τ). Panel a) shows the synchronization time for
synchronizing simulation runs. Panel b) shows the fraction ρ of all simulations that
synchronize. Both parameter settings provide synchrony for θ ≥ 0.005. For lower θ the
fraction drops significantly for mismatched parameters (N = 10, ι = 5, τ̃min = 0.01,
ERG).
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Figure 4.18: Comparing performance. We compare the performance of the combined
inhibitory and excitatory stochastic coupling scheme proposed in this article (IES) to
the algorithm of Pagliari and Scaglione in [Pagl 11]. Panel a) shows the synchronization
time of all synchronizing simulation runs. Panel b) shows the fraction of simulations that
synchronize. For readability the standard deviation in Panel a) is dropped. (N = 10,
ι = 5, ERG).

(4.2), the phase rates dφi(t)
dt

= κi(t) follow an Ornstein-Uhlenbeck process [Gard 85],

κ̇i = η1 (1− κi) + η2 ξi(t) , (4.28)

with independent white noise processes ξi(t) obeying ⟨ξi(t), ξj(t′)⟩ = δijδ(t − t′) (here
δij(t) is the Kronecker delta see [Bron 07, p. 265], and δ(t) the Dirac delta distribu-
tion [Bron 07, p. 640]) and the weigths η1, η2 ∈ R.

For the simulations we use τ uniformly distributed in [0, 0.02] and the phase update
function from (4.5) with auxiliary function (4.6) with h1(φ) = 0.2458φ + 0.0151 and
h2(φ) = 0.276φ+0.724. To approximate (4.28) we use an Euler approximation with time
discretization with step size 10−3 [Gard 85]. We assume that a steady state is reached
for t ∈ [900, 1000] and define the steady state maximum precision for a simulation run
via

dmax := max
tn∈[900,1000]

Π(tn). (4.29)

We see in Figure 4.19 that these systems cannot maintain coinciding phases but syn-
chronize to low diameters for small η2 and η1. Figure 4.19a demonstrates such a syn-
chronization process. The histogram in Figure 4.19b shows that the diameter does not
vanish but fluctuates with small mean value for η2 > 0. In Figure 4.19c we see that in
average a low steady state maximum precision dmax is achieved as long as the weights
η1 and η2 are low.
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Figure 4.19: Robust global synchronization. Panel a) shows the phase evolutions for
noisy phase rates (4.28) with η2 = 0.01 and η1 = 1. The synchronization process is
robust to frequency jitter. Due to noise, coinciding phases are replaced by an almost
synchronous state with small diameter dI (ERG,N = 100, ι = 50). Panel b) shows the
corresponding histogram of the dI and its relative frequency f(dI) (evaluated over 100
cycles) in the steady state for η2 = 0 and η2 = 0.01, η1 = 1. Panel c) shows the steady
state maximum precision dmax averaged over 1000 simulation runs with different ERG,
stochastic processes and initial conditions (N = 100, ι = 50).

4.5 Summary

In this chapter we introduced a pulse-coupling that synchronizes systems for all initial
conditions. These systems may experience pulse delays with non-negligible delay spread
on arbitrary connected network. These networks even may change dynamically. We
mathematically proved that these system of pulse-coupled oscillators are guaranteed to
evolve towards full synchrony.
This is a major insight on the synchronization in pulse-coupled oscillators. As so far

no synchronization proof exists for such assumptions.
Besides the analytical statements, with our numerical observations we discovered sev-

eral properties of the system:

• The synchronization algorithm scales well with growing network size. In fact, the
more nodes, the faster the synchronization process, if the nodes are sufficiently
dense connected.

• For the geometric random graphs considered, synchronization time is achieved
faster if the network is dynamically changing. Hence, unreliable links improve
synchronization time if the network topology changes on intermediate timescales.

• For the systems considered, we can improve energy efficiency by reducing the
number of pulses that are being sent.

• The system is robust against delays outside of the considered range of delays.

82



4.5 Summary

• The system is robust against small noise in phase rates.

These results highlight a number of advantages of the introduced algorithm and cou-
pling scheme compared to previous work. The scheme is of low complexity and can be
implemented in already existing slot synchronization strategies with finite synchroniza-
tion words, as we will show in the next chapter.
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5 Proof of Concept in Wireless
Networks

The coupling strategies from Chapter 3 and Chapter 4 provide theoretical synchroniza-
tion guarantees. Within this chapter we apply these strategies to real hardware. The
implementations give a proof of concept and demonstrate lines along which the theory
can be applied in practice.
The implementation of the theoretical notion of a pulse in practice is a research ques-

tion on its own, see Section 2.3.3 and e.g. [Leid 10, Tyrr 10b, Wern 05]. One property
is common to all these approaches. The theoretical notion of a pulse, which is of zero
time duration cannot be detected by a wireless receiver. Consequently, any practical
application has to use pulse-like signals with positive time duration to mimic pulses.
These pulse-like signals can either contain no information, as to closer stick to the the-
ory, e.g. [Tyrr 10b], or they can use the radio communication property and contain data,
e.g. [Leid 10].
For this demonstration we use the MEMFIS algorithm [Tyrr 10b] as a framework

for the synchronization process. It uses a unique synchronization word, called a sync-
word, which is known to all devices and does not contain information. This algorithm
is intended to be used for slotted communication, see Section 2.1.5.
For the pulse-like signal reception, the algorithm uses specific hardware, a sync-word

detector. It scans the incoming signal and compares it to the sync-word. This piece
of hardware allows to detect a specific pulse-like signal even if signals overlay and mes-
sages are corrupted. It is an essential part of the MEMFIS algorithm [p. 82][Tyrr 10a].
Standard hardware does not provide such a sync-word detector.
For the phase adjustments we use the coupling strategies according to equation (2.18)

from Chapter 2, Algorithm 1 from Chapter 3 and (4.4)–(4.6) from Chapter 4.
In the following we show how to implement the MEMFIS algorithm on different hard-

ware platforms with radio transceivers, see Figure 5.1 for illustration. First, we show
how an implementation can look like, if the hardware, does not provide a sync-word
detector. For this purpose we use off-the-shelf micro-controllers and a standard com-
munication protocol. Second, we show an implementation with the use of a sync-word
detector. We use a programmable hardware platform that can compare incoming signals
with the sync-word.
As pulse-coupled oscillator theory is an abstract concept itself, it is not bounded to

radio communication. In order to highlight this feature, we also show the synchronization
of devices via audio signals. To do so we provide an iPhone application. Users can
interactively experience the synchronization process and choose between two different
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5 Proof of Concept in Wireless Networks

(a) (b) (c)

Figure 5.1: Examples of the hardware with radio transceivers used for the demonstra-
tions. Panel a) depicts the TelosB devices from Crossbow. Panel b) depict the Z1 devices
from Zolertia. For these devices we use a slotted ALOHA communication protocol. A
sync-word detector is not available on these devices. Panel c) shows a WARP board
from Rice University. This platform provides programmable hardware and the use of a
sync-word detector.

coupling schemes. One follows equation (2.18), the second the coupling scheme presented
in Chapter 4, i.e. (4.4)–(4.6).
The implementations were carried out by Thomas Watzl [12], Wasif Masood [8], Do-

minik Egarter [13], and Cam Lai Ngo [14] under the direction of the author; and by
István Fehérvári [Fehe 13]. The work was done within two research projects, a demon-
stration and a Master’s thesis. The collection of the implementations presented here
gives an overview of this work. A reference to a more detailed description is provided in
each section.
These demonstrations are intended to show that an implementation is possible. The

results do not give quantitative or representative statements.

5.1 Network Synchronization without Sync-Word
Detector

We demonstrate network-wide synchronization in practice, based on pulse-coupled oscil-
lators. To do so we use the MEMFIS algorithm. We show how this algorithm provides
synchronization even though a sync-word detector is missing. To this end we use off-
the-shelf hardware, in specific “TelosB” sensor devices from Crossbow [12] and “Z1”
devices from Zolertia. These are battery-driven devices, equipped with a transceiver for
wireless communication. We use the IEEE 802.15.4 frame format standard [IEEE 11],
which describes how a packet looks like.
To apply pulse-like signals without a sync-word detector we use a work-around, which

is outlined in the following. For a more detailed description see [12].
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5.1 Network Synchronization without Sync-Word Detector

5.1.1 Pulse-Like Signal Detection

The devices do not provide a sync-word detector but an “SFD-field” detector:

Any signal sent by a device using the IEEE 802.15.4 frame format standard [IEEE 11]
contains a common data word, the “SFD-field” (Start of Frame Delimiter). It is intended
to tell the receiver that a signal is detected. We simply choose this SFD-field as the
sync-word. As soon as a signal arrives the SFD-field detector decides if the signal is
a packet of compatible format and writes its decision into a data buffer. Depending
on the hardware, the point in time when this data buffer is accessible differs. The
data buffer might even get lost, if the packet is corrupted. Still, this work-around
allows to apply the MEMFIS algorithm for devices without a sync-word detector. As a
drawback, for the used hardware the detection is lost, if the whole packet could not be
received properly. Consequently, with increasing use of the wireless channel the detection
probability decreases drastically.

By using the SFD-field as the pulse-like-signal the sync-word is shifted to the beginning
of a message. This is a valid choice within the MEMFIS synchronization scheme.

5.1.2 Phase Updates and Cycles

A device counts oscillations of an internal crystal to account for the internal time [Kope 03,
p. 48]. A timer uses an internal counter and stepwise increases its value, via ticks. As
soon as a certain firing threshold is reached, the timer ends. The timer value cannot be
altered but the firing threshold. Therefore, phase adjustments caused by an incoming
pulse-like signal have to be transferred to firing threshold modifications. The adjustment
of the threshold is where the different pulse-coupled oscillator strategies as described in
equation (2.18), Algorithm 1 and equations (4.4)–(4.6) enter. The units for this firing
threshold are ticks of the timer. Consequently, we can only do modifications of discrete
step size.

5.1.3 Pulse Emission

As part of the MEMFIS algorithm, the pulse-like-signal is embedded in a data packet.
Hence, pulse-like-signals are only emitted if data packets are exchanged. The data
packets themselves are issued by a higher layer within a device. The overall process is
as follows. A process issues a data transmission, the medium access layer waits until the
next slot starts and hands the message to the physical layer. This layer transmits the
message. The sync-word is part of this message. If no transmission is issued, the time
slots pass without a sync-word transmission.

In this demonstration we neglect the higher layer and assume the issuing to be a
stochastic process, e.g. a Poisson process as also assumed for example in [Gold 05,
p. 461].
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5.1.4 Test-Bed Setup

We distribute the devices within radio communication range, such that an all-to-all
network is established. For an objective observation of the system precision we need
external monitoring of the device’s timer. This would require timer logging with regard
of a synchronized global time within all devices. As this is not provided, we use the
following work-around. We start with an initiation signal. Just before the measurement,
one device sends a reference time signal to all other devices. These copy the reference
time. After a random time delay the devices start their timers and synchronize these
timers with the synchronization scheme provided.
All adjustments of a device are logged locally. A device i stores its local timer value

dataik when the kth adjustment occurs at local time timeik. The local adjustment-table
does not contain the precision of the system. However, we can infer an approximation
on the timer difference of one device to all others. This still contains uncertainties due
to all possible delays in communication and logging. For the presented demonstration
we stick to this approximation and use local timer records only.
To do so, we define the local timer difference d̃i for every individual device i via

d̃i(timeik) :=
1

ω̃
min (dataik, ω̃ − dataik) , (5.1)

here ω̃ refers to the cycle length in ticks.

5.1.5 Demonstration

We use a set of four devices and provide an all-to-all network. We initiate the synchro-
nization process from one of the devices, the initial phase positions are randomly chosen.
The coupling strategy in this example follows the excitatory coupling as described in
(2.18) from Section 2.3.1. This implementation is also tested for the algorithm in Sec-
tion 4, see [8]. Figure 5.2 shows an example of such a synchronization process. We see
that a close-to-synchrony level is achieved within a few slots. We see bursts in precision,
which are due to false detection. Note that full synchrony does not emerge. This is due
to the imperfect hardware. The timers work with limited precision, devices may detect
false fires and maximum and minimum delays are hard to be determined. We address
these limitations in Section 5.4.
For a further demonstration on how the synchronization is establishing, we attach

pendula to the TelosB devices. The hand of the pendula visualizes the phase of the
oscillators. With time, the hands reach coinciding positions, see Figure 5.3a. The
implementation was done by Thomas Watzl [12, 8]. For a large scale demonstration of
the synchronization process we let the Z1 devices blink whenever they reach the firing
threshold. We provide a testbed setup with a meshed network. In Figure 5.3b we see a
snap shot of such a synchronization process. Starting with chaotic blinking, the devices
synchronize their firings. While for the human perception the synchronization appears
with precision 0, technical measurements still observe phase differences, see Section 5.4
for discussion. The implementation was done by Wasif Masood [8].
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Figure 5.2: Demonstration of a convergence process using TelosB devices [12]. We show
the phase positions at reception times of four devices in an all-to-all network at reception
times. The term “slot time” refers to the time it takes an oscillator to reach the threshold
after a reset. We see fast convergence. Note that full synchrony is not emerging but a
close-to-synchrony state is achieved within a few slots. Several false signals are detected
which increase the local timer difference of the devices, but the steady state is recovered
fast.

(a) (b)

Figure 5.3: Snap shots of synchronization processes. In Panel a) we see TelosB devices
attached to wooden pendula. The hands of the pendula show coinciding phase positions.
In Panel b) we see Z1 devices distributed on a stairway. Some of these are already
synchronized and show coinciding blue flashes.
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5.1.6 Summary

The pulse-coupled oscillator synchronization is implemented on hardware via the use of
the MEMFIS algorithm. Although this algorithm essentially relies on a sync-word de-
tector to detect the pulse-like signals, we show how to modify the algorithm and apply
it to off-the-shelf hardware. The implementation can be used as an extension to the
slotted ALOHA protocol: The synchronization strategy is embedded in the communi-
cation protocol and does not transmit any additional information. Synchronization is
therefore established without any additional transmission cost or change in communica-
tion. Especially for devices with very limited computational power and the need for low
overhead on the communication protocol this synchronization scheme implementation
can be useful.

This implementation of the synchronization scheme allows the use of relatively cheap
off-the-self hardware compared to the ones in the next Section. By providing up to
100 such devices we can demonstrate and study the scalability of the synchronization
scheme, see for example [8].

5.2 Network Synchronization with Sync-Word Detector

A second way to exploit the concept of pulse-coupled synchronization for wireless com-
munication is by using specific hardware in order to detect the pulse-like signals. To do
so we use Wireless Open-Access Research Platform (WARP) boards developed at Rice
University [Amir 07].

These boards provide programmable hardware. Here, we describe the implementation
of the MEMFIS algorithm with the use of a sync-word detector [Tyrr 10b]. A detailed
description of the implementation can be found in [13].

5.2.1 Pulse-Like Signal Detection

We implement the pulse-like signal as it is done in the MEMFIS algorithm. A part of
the data that is transmitted within a time slot is designated for a commonly known
synchronization word, the sync-word. With the use of a sync-word detector the sync-
word can be chosen almost randomly. The sync-word detector compares all incoming
signals with the sync-word and forwards its decision. The receiver then right away issues
an adjustment of its timer. The transceiver design that describes the processing steps is
shown in the block diagram in Figure 5.4.

The decision of the sync-word detector is available independent of a data corruption
and with very little delay. This is the essential difference between the two implementa-
tions. Here, sync-word detection is less likely if message corruption occurs, but far more
likely than in Section 5.1.1.
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5.2 Network Synchronization with Sync-Word Detector

Figure 5.4: The MEMFIS transceiver design (picture taken from [Tyrr 10b]). The tri-
angle on the left represents the antenna, which is used for emission and reception. At
reception, the incoming signal is first fed into the sync-word detector and then processed
for data extraction. If a sync-word is found, the slots are adjusted. At an emission of a
packet, the sync-word is embedded in the data packet and emitted at the next slot.
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5.2.2 Phase Updates and Cycles

For the phase updates, the same restrictions apply as in Section 5.1.2. The phase of an
oscillator is implemented via a discrete timer. Upon sync-word detection the internal
firing threshold is adjusted. This adjustment is done according to the excitatory coupling
as depicted in (2.18) from Section 2.3.1 and also according to the equations (4.4)–(4.6)
in Chapter 4. In both cases the adjustments are discretized, due to the timer units.

5.2.3 Test-Bed Setup

The devices use the wireless channel for communication. In order to monitor the syn-
chronization performance of the WARP boards we also provide a wired connection. The
wired connections are for monitoring only, all tests are done via the wireless channel.
For a test run we first send a initiation signal via a function generator to all devices.
This provides a highly accurate starting time. Every device starts by letting pass some
random time before it starts its counter. With a given frequency every board then sends
its timer value to the oscilloscope which stores the values. Due to the synchronized
initiation, we can, at the end, use this file to calculate the system precision.
We study both an all-to-all network and a line network. This topology refers to the

wireless network. The wired network for recording data provides a direct link from the
device to the oscilloscope in all cases.

5.2.4 Demonstration

We demonstrate the implementation of the pulse-coupled oscillator synchronization with
the WARP boards. For the communication we use a reference design provided by the
Rice University [13]. An sync-word detector identifies the pulse-like signal and triggers
an update of the internal timer.
Figure 5.5 shows an example of the synchronization performance of three boards in

an all-to-all network. We see that the devices converge to a close-to-synchrony state
for both coupling strategies. Again the hardware restrictions only allow a close-to-
synchrony convergence. The main factors appear to be the heterogeneous phase rates,
the inaccuracy in the measurement of the minimal delay and the inaccuracy in detecting
a sync-word.

5.2.5 Summary

We applied the pulse-coupled oscillator synchronization scheme via the MEMFIS al-
gorithm [Tyrr 10b] to real hardware. We used a sync-word detector to identify the
pulse-like signals and applied the synchronization scheme described in (2.18) and Sec-
tion 4 to arrange the slot times. This setup demonstrates that the introduced coupling
can be used for wireless communication systems, and that synchronization takes place.
This is the first time the MEMFIS algorithm has been implemented.
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Figure 5.5: Demonstration of synchronization processes on the WARP boards [13]. The
panels show an averaged precision for three devices for different coupling strengths.
Panel a) depicts the precision performance for coupling as in (2.18) with the update
function H(φ) = min(1,αiφ + 0.001)), i ∈ {1, 2, 3}. Panel b) depicts the precision
if coupled as proposed in (4.4)–(4.6) in Chapter 4. We use τmin = 0, τmax = 0.02,
h1(φ) = (0.48 αi − 0.043)φ + 0.958 − 0.48 αi and h2(φ) = 1 − 0.46 αi (1 − φ) with
i ∈ {4, 5, 6}. In both cases we see that a close-to-synchrony state is reached.
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(a) (b)

Figure 5.6: Demonstration setup for the two implementations of the iPhone application.
The panels show a snap-shot of the synchronization process of the implementation done
by a) Cam Lai Ngo [14] (picture taken from [Lake 13]) and b) István Fehérvári [Fehe 13].
The iPhone application is for illustration purposes only. The use of an audio signal as
a pulse-like-signal intuitively demonstrates how synchronization can be achieved if as
little information as possible is communicated.

In the demonstration full synchrony does not emerge, still a close-to-synchrony state
emerges fast. Full synchrony cannot be reached partially because the lower delay bound
is not known. In this demonstration we assumed τmin = 0 which is not correct, but the
largest lower bound on the delay could not be determined.

Any wireless device uses an internal clock which counts ticks of an oscillator [Kope 03,
ch. 3.1]. These ticks limit the accuracy of a device. Consequently, synchrony is also
limited and only a close-to-synchrony state is possible.

5.3 Network Synchronization with Audio Signals

In order to demonstrate that no other information than a pulse is needed for synchro-
nization, we use an audio signal, so called beep, as a pulse-like signal. We use devices
with microphones and speakers and install a synchronization application on them. The
devices emit a beep at every firing event. Whenever a device detects the beep via its
microphone it adjusts its phase.

The application called “BUZZflies” is a small software program available for iPhone
and iPod Touch (4th and 5th generation) devices. It does not use the phone’s radio
communication capabilities, just its speaker and microphone. The application was de-
veloped by Cam Lai Ngo [14] and István Fehérvári [Fehe 13], see Figure 5.6. For a more
detailed description see [14].

This demonstration nicely mimics the synchronizing effects of fireflies in nature, see
Section 2.2.8. Instead of visual signals as for the fireflies, the technical devices use audio
signals.
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5.3.1 Pulse-Like Signal Detection

At every firing event, the device emits a pulse-like signal, which is a common audio tone.
A receiver detects such a tone with its microphone.

The audio channel brings some restrictions. First, the microphone input level is ad-
justing slowly. Especially, when the signal ended, the input level decreases very slowly
such that a follow-up input signal is hardly detected. This effect deteriorates the pre-
cision of the synchronization. Second, by using the amplitude of an audio signal only,
faulty detections are inevitable. If people are speaking while the synchronization pro-
cess is going on, such faulty detections are likely. Increasing the signal amplitude at the
sender and decreasing the microphone sensitivity at the receiver decreases faulty detec-
tion but also valid detection. Especially if devices are spread out, the network might
not be connected anymore. An early implementation uses just the microphone level to
detect the signal [14] and experienced these situations.

An improved implementation also uses the frequency of the beep to identify the pulse-
like signal [Fehe 13]. This highly improves the robustness of the synchronization process
against noise. The slow microphone level adjustment, however, is still restricting the
synchronization precision.

5.3.2 Phase-Updates and Cycles

The phase interval is set to a few seconds. To account for echoing effects we use a
refractory period after restarting a timer. Due to the slow decrease of the microphone
levels, we also use a refractory period after every pulse reception. This restricts the
overall precision of the system. The first implementation uses the standard update
as in (2.18) [14]. The second implementation allows to toggle between two update
strategies [Fehe 13]. The standard update as in (2.18) and the update strategy IES from
Chapter 4. As we use refractory periods after the reset and after updates, the coupling
represents an approximation to the strategies as in (2.18) and IES. This relaxation still
provides synchronization.

One feature of this application is to play music at the same time. To this end, the
devices need to be synchronized within a slot, but also need to know after which slot
to stop the synchronization and play music. We use the following solution: As soon as
a device notices that it does not adjust anymore, it considers itself synchronized to the
slot and starts counting synchronized cycles. After four synchronized cycles, a device
reduces its cycle length significantly. If all other devices started counting at the same
time, all devices reduce their cycle length and again no adjustments are performed. The
devices consider themselves still synchronized and stop the synchronization process after
a total of five synchronized cycles.

If some devices did not start counting at the same time at least one will receive a beep
during the reduced cycle length slot and adjusts. This causes an avalanche of beeps and
adjustments and the whole synchronization process starts over.
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5.3.3 Pulse Emission

Whenever the timer of a device reaches the firing threshold a beep is emitted. Due
to the imperfection in signal transmission and reception and the additional refractory
periods used, some beeps are not detected by the receiver. This causes a signal detection
probability of less than 1 as it is necessary for the algorithm described in Chapter 4.

5.3.4 Test-Bed Setup

We did our experiments for two settings. First, we used the earlier implementation [14].
The quality of the microphone together with the high signal detection thresholds only
allow to place the devices within close vicinity of one another (e.g. a few decimeters).
As soon as the distance is increased, the microphone level reduces sharply and beeps are
no more detected. Independently of the beep’s volume, a spoken word, due to its high
volume, can cause the microphone level to reach the detection threshold. Hence, for a
proper synchronization process quiet surroundings are necessary.
Second we used the advanced software [Fehe 13]. The use of the frequency detection of

the audio signal significantly improves detection probability on the one hand and reduces
faulty detection on the other hand. Hence, the devices can be at moderate distance to
each other (e.g. one to two meters).
Therefore, even if synchronization is achieved, the user might experience a slight delay

in the startup of the music playback. This is due to different hardware versions of the
devices and the non-realtime property of the operating system.

5.3.5 Demonstration

The iPhone application “BUZZflies” is freely available on Apple’s App Store [Fehe 13].
Users can download the application and start the beeping process at any point in time.
As soon as a device receives a beep from another device with the same application, the
synchronization process starts. The early implementation [14] only relies on the volume
of the audio signal. Therefore the user can synchronize the beeping of the device also to,
for example, finger snapping of similar frequency. This implementation shows to work in
quiet surroundings, for a number of three to four devices and equal speaker’s volumes,
see the video for demonstration in [Lake 13]. The improved implementation is much
more robust to noise and synchronizes with a better accuracy [Fehe 13]. The demon-
strations are intended to give the user an intuitive experience of how self-organizing
synchronization can be established. The synchronization process can also be used to
start music playback at the same time [14, Lake 13, Fehe 13].

5.3.6 Summary

We develop software to demonstrate self-organizing synchronization by using audio sig-
nals to mimic pulses. This software is an iPhone application and called “BUZZflies”.
The devices executing the application emit audio signals, so called beeps, whenever

96



5.4 Synchronization Bounds in Practice

they finish a cycle. The users experience the distributed synchronization via the dif-
ferent time intervals between the audio signals. Additionally, the user can change the
update strategy using the coupling strategy from (2.18) or the coupling strategy from
Chapter 4. This application gives an interactive demonstration of how self-organizing
synchronization works.

5.4 Synchronization Bounds in Practice

The theory in Chapter 4 guarantees full synchrony. The devices in this chapter however
only show convergence to a close-to-synchrony state. The discrepancy is due to the
following observations:

• Electronic devices have imperfect oscillators. Changes in temperature, or in the
quality of the energy source, or aging of the device influence the phase rate of an
oscillator [Kope 03, p. 49].

• Signal detection is a probabilistic process. A signal, transmitted via the wireless
channel, is subject to interference and noise. Therefore, at a receiver, it is not
certain to be detected and decoded [Tree 01, Ch. 1.1].

• Sharp signal delay bounds are hard to obtain. As described in Section 2.2.5, the
signal delay consists of several parts. These parts cause fluctuations in the total
delay. In practice, often measurements are necessary to obtain delay bounds.
These measurements give representative intervals for the delays. Still there is a
small probability that delays outside of this interval occur. Hence, the assumption
in Section 4.2.2 of sharp signal delays is hardly met.

All synchronization methods experience these limitations. A standard method to deal
with them is to resynchronize the system from time to time, compare [Kope 03, p. 50,
p. 59].
The presented implementation address the limitations in the following way:

• As shown in Section 5.1, the preamble of a packet can already be used for syn-
chronization. In this sense, every emitted packet is resynchronizing the system,
without additional overhead costs.

• False firing detections cannot be excluded. The SISA coupling schemes is designed
to be robust against false fire detection, see Section 3.6.4. For the IES coupling
in Section 4, we note that detected firings can be dropped without losing the
convergence statement. To increase robustness, a possible policy might be to
neglect more and more pulses the longer the close-to-synchrony state is maintained.

• The convergence statement in Chapter 4 shows to be robust against drifts in phase
rates. The convergence statement can also be interpreted as follows: The more
accurate the hardware, the more accurate the close-to-synchrony state.
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5 Proof of Concept in Wireless Networks

Additionally, in order to compare the performance of the synchronization scheme in
Chapter 4 for different hardware, the system parameters need to be known. Therefore, it
might be possible that a system with less accurate hardware but more precise parameter
measurements synchronizes faster and to better precision than more accurate hardware
with less information on the parameters. This also applies to the robustness of the
system.

98



6 Conclusions

For wireless communication systems, the synchronized cooperation of distributed entities
can be of great benefit. For instance, providing synchronized time slots for communica-
tion improves throughput [Gold 05, p. 464] or communication schemes are only possible
if synchronization is provided [Serp 09, p. 3]. Hence, synchronization is often part of an
overhead for other processes. For efficient operation, the overhead should be small, and
synchronization itself fast and robust. One way to reduce this overhead is to minimize
the use of the wireless channel for the slot alignment, resulting in the use of pulses to
synchronize systems. Since a slot can be represented as the duration of an oscillation,
this relates to the theory of pulse-coupled oscillators.

Self-organization has shown beneficial properties for robustness of synchronization
systems [Tyrr 10b, Pagl 10]. Self-organization enables a scalable and adaptive synchro-
nization with little computational effort. These properties strongly support the use of
self-organization within the synchronization process in wireless systems.

The absence of a central unit within self-organization poses a challenge on the mon-
itoring of the system. No entity or observer has knowledge of the behavior of the total
system. In order to use self-organization for synchronization within wireless communi-
cation, the emergence of synchrony has to be ensured. Only a general convergence proof
of self-organizing synchronization, as given in this thesis, can guarantee the proper func-
tioning.

Synchronization of pulse-coupled oscillators also serves as a prime example for self-
organization. Synchronization is considered the emergent property among distributed
oscillators. The synchronization process is of low complexity and still, so far, there was
no proof that it emerged for general system assumptions as discussed in Chapter 2. This
work, therefore, also advances the theory of self-organization as it gives a definite proof
that a self-organizing process can be guaranteed. The approach which provides these
guarantees might be useful also for other self-organizing processes and might improve
the general insight into self-organization.

The coupling strategies, which allow the guarantees on synchronization, are essential
contributions of this work. We gained the intuition on how to design them via intense
interaction with the field of neuroscience. This work is hence also a good example of
combining the knowledge of different fields of research to make progress in one of them.
Hopefully, this example further motivates an interdisciplinary approach on finding a
broader attitude to research problems in general.
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Summary

In this work we address the self-organizing synchronization of pulse-coupled oscillators
with system assumptions common in wireless communication systems.
In Chapter 2 we show the use and benefits of synchronization in wireless communica-

tion systems. We describe the notion of slot synchronization and outline the properties
of self-organizing synchronization. The pulse-coupled oscillators are then introduced.
By demonstrating the impact of specific system assumptions in wireless communication
systems we motivate the need of new coupling schemes. As the theory of pulse-coupled
oscillators is very general we also address its use in other research areas. Finally, we
describe how to understand the specific system assumptions used in the later chapters.
We outline how we provide appropriate coupling schemes for wireless communication
systems in the following chapters.
In Chapter 3, we introduce a coupling scheme which uses inhibitory coupling with

self-adjustment called SISA. We address all-to-all networks, random individual delays
and heterogeneous phase rates. As a motivation we describe the characteristics of the
coupling. We specify the system settings and the coupling via the SISA algorithm.
Starting with a small system and addressing the phases of two oscillators only, we prove
its convergence. We generalize to an ensemble of oscillators and prove that synchro-
nization emerges. For all initial conditions the phases of the oscillators converge to a
close-to-synchrony state. We give an explicit bound on the convergence, which depends
on the maximum delays, the coupling function and the heterogeneity of the phase rates.
For delay-free systems with homogeneous phase rates we prove that coinciding phases
emerge. Finally, in numerical studies we show fast synchronization of the system and
address its robustness. We depict how the system copes with single and repeated ran-
dom firings. Additionally, we show that the system is robust against failure of firing
detection.
In Chapter 4, we introduce a coupling scheme which uses both inhibitory and excita-

tory coupling and stochastic pulse emission called IES. We address homogeneous phase
rates and extend the system assumption to arbitrary connected and dynamic networks.
After motivating the specific design of the coupling, we depict some of its characteris-
tics. As the main result, we prove convergence of the introduced coupling. We show
that coinciding phases emerge with probability 1. Furthermore, we study system prop-
erties by numerical means. We show (a) as the number of network nodes increases,
synchrony emerges faster; (b) changes in the network can improve synchronization time;
(c) a reduction in communication can improve synchronization time; (d) the synchro-
nization shows better performance than a comparable algorithm from the literature; (e)
the coupling is robust to the delay assumptions and noise in phase rates.
In Chapter 5, test-bed implementations demonstrate the application of the theoretical

coupling schemes. We demonstrate synchronization with off-the-shelf micro-controllers.
By simply using communication protocol properties of standard data packets the the-
oretical guarantees can be applied to synchronize time slots. This extension does not
cause interferences with other layers. Additionally, we implement the self-organizing
synchronization algorithms on programmable hardware platforms called WARP-boards.
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A test-bed demonstration shows that synchronization of the devices is achieved. Finally,
to bring self-organizing synchronization to the public, we provide an iPhone application.
This application uses audio signals to synchronize the beeping of devices. Users can
interactively experience how self-organizing synchronization can work.

Contributions

Until now, synchronization of pulse-coupled oscillator systems could only be guaranteed
for specific system environments or restricted initial conditions, see for example [Miro 90,
Timm 02, Nish 11, Nish 12, Pagl 11]. Within this work, we guarantee synchronization
on much more general environments and for all initial conditions. Furthermore, we
implement the synchronization scheme and demonstrate its applicability in practice.
Our main contributions on the synchronization of pulse-coupled oscillator are as fol-

lows:
We introduce a novel coupling scheme called SISA, which uses inhibitory coupling

and self-adjustment. With the SISA coupling, we prove synchronization. We guarantee
full synchronization from arbitrary initial conditions and all-to-all networks of arbitrary
size. This proof holds for delay-free systems and homogeneous phase rates. We guar-
antee synchronization up to a synchronization bound from arbitrary initial conditions
and all-to-all networks of arbitrary size. This proof holds for individual random delays
and heterogeneous phase rates. This is the first time that synchronization for inhomo-
geneous phase rates and individual random delays for all initial conditions is proven. It
is noteworthy that this result is achieved with the use of inhibitory coupling only and
synchronization emerges exponentially fast. Additionally, we support the use of this
coupling strategy by showing that the SISA algorithm is robust against random firings
and failures in firing detection.
We introduce an inhibitory and excitatory coupling scheme with stochastic pulse emis-

sion, called IES. With the IES coupling, we prove synchronization. We guarantee full
synchronization with probability 1. This proof holds for arbitrary connected and dy-
namic networks, identical phase rates, individual random delays and stochastic pulse
emission. This is the first time that synchronization for arbitrary networks with indi-
vidual random delays from all initial conditions is proven. This proof also holds for
networks with unreliable links and is optimal in the following sense. For more gen-
eral system assumptions only “weaker” convergence statements are possible [Vaar 98,
Thm. 2.7]. The synchronization process with the IES coupling shows advantageous prop-
erties: (a) synchronization emerges faster if the network order increases, (b) changes in
links can improve synchronization time, (c) a reduction in communication can improve
synchronization time, (d) the synchronization shows better performance than a compa-
rable algorithm from the literature, (e) the coupling is robust to the delay assumptions
and noise in phase rates. This insight (b–e) reveals new properties of self-organizing
synchronization.
We implement the synchronization schemes on off-the-shelf hardware and on pro-

grammable hardware platforms. These demonstrations show that implementations of
the theoretical concepts are possible. To bring this insight to the public we develop an
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Table 6.1: Selected convergence proofs on self-organizing synchronization on pulse-
coupled oscillators. If not stated otherwise, we consider all-to-all networks, homogeneous
phase rates, no delays and finite network size with at least 5 oscillators.

synchron. holds for [Miro 90] [Timm 02] [Nish 11] [1] [2, 3] [6]
coupling function excitatory inhibitory exc. + inh. inh. exc. + inh. inh
initial conditions almost all subinterval subinterval all all all
indiv. rand. delay ! ! !

heterog. phase rates !

meshed networks ! ! !

interactive demonstration of self-organizing synchronization via an iPhone application.
To give an overview of the contributions of this thesis to coupling strategies in the

literature, we show Table 6.1. We compare our work to that of researchers which are the
first to provide synchronization statements for specific coupling schemes. The historical
evolution of these publications is shown in the timeline of Figure 6.1.

Implications on Wireless Communication

Self-organizing synchronization is not yet part of a communication standard. We can
think of some potential reasons: its advantages might not be sufficiently known, its
benefits might not be convincing, its application might not be feasible, or it might not
be considered to be working properly. The results in this thesis address these aspects.

• The analytical proofs, together with the general system assumptions, guarantee
that synchronization is emerging. Centralized monitoring is hence not needed.
These statements imply that self-organizing synchronization of distributed entities
emerges in practical applications.

• The numerical studies show beneficial effects such as fast convergence and scala-
bility. This is a major benefit of self-organizing synchronization.

• The new coupling scheme IES provides new insight as it improves performance if

1990 2000 2010

[Miro 90] [Timm 02] [6] [Nish 11] [1, 2]

year

Figure 6.1: Proofs on synchronization on a timeline.

102



links are unreliable or if the network changes. Its proof offers another advantage
for the use of self-organizing synchronization.

• The test-bed implementations show that self-organizing synchronization can actu-
ally be realized and used in practice.

Future Work

This work introduces new coupling strategies and proves its convergence for general
system assumption. This generic statement leads to direct implications on the algorithms
and optimization. We also reflect on further generalizations and possible application in
other research areas.

Direct Extensions

In Chapter 4 we gave a general synchronization proof. It is valid for various stochastic
pulse emission processes. The theoretical proof allows to design a pulse emission policy
without losing the convergence proof. We hence ask:

• In order to improve the system robustness against malicious devices can we derive
a policy on the pulse emission?

• Regarding synchronization time, is there a certain pulse emission policy which is
beneficial for specific network types?

• As the proof also holds for changing network topologies, it holds for any kind of
mobility model on the network. Is there a certain mobility pattern that increases
or decreases synchronization time?

Regarding the coupling strategies the following questions arise:

• In Section 3, we saw that the coupling creates a leading oscillator. Is it possible
to generalize the coupling such that the leader changes?

• In Section 4, simulations show robust behavior of the coupling scheme on phase rate
deviations. Is it possible to relax the convergence criterion to give a convergence
proof also for heterogeneous phase rates?

Open Issues

Interdisciplinary cooperation led to the contributions of this thesis. Potentially, the
gained results can also be used in other fields of research, especially since it was not
known so far that certain classes of coupling functions always lead to synchrony. Take,
for example, the field of operations research. In the area of supply chain management,
waiting times between production processes are usually undesired. If we solely consider
the arrival time of a product at a production site, this can resemble a pulse. The
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processing time at a site can be considered as an oscillation. Hence, the synchronization
of the production sites may be related to the synchronization of pulse-coupled oscillators.
For the design perspective, one fruitful generalization of the synchronization strategy

might be to include intentional heterogeneous behavior. Slight inhomogeneities in oscil-
lators are often present, for example in phase rates. Maybe such inhomogeneities could
be intentionally used and further heterogeneous behavior introduced to synchronize even
more general sets of oscillators. First investigations indicate potential benefits of such
heterogeneous behavior. Beneficial heterogeneities among oscillators, e.g. modifications
in phase rates, or cycle lengths, that lead to synchrony have not yet been published.
Furthermore, such a study on heterogeneous behavior in self-organizing synchronization
might reveal more general phenomena within self-organization. These phenomena might
also be visible in much more complex self-organizing systems such as society. For exam-
ple, the way heterogeneity arises in society may be a prime example of how to deal with
unexpected changes in the environment.
For an application of a self-organizing process two aspects are essential. On the one

hand, the certainty that the intended effect emerges, and on the other hand the certainty
that no unintended effect emerges. Within this work we focused on the guarantee of
emergence. For the application of self-organization to a complex engineering system, it
might be a good idea to restrict the use of self-organization to certain levels of an oper-
ation hierarchy. This basically means to narrow down the influence of self-organization
within a complex system to certain levels. By doing so, the risk of inappropriate global
performance is reduced. To this end, for a self-organizing system, the boundaries its
effects should be investigated.
In a more abstract thinking, we can consider the generation of new ideas within a

discussion as a self-organizing process. Humans interact and new insight emerges which
one individual might not have come up with on its own. One standard way to foster
new ideas is to change the human’s environment for the discussions (e.g. providing
workshops or retreats). The stochastic pulse emission we saw in Chapter 4 can also be
interpreted this way. It breaks up standard routes of communications. We showed, that
for the emergence of global synchronization in our general setting this effect is essential.
Combining these observations we can postulate that breaking up regularities is a key
property for efficient self-organization.
The use of self-organization for synchronization can also be seen from a different

perspective. Individual devices arrange themselves to maximize the use of a scarce
property, the shared medium. This medium is limited for a single point in time, but
these points in time are unlimited. Additionally, every device only has limited need of
the medium. From this perspective self-organizing synchronization is a perfect example
of how cooperation provides an efficient use of a medium that is limited but sufficiently
available. Maybe with the help of self-organization we will see that cooperation is
the favorable way for economy if resources are considered limited but do not limit the
individual.
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List of Symbols
α Coupling strength
χ1,χ2 Auxiliary values for coupling strength
δ(t) Dirac delta distribution
δij(t) Kronecker delta
η1, η2 Process weights
γbottom Index of bottom oscillator in ∂S
γtop Index of top oscillator in ∂S
γi Index permutation for oscillator i
ι Average node degree
κi Phase rate of oscillator i
κ̇ Phase rate deviation
λ Scaling parameter
µ(·) Uniform Lebesgue measure
ν Maximum phase rate deviation
φi Phase of oscillator i
φΘ Phase threshold
φref Refractory interval
φ̃i Phase representation centered around 0
φ̇i Phase rate of oscillator i
ρ Fraction of simulation runs that synchronize
σG Length of time interval of graph to be constant
τ∆ Sum of minimum and maximum delay
τδ Difference between minimum and maximum delay
τmax Maximum delay within the system
τmin Minimum delay within the system
τnij Pulse delay emitted by oscill. i and received by oscill. j at nth firing event
θ Synchronization bound
ε Small and positive real number
ξ Auxiliary value for the update function
ξi(t) White noise process i
ζ, β Positive probabilities
ω Cycle length
ω̃ Cycle length in ticks
∆tni Time period between two firing events, also called cycle
Γ Upper bound of Precision for Chapter 3
Γ⋆(t) Normalized precision bound in Chapter 3
Γ2 Upper bound of precision for two oscillators
Γτ Synchronization precision bound
Π(t) Precision for a set I of oscillators
Π⋆(t) Normalized precision in Chapter 3
Πω(t) Precision for inhibitory coupling as in Chapter 3

Π
⋆
(t) Steady state mean precision in Chapter 3

ci Initial condition of oscillator i
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dS Diameter of a subset S
dmax Steady state maximum precision
dij(t) Distance between two oscillators i and j

d̃i(t) Local timer difference of timer i
f(·) Relative frequency
i, j Indices
i∗ Leading oscillator
l(φ) Smooth phase representation for Chapter 3
lij Link from node i to node j in a graph G(t)
p(·) Circular representation of oscillator phases
p̃(φ) Alternative circular representation of the phases
psend Pulse emission probability
q probability for failure of firing detection in Chapter 3
t+ Time instant infinitesimally short after t
tn Time instant of nth firing event within the whole set
tn◦ Time instant of nth firing event of the leading oscillator
t′ Time instant
tni Time instant of nth firing event of oscillator i
tr Time instant of a reception event
t̃ Time instant
B↓ Bottom boundary set
B↑ Top boundary set
Dkj Smallest phase interval on the circle that contains a path from φk to φj

Fsync Number of firing events to synchronize
H(·) Update function
H ′ Derivative of update function H(·)
H ′

max Maximum value of the derivative of the update function H(·)
H ′

min Minimum value of the derivative of the update function H(·)
H̃ Auxiliary function
I Index set of oscillators
N Number of oscillator in the system
S Subset of oscillators
TG Time interval
Tsync Time to reach synchronization bound θ
Ua Update area a for the phases
∅ Empty set
Ni(t) Neighboring oscillators of oscillator i
G(t) Graph
[φi,φj)1 Interval notation between two points φi and φj on the circle
d2

dt
(t) Second time derivative

d
dt
(t) Time derivative

⟨·⟩ Mean value
P [X] Probability for event X
R Set of all real numbers
R+ Set of all real number within the interval [0,∞)
| S | Number of elements in S
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∂S(t) Edge set of S(t)
dataik Local timer value of device i at adjustment k
preS(T ) Predecessors of subset S within time interval T
prei(t) Predecessors of oscillator i
sucS(t) Succeeding oscillators of subset S
suci(t) Succeeding oscillators of oscillator i
timeik Local time of device i at adjustment k
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[8] W. Masood, J. Klinglmayr, I. Fehérvári, T. Watzl, and C. Bettstetter. Synchroniza-
tion using inhibitory and excitatory coupling: From theory to practice (demonstra-

109



tion). In IEEE Intern. Conf. on Computer Communications (INFOCOM), Turin,
Italy, April 2013.

[9] J. Klinglmayr. Guaranteeing global synchronization in networks with stochastic
interactions (best video abstract 2012). New Journal of Physics, July 2012.

[10] J. Klinglmayr and C. Bettstetter. Self-organizing slot synchronization (poster).
Fifth International Workshop on Self-Organizing Systems, Karlsruhe, Germany, 23.
Febr. 2011.
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