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Abstract

The use of unmanned aerial vehicles (UAVs) is gaining popularity in various areas

such as disaster management, agricultural surveillance, urban terrain surveillance,

military operations, and construction site monitoring. In particular, the use of micro

UAVs, i.e., drones that can be carried by a human, has garnered a lot of attention in

research and applications because of their ease of use and low costs.

In this thesis we consider the exploration of a disaster scene, e.g., earthquake or

train accident, using a fleet of micro UAVs equipped with cameras. The terrain is

represented as a set of locations to be observed with potentially di↵erent levels of

importance. Obviously, the main intention of the aerial exploration is to always have

the most up-to-date information for every point of interest. Therefore, the UAVs

have to visit such locations as often as possible but avoid long time spans between

revisits. UAVs are typically controlled manually by at least one human operator for

each vehicle. In case of search and rescue operations, human resources cannot be

wasted on steering the drones. Consequently, automatic planning is required and it

has to be done fast, while the fleet of drones is being prepared to start the flight

mission.

In order to model the described task with its real-life constraints, we introduced

the continuous monitoring problem (CMP) and its extensions with inter-depot routes

(CMPID) and priorities (CMPIDP). Continuous monitoring means that a fleet of

vehicles has to periodically visit a set of locations. Vehicles are constrained by the

capacity of their energy storage, e.g., batteries. The capacity can be renewed at one

of the available base stations. The goal is to find a plan where the fleet visits locations

uniformly and as often as possible so that long intervals between revisits are avoided.

To solve these problems, we propose several construction approaches: modified

Clarke and Wright algorithm, queue-based insertion heuristic, inter-depot insertion

heuristic (IDIH), and IDIH with reservations. The solutions obtained by these algo-

rithms are improved by a metaheuristic approach based on the variable neighborhood

search. The suggested methods were evaluated on numerous instances including real-

life scenarios. The evaluation showed that the developed methods are capable of

providing near-optimal solutions in a short time.
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Chapter 1

Introduction

Over the last few decades, we have seen the deployment of micro unmaned aerial

vehicles (UAVs or man-portable drones) for a variety of civil applications, from aerial

photography to the delivery of medicine in Africa. They are a↵ordable, easy and

fast to deploy. These machines can utilize the third travel dimension, thus, avoiding

numerous problems with obstacles.

This thesis focuses on the use of UAVs during or after a disaster. Drones do not

require direct human presence at the scene and, thus, prevent unnecessary risks to

human lives. They can be deployed to monitor the development of a situation, to

aid in the search and rescue of survivors, to trace the safest path for a rescue team,

and to conduct post-disaster inspections. This technology has already demonstrated

its potential in the aftermath of several catastrophes like hurricane Katrina in the

USA or the Tohoku earthquake and tsunami at the Fukushima nuclear power plant

in Japan.

Let us consider a scenario where a team of rescuers arrives at the location during

or after a disaster, e.g., an earthquake or a forest fire. Needless to say that any

information about the situation is essential. Very often it cannot be gained from

the ground, and aerial surveillance is needed. However, human resources cannot be

wasted on steering the drones. Therefore, areal observations must be provided in an

automatic way.

One way to obtain such observations is to send a drone to a certain location above

the area and record a video or take a picture of the whole disaster scene. In order to

cover a large area in one shot, a vehicle has to either reach a certain altitude or carry a

wide-angle lens camera. The first option is not possible due to legal regulations, when

drones are not permitted to fly above certain altitude due to safety reasons. Carrying

a wide-angle lens camera is also infeasible due to limited payload of a micro UAV.

The way to resolve this problem is to split the overall area into rectangles and take
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pictures of the rectangles from a lower altitude. Then this data is transmitted to the

ground station, where received pictures are stitched together into a high-resolution

overview image [72]. Locations where photos will be taken are called picture points.

Obviously, the main intention of the aerial exploration is to always have the most

up-to-date information for every rectangle. Therefore, the UAVs have to visit picture

points as often as possible and avoid long time spans between revisits.

In this thesis, multi-copters were used as a platform for the monitoring task. A

multi-copter is UAV equipped with several rotors powered by a battery, see Fig. 1.1.

Their advantage over the fixed-wing UAVs is the ability to hover at one location in

order to take a picture. The down side is their short flight time due to limited battery

capacity. It amounts to approximately 10-45 minutes flight time depending on the

type of a vehicle, environmental conditions and payload. To extend monitoring time,

the UAVs have to visit the ground base stations where charged batteries are stored.

Figure 1.1: Quadcopter AscTec Pelican

Steering a UAV typically requires at least basic theoretical training as well as

practical experience. Controlling a flying machine to navigate through the given

picture points while taking into account its battery capacity and weather conditions

is not a trivial task. This is another reason for the automation of the monitoring

process by introducing a route planning algorithm.

The goal of a route planning algorithm is to obtain a set of routes for a fleet of

vehicles to consistently survey a set of picture points. A route is a sequence of way

points that starts at the previous location of a vehicle and ends at one of the base

stations. Vehicles might have di↵erent average flight speeds and battery capacities

that cannot be exceeded. The optimal solution of such a monitoring problem is a

set of routes that maximizes the number of observations, e.g., taken pictures, and
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minimizes the time delays between observations for all points over a certain period

of time.

Fig. 1.2 illustrates fire-fighters training at a factory1. The input for a route plan-

ning algorithm is presented on the left side of the figure. The picture points are

depicted as circles and the base stations are displayed as red dots. The image on the

right is a partial screenshot of the user interface during the exploration. The back-

ground picture from Google Earth
TM

(layer 1) is used to define the area of interest.

During the initial flights, a high-resolution overview image is placed on top (layer 2).

Afterwards layer 2 contains the latest complete overview image. The updates of the

overview image are displayed in higher contrast on layer 3. The black polygonal paths

are the routes which the UAVs have followed so far in their latest flights.
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50m
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Figure 1.2: Exploration of an area by a fleet of UAVs. Left: input data for a routing
algorithm. Right: intermediate results of the exploration.

In rescue missions, di↵erent subareas can have di↵erent importance. For instance,

the most important subareas are territories on the edge of a forest fire or those that

most likely have people who need help. These subareas should be visited more often.

This is demonstrated in Fig. 1.3 with expected distribution of visits. The larger the

number of visits, the larger the circle.

Several existing problems can model consistent surveillance of target points. The

operational research (OR) community has considered several related route planning

problems, e.g., the periodic vehicle routing problem with intermediate facilities [5]

as well as the vehicle routing problem with multiple time windows and multiple

visits [31]. In the field of robotics Machado et al. [52] introduced the patrolling

task originally applied to ground robots [3], [83] and later to areal vehicles [69], [93].

However, these works do not consider all the main aspects of the monitoring problem

1Apart from this training, we have participated in a number of other events and demonstrations.
More information about the project and videos of the test flights can be found on http://uav.

lakeside-labs.com/ and http://youtu.be/SvL8rTUNh1c (last accessed on March 8, 2015).
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Figure 1.3: Required distribution of number of visits at points with three levels of
importance.

for micro UAVs. For example, the patrolling task does not limit battery capacity, and

the OR problems typically optimize purchased fuel or the total travel time instead of

maximizing gathered information. In order to fill the gap, we introduce the continuous

monitoring problem (CMP) and its extensions with inter-depot routes (CMPID) and

priorities (CMPIDP). These problems arise in many real-life applications such as

aerial continuous surveillance of a potential crime location or a concert.

The goal of this thesis is to propose e�cient route planning algorithms for these

problems that would be su�ciently fast for rescue operations and able to react to a

number of environmental changes.

There are two main groups of approaches for solving route planning problems:

exact algorithms and heuristics. Methods from the first group solve problems opti-

mally. However, due to problem complexity, they are limited to small-size scenarios.

In contrast to the exact methods, heuristics construct feasible but not necessarily

optimal solutions that are su�cient for most applications.

In this thesis we propose several solving methods for the aforementioned prob-

lems: four heuristic approaches to construct initial solutions and use a method called

variable neighborhood search (VNS) for improving it. Construction heuristics in-

clude modified Clarke and Wright algorithm (CW) and queue-based insertion heuris-

tic (QIH) for the CMP, inter-depot insertion heuristic (IDIH) for the CMPID and

IDIH with battery reservations (IDIH-Reserve) for the CMPIDP. These heuristics

4



start with an empty solution and iteratively extend it based on a certain metric like

distance and arrival time.

There are two main contributions of this thesis:

1. The thesis proposes definitions of a real-life problem and its extensions that, to

the best of our knowledge, have not been studied before. Practical importance

of the monitoring problem with capacity constraints cannot be underestimated,

as it has a wide range of applications, e.g., consistent aerial surveillance of a

disaster area, a crime scene or a concert.

2. The thesis describes solution methods for the proposed monitoring problems.

The developed heuristics yield good results during the evaluation. They obtain

near-optimal solutions on instances, where an optimum can be computed. Real-

life scenarios are planned by construction heuristics in a short time, e.g., less

than 11 seconds for the largest scenario. Thus, the methods can be used for

time-critical missions. The insertion heuristics are flexible and can be adapted

for the new constraints with minor modifications. Finally, solution quality can

be improved further with variable neighborhood search, e.g., by up to 30% in

10 minutes computational time.

The work described in this thesis has already been reported in several publications.

Solving techniques for the CMP have been published in [55] and [54]. Approaches for

the CMPID and CMPIDP have been presented in [57] and [58], respectively.

The thesis is organized as follows. Chapter 2 provides formal definitions of the

continuous monitoring problem and its extensions. Chapter 3 starts with a descrip-

tion of related state-of-the-art methods and proposed heuristics and then provides an

explanation of the constraint-based programming approach used to obtain optimal

solutions. The chapter concludes by explaining application of the proposed meth-

ods to problems with dynamic environments. Chapter 4 reports results achieved by

the proposed heuristics in a number of conducted studies. They include tuning of

the methods parameters, comparison with optimum on smaller instances, and perfor-

mance evaluation on large scenarios.
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Chapter 2

Monitoring Problems

Let us briefly explain the routing problems and their di↵erences. The vehicle routing

problem (VRP) [89] is one of the most well-studied route planning problems. It is

stated as follows: a fleet of identical vehicles located at a depot has to visit a set of

customers to deliver demanded amount of goods. Each vehicle has a limited carrying

capacity for the goods. The goal is to calculate a route for every vehicle so that it

visits every customer exactly once with minimal total travel time.

The continuous monitoring problem (CMP) introduced in this thesis is a variation

of the VRP. It deals with periodic visitation of points instead of single visits at

each point. Vehicles used for monitoring have limited travel time defined by energy

capacity. The travel time includes the time required to travel between the points as

well as the time to service each point, e.g., to take picture at a picture point. A vehicle

can renew its energy capacity at a home station: an assigned base station (depot).

Average travel speed and energy capacity might di↵er from vehicle to vehicle. The

goal of the CMP is to calculate a sequence of routes for each vehicle that maximizes

the number of visits to the points of interest, and minimizes the time delays between

the visits during the given planning horizon.

The assignment of vehicles to their home stations in CMP steers the search process

towards clustering the area. Even though this strategy can be very e↵ective, this

limits the solution space. Therefore, the requirement for vehicles to always return to

their home station was relaxed in CMP with inter-depot routes (CMPID): vehicles

can renew their energy capacity or finish their mission at any base station.

The CMPID with priorities (CMPIDP) includes di↵erent importance levels and

does not impose an upper bound on the mission time like in the CMP and CMPID.

The main di↵erences between the three monitoring problems are summarized in Ta-

ble 2.1.

6



CMP CMPID CMPIDP
inter-depot routes No Yes Yes
fixed mission time Yes Yes No
priorities No No Yes

Table 2.1: Comparison of the monitoring problems

There exist other important problems that also deal with periodic visitation. We

discuss them in Section 2.5.

The following sections provide formal definitions of the three monitoring problems.

The notation used for the definitions is listed in Table 2.2.

Table 2.2: Definition of the CMP and its extensions

Input
G graph that represents the area of interest
N set of nodes
E set of edges
N

b

set of base station nodes
N

p

set of picture point nodes
d
i,j

distance from node i to node j
lvt

p

time di↵erence between the last visit at point p and the start of the
mission

pr
p

priority of point p (CMPIDP)
nBat

b,t

number of batteries of type t at base station b
nBat

t

total number of batteries of type t
T set of vehicle types
V set of vehicles
type

v

type of vehicle v
homeSt

v

home station of vehicle v (CMP)
inRemCap

v

initial remaining energy capacity of vehicle v
inLoc

v

node where vehicle v is initially located
sp

t

average speed of vehicles of type t
batCap

t

maximal flight time defined by a battery capacity of vehicles of type t
servT

t

service time of vehicles of type t
tChBat

t

time to change a battery for vehicles of type t
mt mission time (CMP, CMPID)
Solution
R

v

sequence of routes of vehicle v
R

v,y

y-th route of vehicle v
nR

v

number of routes of vehicle v
r
v,y,✏

node on position ✏ in route R
v,y

t(R
v,y

) flight time of the route R
v,y

art(✏, R
v,y

) arrival time at node on position ✏ in route R
v,y

cmt
v

current mission time of vehicle v

7



Table 2.2: (Continuation) Definition of the CMP and its extensions

Goal function
f(x) goal function (CMP, CMPID)
A

p

, B
p

, C
p

summands of function f(x)
artO

z,p

arrival time at point p during its z-th visit
nV is

p

number of visits of point p
f 0(x) goal function (CMPIDP)
A0

p

, B0
p

, C 0
p

summands of function f 0(x)
mt

v

total mission time of vehicle v (CMPIDP)
nChange

v

number of battery changes of vehicle v (CMPIDP)

2.1 Continuous Monitoring Problem

Input: The area of interest is represented as a complete, weighted graph G = (N,E),

where N is the set of nodes and E is the set of edges connecting them. The set of

nodes N
b

represents the base stations, the remaining nodes N
p

are the picture points.

Every edge e
i,j

2 E has weight d
i,j

that represents the distance between the nodes

i and j. In the presence of obstacles, this weight equals the length of the shortest

path between the nodes around the obstacles. The triangle inequality must hold, i.e.,

8i, j, l 2 N, d
i,j

+ d
j,l

� d
i,l

.

Every picture point p 2 N
p

is characterized by the time di↵erence lvt
p

between

the last visit and the start of the mission that indicates how long the point remained

unvisited before the monitoring started. It equals zero for all points, if none of them

have been visited before. If only some points have no previous observations, their lvt
p

equals to the maximal lvt
p

value of the visited points.

Every base station b 2 N
b

is characterized by the number of batteries nBat
b,t

for a

vehicle type t 2 T . The total number of batteries of type t is denoted as nBat
t

. The

number of batteries can also be interpreted as the amount of any other kind of energy

source, e.g., the amount of energy at a battery recharging facility or the amount of

fuel.

Every vehicle v 2 V is characterized by its type type
v

, home station homeSt
v

where it can renew its capacity, initial remaining battery capacity inRemCap
v

and

initial location inLoc
v

. The initial location can be either a picture point or a home

station of the vehicle.

Vehicles of type t 2 T has an average travel speed sp
t

, maximal flight time batCap
t

defined by a battery capacity, service time servT
t

(e.g., to take a picture or read the

8



sensory data), and time to renew the energy capacity tChBat
t

(e.g., changing the

battery or refueling).

Finally, a mission time mt is given as the time by which all vehicles must complete

their last flights.

Output: A solution to the described problem is a sequence of routes for each

vehicle v 2 V , i.e., R
v

= (R
v,1, ..., Rv,nRv), where nR

v

is the number of routes of

vehicle v. Every route is a sequence of nodes R
v,y

= (r
v,y,1, ..., rv,y,k), where k is the

number of visits at the nodes made by vehicle v; r
v,y,2, ..., rv,y,k�1 are picture points.

Nodes r
v,y,1 and r

v,y,k

are the home station homeSt
v

except for the first point of the

first route, which equals to the initial location of vehicle v, i.e., r
v,1,1 = inLoc

v

.

A solution is feasible if it fulfills the following constraints:

• the flight time of each route does not exceed the battery capacity;

• each node is visited by at most one vehicle at a time;

• a vehicle can change its battery only at its home station;

• at the timemt depicting end of the mission, all vehicles must be at their stations;

• a fleet cannot use more batteries than there are available.

The maximal flight time, limited by energy capacity, also limits the flight time for

every route (capacity constraint). The flight time of y-th route of vehicle v of type

t is a sum of the time needed to travel between its way points and the total service

time:

t(R
v,y

) =

 
k�1X

✏=1

d
rv,y,✏,rv,y,✏+1

sp
t

!
+ (k � 2) · st

t

,

where d
rv,y,✏,rv,y,✏+1 is the distance between consecutive points r

v,y,✏

and r
v,y,✏+1 of the

route R
v,y

, k is the number of points in the route, sp
t

and st
t

are the average speed

and the service time of vehicles of type t, respectively.

Arrival time at ✏-th point in route R
v,y

of vehicle of type t is a sum of the flight

time of the preceding routes, the total time spent on battery changing, and the flight

time within route R
v,y

until ✏-th point:

art(✏, R
v,y

) =
y�1X

y

0=1

t(R
v,y

0)+ (y� 1) · tChBat
t

+

" 
✏�1X

✏

0=1

d
rv,y,✏0 ,rv,y,✏0+1

sp
t

!
+ (✏� 2) · st

t

#
.

Two problem attributes are defined on the basis of arrival time. The first attribute

is called current mission time cmt
v

of vehicle v. It is used during route construction

9



and is defined as the time, when the vehicle would finish observing its last point in

the current partial solution. Secondly, the goal function of the problem is expressed

via arrival times at picture points.

Objective: The task is to provide an up-to-date information during the fixed

period of time. The ideal solution would be to place a vehicle over each picture point

in order to constantly observe all the points. However, due to the limited number of

vehicles and large number of points, this solution is not possible in the real world. In

this case, the problem requires a solution with maximal number of visits and minimal

time lag between them.

The aforementioned goals are incorporated in the objective function that has to

be minimized. It is based on the concept of penalties, i.e., negative rewards for every

time delay. Given a feasible CMP solution x, the goal function is computed as follows:

f(x) =
X

p2Np

"
A

p

+B
p

+ C
p

#
. (2.1)

The first summand A
p

of the function penalizes the time delay until the first visit

at point p. If the point was observed before the monitoring started (lvt
p

> 0), then

lvt
p

is also considered in the penalty:

A
p

= (lvt
p

+ artO1,p)
2,

where artO1,p is the first arrival time at picture point p.

The second summand B
p

summarizes penalties for the time delays between all

visits to the point:

B
p

=

nV isp�1X

z=1

(artO
z+1,p � artO

z,p

)2,

where artO1,p, ..., artOnV isp,p are arrival times for all visits to point p sorted in as-

cending order, nV is
p

is the number of times point p was visited.

Finally, the last part C
p

penalizes the time delay from the last observation at the

point until the end of the mission:

C
p

= (mt� artO
nV isp,p)

2.

Figure 2.1 illustrates the three summands of the goal function (2.1).

A solution example is shown in Figure 2.2. It contains three vehicles each assigned

to its own station with two spare batteries per vehicle. The first image depicts the

first route of each vehicle starting at its initial location. The remaining two images

10



Monitoring
starts

End of the 
mission

lvtp 0 artO1,p ... artOnVisp,p mt
time

first summand second summand third summand

Figure 2.1: Visual interpretation of penalties of point p.

demonstrate the routes that followed. When points have not been visited yet, they

are depicted with sign “x”, and with circle otherwise. The size of such circle is

proportional to the number of visits at a point.
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(a) first routes
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(b) second routes
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0
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(c) third routes

Figure 2.2: A solution of a CMP instance.

An important characteristic of an e�cient CMP solution is to consistently survey

all the pictures points. In the previous example, this is illustrated by the even number

of visits made at each point.
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2.2 CMP with Inter-Depot Routes

Solutions to the continuous monitoring problem tend to form areas of interest around

the home stations of the vehicles. Such solutions are not e�cient when batteries or

vehicles are not distributed evenly over the base stations. To resolve this, the CMP

was extended to allow vehicles to change batteries at any station [56]. This variation

of the monitoring problem is called CMP with inter-depot routes. The name was

inspired by the similar extension of the vehicle routing problem.

The di↵erence between the CMPID and CMP is the absence of home stations and

the corresponding restriction. The other constraints and the goal function remain as

described in the previous section.

2.3 CMPID with Priorities

There are two essential di↵erences between the CMP, CMPID and CMPID with

priorities. The CMPID with priorities uses priority information and does not set an

upper bound on the mission time. The first extension aims at providing information

about the picture points at a frequency proportional to their priorities. This extension

is of high importance: often, events of interest are not evenly distributed over the

area. In this case, zones with more activity should be observed more frequently. The

goal of the second extension is to utilize the available vehicles and energy resources

so that as much information as possible is gained per time unit.

Input: The CMPIDP includes all parameters described in Section 2.1 except

home stations homeSt
v

and mission time mt. Thus, initial location inLoc
v

of a vehi-

cle v can be a picture point or any of the base stations, i.e., inLoc
v

2 N . Additionally,

every picture point p is assigned with priority pr
p

that denotes its importance, i.e.,

the lower the priority value, the less important this point is.

Output: According to the mentioned changes, a feasible CMPIDP solution fulfills

the following constraints:

• the flight time of each route does not exceed the battery capacity;

• each node is visited by no more than one vehicle at a time;

• a vehicle can change its battery only at the base stations with available spare

batteries of the corresponding type;

• a fleet cannot use more batteries than there are available;

12



• every vehicle must finish its mission at a station.

Objective: The goal function of the CMP and CMPID penalizes time delays

between visits starting from the beginning of the mission until the maximal possible

end of the mission denoted as mt. As opposed to these two problems, the CMPIDP

does not impose an upper bound on the mission time. Therefore, the penalties are

computed until the end of the visiting schedule with additional penalties for the

unused energy resources.

The end of the visiting schedule is estimated as the maximal possible mission time

of a vehicle, given the number of batteries it used. The mission time of a vehicle v of

type t is calculated as follows:

mt
v

= nBatChange
v

· (batCap
t

+ tChBat
t

) + inRemCap
v

,

where nBatChange
v

is the number of times a vehicle has changed its battery, batCap
t

is the battery capacity of type t, tChBat
t

is the time to change a battery, inRemCap
v

is the initial remaining capacity of vehicle v.

The following example illustrates the computation of the mission time of a vehicle.

A UAV can fly up to 5 minutes with its initial on-board capacity (inRemCap
v

= 5).

In the current solution it makes use of 3 additional fully-charged batteries with up

to 15 minutes of flight time with each of them (nBatChange
v

= 3, batCap
t

= 15).

Changing a battery takes 1 minute (tChBat
t

= 1). Thus, the longest possible mission

of this UAV will last 5 + 3 · (15 + 1).

Taking the aforementioned computations into account, the goal function of the

CMPIDP is as follows:

f 0(x) =
X

p2Np

"
A0

p

+B0
p

+ C 0
p

#
, (2.2)

A0
p

=
⇣
(lvt

p

+ artO1,p) · prp
⌘2

,

B0
p

=

nV isp�1X

z=1

⇣
(artO

z+1,p � artO
z,p

) · pr
p

⌘2
,

C 0
p

=
⇣
(max

v2V (mt
v

) + batPenalty � artO
nV isp,p) · prp

⌘2
,

where A0, B0, C 0 are summands similar to A,B,C in (2.1) proportional to priorities,

pr
p

is the priority of point p, (max
v2V (mt

v

) is the estimated end time of the mission,

mt
v

is the mission time of vehicle v, batPenalty is the sum of penalties for all unused

batteries and equals their total capacity. If all batteries are utilized, batPenalty = 0.
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This goal function is close to the function (2.1) but with a conceptual di↵erence.

The CMP and CMPID aim at distributing visits evenly over a fixed mission time. For

the CMPIDP, the mission time is not given. Thus, by minimizing the time lag between

the visits, it minimizes the overall mission time as well. The following example

demonstrates this di↵erence. Two vehicles have to monitor three target points with

four batteries. Fig. 2.3 demonstrates the assignment of batteries to vehicles and the

ideal visit distribution for both problems. Visits of the CMP/CMPID solution are

allocated farther from each other in order to cover a fixed planning horizon. The

solution of the CMPIDP, in contrast, achieves shorter delays by using both vehicles

simultaneously.

CMP/CMPID CMPIDP

vehicle1

vehicle2

time

point1

point2

time

point3

vehicle1

vehicle2

time

point1

point2

time

point3

Figure 2.3: Solution parameters for the problems CMP, CMPID and CMPIDP. The
top charts show assignments of the batteries to the vehicles. The bottom charts
demonstrate the corresponding distribution of visits. Red lines indicate fixed, given
mission time for the CMP and CMPID.

2.4 Complexity of the Problems

In this section, we derive the complexity of the CMPIDP. This property of the other

two problems, CMP and CMPID, can be derived in the same way.

The CMPIDP is an NP-hard problem. This property can be derived by a Turing

reduction to the traveling salesman problem (TSP) [34]. Let us consider a CMPIDP

with one base station, one vehicle v of type t and one battery with capacity batCap
t

.

Suppose S[G, V, T, C] is a subroutine for solving the CMPIDP, where G is a complete

graph representing an area, V is a set of vehicles, T is a set of types, and C is the

set of battery capacities with batCap
t

2 C. Note, there is a minimal battery capacity

batCap
t

, which allows a UAV to visit every picture point exactly once and to return

to the base station. Such a route corresponds to a TSP-route that minimizes the

overall travel time as well as max
v2V (mt

v

) and, as a consequence, the CMPIDP goal

function. Given the minimal distance minD between points, the following algorithm
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constructs a battery capacity by a polynomial number of calls of S s.t. a TSP-route

is generated.

1. Set batCap⇤
t

 minD.

2. If S[G, V, T, C] returns a route visiting all points, halt.

3. Set batCap⇤
t

 batCap⇤
t

+minD and go to Step 2.

This procedure uses a polynomial number of calls of S and, thus, would be a polyno-

mial time algorithm for solving the TSP, if S were a polynomial time subroutine for

CMPIDP. Consequently, the CMPIDP is NP-hard and cannot be solved in polynomial

time unless P=NP.

2.5 Related Problems

There exist numerous routing problems with various constraints and objectives. In

this section, we discuss the most related problems and outline their solving methods.

Parameters of these problems are summarized in Table 2.3. The main state-of-the-art

solving approaches are listed with the corresponding references in Table 2.4.

Significant amount of research is conducted on the route planning problems in

the area of operational research (OR). One of the most well-known problems in this

domain is the vehicle routing problem (VRP), where a fleet of vehicles has to visit

a set of points and return to a station. Typically the total traveling time is opti-

mized. There exist various extensions of this problem [89], [28]. The most related

extensions are described below. They include problems with refueling possibilities,

time-based features that can be used to model monitoring, and some works from the

related application domains such as robotic patrolling and aerial surveillance. More

information about the other VRP variants and their solving techniques can be found

in [89] and [91].
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Table 2.3: Parameters of related problems grouped according to the closest classical problem

Reference
Vehicles Depots

fi
xe
d
p
la
n
n
in
g
h
or
iz
on TW Points

Objective

m
u
lt
ip
le

h
et
er
og

en
eo
u
s

fi
xe
d
nu

m
b
er

of
ve
h
ic
le
s

li
m
it
ed

ca
p
ac
it
y

fo
r
go

od
s

li
m
it
ed

en
er
gy

ca
p
ac
it
y

m
u
lt
ip
le

tr
ip
s

in
ifi
n
it
e
nu

m
b
er

of
tr
ip
s

m
u
lt
ip
le

in
te
r-
d
ep

ot
ro
u
te
s

p
er
io
d
ic

si
n
gl
e
p
er

p
oi
nt

m
u
lt
ip
le

d
em

an
d
s
on

go
od

s

si
te
-d
ep

en
d
en
t

p
ri
or
it
ie
s

m
u
lt
ip
le

vi
si
ts

Continuous monitoring problem (our work)
[54] + + + - + + - + - + - - - - - - +

sum of squared time delays[57] + + + - + + - + + + - - - - - - +
[58] + + + - + + - + + - - - - - - + + sum of weighted squared time delays
Periodic vehicle routing problem
[49] - - + - + + + + + + + - - - - - + cost of fuel
[90] + - - + + - - + - + + - - + - - + total travel time
[10] - - + + + + - - - + + - - + - - +
[15] + + + - + - - - - + + + + - + + + weighted sum of total travel cost,

overtime and workload balance
[4] + + + + + + - - - + + - - + + - + total operation cost
Vehicle routing problem with time windows
[24] (MDVRP) + - + + + - - + - + - + - + - - - total travel time
[24] (PVRP) + - + + + - - + - + + - + + - - +
[27] + + + + - + + - - + - + - + - - - traveling and deployment costs
[31] + - + + + - - - - + + + - + - - + weighted sum of travel time, waiting
[12] + + + + + - - + - + - - + + - - - time and cost of used vehicles
[6], [7] + - + - + + + - - + - + - - - - - weighted di↵erence between total

travel distance and rewards for vis-
ited customers

[42] + - + + + + + - - + - + - + - - - total operation cost
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Table 2.3: (Continuation) Parameters of related problems grouped according to the closest classical problem

Reference
Vehicles Depots

fi
xe
d
p
la
n
n
in
g
h
or
iz
on TW Points

Objective

m
u
lt
ip
le

h
et
er
og

en
eo
u
s

fi
xe
d
nu

m
b
er

of
ve
h
ic
le
s

li
m
it
ed

ca
p
ac
it
y

fo
r
go

od
s

li
m
it
ed

en
er
gy

ca
p
ac
it
y

m
u
lt
ip
le

tr
ip
s

in
ifi
n
it
e
nu

m
b
er

of
tr
ip
s

m
u
lt
ip
le

in
te
r-
d
ep

ot
ro
u
te
s

p
er
io
d
ic

si
n
gl
e
p
er

p
oi
nt

m
u
lt
ip
le

d
em

an
d
s
on

go
od

s

si
te
-d
ep

en
d
en
t

p
ri
or
it
ie
s

m
u
lt
ip
le

vi
si
ts

Vehicle routing problem with intermediate facilities
[5] + - + + + + + + + + + - - + - - + total travel distance
[25] + - + + - + - + + + - - - + - - - mission time
[88] + - + + + + + + + + - - - + - - - total travel time
[65] + - + + - + - + + + + - + + + - + distance traveled per day
[46], [14] + - + + + + + + + + - + - + - - - number of vehicles and overlapping

routes, travel time, workload devia-
tion

[40] (PVRP-IF) + - + + + + + + + + + - - + - - + total travel cost
[40] (MDVRPI) + - + + + + + + + + - - - + - - -
[30] + - + - + + + + + - - - - - - - - total travel distance
[79] + - + + + + + + + - - + - + - - - number of vehicles, total travel dis-

tance
[32] + - + + + + + + + - - - - + - - - total recharge cost
Patrolling task
[52], [3], [77] + - + - - - - - - - - - - - - - + average/maximal time delay
[29] + - + - - - - - - - - - - - - - + min. average time delay, max. min-

imal delay, min. delay variance
[1] + - + - - - - - - - - - - - - + + weighted average event detection
[81] + - + - - - - - - - - - - - - - + maximal time delay
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Table 2.3: (Continuation) Parameters of related problems grouped according to the closest classical problem
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Vehicles Depots
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Patrolling task (Continuation)
[71] + - - - - - - - - - - - - - - - + maximal time delay, mean square

time delay
[53], [20] + - + - - - - - - - - - - - - + + max. weighted reward over time
[83] + - + - - - - - - - - - - - - + + max. reward over time
[19] + - + - - - - - - - - - - - - - + deviation from the prescribed visit-

ing frequency
[2] + - + - - - - - - - - - - - - + + maximal weighted time delay
UAV routing problem
[43] + - + - - - - - - - - - - - - - + average event detection
[62] + + + + + - - + + + - - + + + + + min. changes to the given plan,

number of vehicles, total travel
time, max. e↵ectiveness

[80] + + + + + - - - - - - - - + - + - max. total weighted service
[66] + + + - - - - + + - - - - - - - - total travel cost
[69] - - - - - - - - - + - - - - - + + total time-averaged risk
[93] - - - - - - - - - + - - - - - - + min. maximal time delay, max.

number of observed events
[84] + - + - + + + - - + - - + - - + + total travel cost
[64] + - + - + + + + + + - - - - - - + maximal idleness
[85] - - - - + + + + + - - - - - - - - total travel cost
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Algorithms References

Construction heuristics
Adaptive memory principle [25]
Approximation algorithms [2]
Auction-based/negotiation mechanisms [3], [71]
Clarke and Wright (savings) algorithm [54], [30]
Clustering + TSP-based strategy [46], [30], [79], [1], [81]
Dynamic programming [43]
Heuristic based on spanning tree [29]
Insertion heuristic [54], [57], [27], [5], [65], [46], [14], [88],

[79], [32], [3], [1], [80], [69], [64]
Lin-Kernighan-Helsgaun heuristic [66], [85]
Multi-stage heuristics [49], [15], [83]
Problem transformation [66]
Reinforcement learning based on Markov
decision processes

[3], [77], [53], [20]

TSP-based patrolling strategy [3], [29], [43], [69], [93]

Improvement heuristics
Adaptive large neighborhood search [7]
Ant colony optimization [31], [19]
Genetic algorithm [90]
Guided local search [65], [88]
Local search [30], [32], [85]
Simulated annealing [27], [46], [32], [69]
Tabu search [24], [10], [15], [4], [12], [5], [25], [14],

[88], [79], [80]
Threshold accepting [65]
Variable neighborhood search [54], [57] , [12], [65], [14], [40], [88], [79]

Exact approaches
Branch-and-price [6], [42],[84]
Mixed-integer (linear) programming [62]

Table 2.4: Solving methods for the related problems (in alphabetical order)

Multi-trip vehicle routing problem (MTVRP) is also know as vehicle routing

problem with multiple use of vehicles. It is a version of the VRP, where every vehicle

is allowed to have multiple routes [87]. The maximal possible number of routes per

vehicle is limited. Multi-trip extension can be used to model multiple routes of UAVs,

when multiple spare batteries are given. However, in the MTVRP every customer is

visited exactly once in contrast to the CMP and its extension, in which a customer
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can be visited multiple times. Two important extensions of the MTVRP are the

MTVRP with time windows and the periodic MTVRP. They can be used to model

multiple visits and will be discussed further.

To the best of our knowledge, only a few publications address the pure multi-trip

VRP. They propose heuristic methods such as tabu search [87], genetic algorithms

[76], or adaptive memory programming [67].

Periodic vehicle routing problem (PVRP) is a variant of the VRP, where

periodical visits at customer locations are required [22]. Given a set of time units

(e.g., days or hours), each target point has a set of possible visit schedules (e.g., a point

should be visited either on Monday and Thursday or on Tuesday and Wednesday).

At the end of each time unit (e.g., working day) vehicles return to their depots. A

solving algorithm should not only build routes for the given target points but also

select one of the schedules for each customer and fulfill customers demands. Typically

the total travel time is minimized. One can model monitoring problem as a periodic

VRP with one full coverage of an area representing one time unit. However, this

approach has a disadvantage. According to the definition of the PVRP, vehicles have

to return to their stations at the end of each coverage/time unit. This policy is not

e�cient, since the fleet does not utilize all available energy capacity. Additionally,

each vehicle performs at most one trip per time unit, i.e., refueling is not allowed.

Visit frequency is given for each customer and cannot be changed or optimized.

State-of-the-art methods for the PVRP include methods such as exact algorithms

[8], a combination of variable neighborhood search and simulated annealing [41], tabu

search [24], genetic algorithm [90]. A good and relatively recent survey on the PVRP

extensions and the state-of-the-art methods is provided in [33].

Vidal et al. [90] described a PVRP with multiple depots. Vehicles have limited

travel time and capacity for carried goods. Each vehicle is assigned to a depot, where

it starts and ends each route, at most one per time unit. All routes visiting the

same customer must originate at the same depot. The goal is to construct routes

fulfilling the constraints and minimizing the total travel time. Vidal et al. proposed

a hybrid genetic algorithm that was evaluated on several problems: MDVRP, PVRP

and MDPVRP.

The problem of persistent visitation with fuel constraints presented in [49] is a

relaxation of the aforementioned problem that includes multiple trips and inter-depot

routes. Inter-depot routes extension allows a vehicle to refuel its tank at any of the

given facilities. The amount of fuel at facilities is not limited. Periodicity is defined

by a given deadline for every visit of every point. The goal is to minimize the cost of
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purchased fuel. Las Fargeas et al. [49] proposed a three-step approach for a single-

vehicle problem: find all possible tours that satisfy the deadlines, find the optimal

amount of purchased fuel for each tour and choose the solution with minimal cost.

There are several case studies based on the PVRP. The case study [10] of delivering

linen to di↵erent clinics was modeled as a variation of the PVRP with a single vehicle

and multiple trips per day. The authors implemented a tabu search algorithm with

GENIUS heuristic for customer insertion and removal [22]. The algorithm allows

infeasible solutions but penalizes every constraint violation. Blakeley et al. [15]

describes a complex PVRP with multiple constraints imposed by a company, e.g.,

time windows for the customer service as well as working hours of the service men for

each day, di↵erent types of service. The problem is solved by a multi-stage heuristic

based on tabu search.

Site-dependent multi-trip periodic vehicle routing problem was presented by Alonso

et al. [4]. Every customer is characterized by the possible visit schedules, demand

of goods per service and a set of feasible vehicles that can provide required service.

Every vehicle has a certain operation cost per distance unit, maximal allowed number

of trips per day, limited capacity and travel time per route. The objective of the

problem is to minimize the total operation cost. Alonso et al. proposed a modified

tabu search similar to [10].

In vehicle routing problem with time windows (VRPTW), each customer

has a time interval during which a vehicle can provide service [82]. The interval is

defined by its lower and upper bound. If a vehicle arrives earlier than the lower

bound, it has to wait until the service is allowed to start. Arrivals later than the

upper bound are prohibited. Amount of goods that a vehicle can carry is limited.

The optimization criteria can be the total waiting time, total travel time, number

of used vehicles. The VRPTW can describe the CMP by introducing time windows

for every visit of a point. The delays between the time windows should be identical

and equal to the required update frequency. However, it is hard to estimate this

frequency beforehand, while incorrect estimation leads to ine�cient solutions or even

to no feasible solution.

The VRPTW received a significant amount of attention, due to its practical im-

portance. Application domains include, for example, ware delivery, waste collection

and repair services. The common solving methods are tabu search [24], evolution-

ary algorithms [73], iterative local search [38], and variable neighborhood search [16].

Recently a promising exact method was proposed in [9]. More details on the state-

of-the-art approaches and their comparisons are provided in [17], [18] and [36].
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Cordeau et al. [24] described a PVRP with time windows as well as a multi-depot

VRPTW. In the second problem, every vehicle must be assigned to a depot, where

it starts and finishes every route. Both extensions of the VRPTW were solved by a

tabu search algorithm. To switch between solutions, the algorithm simply removes

a point from a route and inserts it into another route. The search is diversified by

allowing infeasible solutions.

Despaux and Robledo [27] described a variant of the VRPTW: multi-trip VRP

with time windows and heterogeneous fleet. Every vehicle has a certain capacity for

goods it can carry, traveling cost for moving between the customers, and fixed cost

when it is used. Multiple trips are permitted, which allows modeling problems with

high customer demands and low trunk capacity. All routes must be finished by the end

of the given period. The minimization objective function comprises of traveling and

deployment costs. Despaux and Robledo suggested insertion heuristic to construct an

initial solution and simulated annealing to improve it. Further we refer to a heuristic

as “insertion heuristic” if it constructs a solution by adding one point at a time, and

selects a point and/or position in a route based on some metric, for example, shortest

distance.

Another related VRPTW extension is the periodic VRP with multiple time win-

dows and multiple visits [31]. Instead of only one time window, each customer point

has multiple time windows and a required number of visits as opposed to the CMP,

where the number of visits has to be defined. In addition, the planning horizon is split

into subperiods and every route must start and end within one subperiod as in the

PVRP. A subperiod can be interpreted as a battery capacity, as Favaretto et al. [31]

did not explicitly define this constraint. The goal is to minimize the sum of weighted

waiting time, travel time and fixed cost of every used vehicle. The problem was solved

by using ant colony optimization algorithm. Later Belhaiza et al. [12] proposed a

hybrid heuristic based on the variable neighborhood search and tabu search. This

heuristic outperformed the method of Favaretto et al. on almost all instances.

Hernandez et al. [42] described amulti-trip VRPTW, where the goal is to minimize

the total operation cost. They proposed a two-step exact algorithm based on the

branch-and-price approach. Azi et al. [6] used a di↵erent goal function. Due to strict

constraints on time windows and maximal travel time, it might be infeasible to visit

all customers at least once. Therefore, every customer is assigned a reward for being

visited. The goal is to minimize the di↵erence between the total travel distance and

the rewards for visited customers. Azi et al. suggested an exact algorithm, branch-
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and-price with column generation. Later Azi et al. [7] described a heuristic approach

called adaptive large neighborhood search.

The next set of problems is grouped under the title vehicle routing problem

with intermediate facilities (VRP-IF). The VRP-IF is a variant of the multi-

depot vehicle routing problem where, in addition to depots, there are intermediate

replenishment facilities to renew capacity of the vehicles. The goal is to minimize the

total travel distance.

Angelelli and Speranza [5] studied a periodic VRP-IF. They solved the problem

by constructing an initial solution with one of the three di↵erent insertion heuristics

and improving this solution with a tabu search.

Crevier et al. [25] introduced a multi-depot VRP with inter-depot routes (MD-

VRPI). It can be seen as a VRP-IF where depots play the role of intermediate fa-

cilities. Crevier et al. proposed a heuristic approach based on the adaptive mem-

ory principle for constructing an initial solution and a tabu search for improving it.

Tarantilis et al. [88] suggested a hybrid metaheuristic based on the variable neigh-

borhood search, tabu search and guided local search. An insertion heuristic is used

as a construction heuristic.

A waste collection problem is a special case of the PVRP-IF. The objective is

to collect the waste from the customers and deliver it to the intermediate facilities.

Before arriving at the base station each vehicle has to visit an intermediate facility

and empty its storage. Nuortio et al. [65] proposed an insertion heuristic and a

guided variable neighborhood thresholding algorithm for a real-life scenario. Kim et

al. [46] suggested an insertion heuristic and a cluster-based algorithm as construction

heuristics and a simulated annealing as a metaheuristic. Later this algorithm was

outperformed by the methods proposed by Benjamin and Beasley [14]. They construct

the routes with an insertion heuristic and then improve them by either a tabu search

or a variable neighborhood search, or their combination. Hemmelmayr et al. [40]

proposes a hybrid method based on a combination of a variable neighborhood search

and dynamic programming. It performs well on scenarios for both PVRP-IF and

MDVRPI.

Green VRP (GVRP) is a variation of the VRP that aims at minimizing energy

consumption and, as a result, its negative e↵ect on the environment [50]. The state

of the art proposes two ways to optimize energy consumption. The first way is to

express fuel consumption via consumption rate per distance unit and optimize the

total travel distance multiplied by the rate, e.g., [92], [48]. Such formulation is similar

to the classical VRP and, thus, does not include such significant extensions as capacity
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renewal and multiple visits. Another way is to introduce recharging possibilities and

minimize the total purchased fuel [30]. This variation of the GVRP includes a depot,

a set of target points and recharging facilities. When refueling, a vehicle can purchase

any amount of fuel limited only by the size of its tank. The objective of the problem

is to minimize the total distance traveled without violating fuel capacity constraint.

Erdoğan and Miller-Hooks [30] solved this GVRP by using a local search heuristic

with inter- and intra-route vertex exchange. It constructs initial solutions by using a

modified savings algorithm or a combination of density-based clustering and savings

algorithm. Schneider et al. [79] introduced an electric VRP with time windows that

minimizes the number of used vehicles and total distance traveled. They solved the

electric VRPTW by an insertion heuristic based on the spherical clustering and a

combination of a variable neighborhood search and a tabu search. Felipe et al. [32]

extended the GVRP by introducing di↵erent recharging technologies and a possibility

of partial recharging. The extended problem minimizes the costs of purchased fuel

with taking into account di↵erent prices during day and night. Initial solutions are

constructed by using an insertion heuristic similar to the nearest neighbor heuristic

with a random component. This solution is then improved with either a local search

or a simulated annealing.

Apart from OR, similar problems were also considered in the field of robotics.

In 2003 Machado et al. [52] introduced the patrolling task that is also referred

to as repetitive sweeping/coverage, continuous area sweeping task, persistent moni-

toring/surveillance and multi-agent information gathering problem. The goal of this

problem is to compute a set of routes to repetitively visit given points. There are

several possible objectives, for instance, to minimize the average delay between visits

or to maximize the minimal delay. There might be several extensions like priorities

and changing edges between the points and their weights (dynamic obstacles). The

planning horizon is typically infinite but also can be fixed. In most papers (e.g.,

[3], [52], [1], [83], [93], [19]) the capacity constraint is neglected, as typical missions

do not outlast the energy capacity of the employed robots. The earliest and most

popular approaches for the patrolling task are based on solving the traveling sales-

man problem (TSP), a single-vehicle VRP. One option is to build a route through all

points and place the robots along it [3], [29]. The other approach is to split the area

into clusters, one for each vehicle, and solve the TSP for each cluster [1], [81]. For

clustering, Smith and Rus [81] used k-medians algorithm, whereas Ahmadi et al. [1]

suggested a negotiation-based algorithm. Recently auction-based algorithms started

to gain more attention [3], [71]. Some authors also applied reinforcement learning
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and Markov decision process to modeling the system [77], [53], [20]. Stranders et al.

[83] suggested a divide-and-conquer algorithm that also incorporates Markov decision

processes. Additionally, authors described an algorithm for repairing the routes in

case of vehicle’s failure or graph changes. Finally, Cannata and Sgorbissa proposed a

real-time ant-like algorithm PatrolGRAPH [19].

A min-max latency walk problem described in [2] is a variation of the patrolling

task. The points have weights depicting their priorities. The goal is to obtain a path

that visits the points multiple times while minimizing maximal weighted time delay

of a vertex. Alamdari et al. [2] proposed two approximation algorithms and as a test

example simulated patrolling of the city of San Francisco.

There are two interesting works based on real robots. Iocchi et al. [44] evaluated

some of the aforementioned state-of-the-art strategies on real testbeds. Pippin et al.

[70] described the approach to monitor performance of the real robots during the

mission, when patrolling routes are given. The obtained observations are used to

reassign the tasks of the poorer performing robots to the others.

Early research on the UAV routing problem focused on minimizing the number

of drones to survey an area once [75], [68], [45]. In our work we do not aim at

minimizing the number of drones, unless it will improve the performance of the overall

fleet. The mentioned papers consider wind and various mission-related constraints

like no-fly zones (obstacles), service time, threat level, time windows, priorities, and

heterogeneous fleet. Such problems were solved with Monte Carlo simulations [75],

a reactive tabu search [68] or a combination of an insertion heuristic and several

improvement heuristics based on a local search or a tabu search [45]. The last work

incorporated the most of the mentioned constraints. Richards et al. [74] considered

a similar problem that minimizes the mission completion time. They proposed two

methods: a mixed-integer linear programming model and an approximate algorithm

that makes an estimation of the flight time. The first approach is guaranteed to

find the optimal solution but is applicable to only small-size scenarios. Evaluation

instances used for this approach consist of only four points.

Murray and Karwan [62] described a UAV routing problem with time windows,

heterogeneous fleet and limited fuel capacity. The goal is to recompute the given

routes after an event so that the number of route changes, total travel time and

number of vehicles are minimized, while the mission e↵ectiveness is maximized. The

problem was modeled with mixed integer programming and solved by CPLEX solver.

The test instances contained only up to 13 target points.
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A problem of routing Unmanned Combat Vehicles (UCVs) was considered in [80].

The problem has only a single station and a heterogeneous fleet with certain payload

and fuel capacities. Each target has a priority as well as a minimal and maximal

required service. The latter estimates the amount of ammunition required to destroy

an enemy location. The goal is to maximize the total weighted service provided to

the targets. The authors solved the problem by using an insertion heuristic and a

tabu search.

Oberlin et al. [66] described a heterogeneous, multiple depot, multiple UAV routing

problem, where a fleet of drones visits every target exactly once. An algorithm pro-

posed by Oberlin et al. transforms this problem into the asymmetric TSP, a TSP with

di↵erent edge weights depending on the travel direction (9i, j 2 N d
i,j

6= d
j,i

). Then

the asymmetric TSP is solved with the Lin-Kernighan-Helsgaun heuristic. Finally,

the obtained route is transformed into a solution for the original problem.

A few papers address a UAV or UCV monitoring problem and model it as the

patrolling task. Park et al. [69] studied a single-UCV monitoring problem with

priorities that minimizes the possibility of an enemy’s infiltration within the fixed time

horizon. The goal function is the same as in the CMP and CMPID. This problem

was solved by building routes using one of seven di↵erent construction heuristics,

insertion heuristics or TSP-based cyclic strategies, and iteratively improving them

with a simulated annealing. Huynh et al. [43] described a problem with a similar

objective but a di↵erent goal function. It minimizes the average event detection time.

This problem was solved by using one of following policies: a biased tile sweep, a

TSP sampling and a TSP sampling with receding horizon, or approximate dynamic

programming. Another version of the UAV monitoring with one vehicle was proposed

by Yu et al. [93]. Here every target point generates events at random and has some

statistics of the past events. In addition to a route, the amount of time that a vehicle

waits at each point has to be defined so that (1) the number of observed events is

maximized and (2) the delays between sequential visits at every point are minimized.

Yu et al. suggested a two-step approach: first a TSP route is computed, then an

optimal schedule of waiting times is found using a gradient descent method.

A UAV routing problem in [84] was modeled as a VRP with multiple time windows

and multiple visits. The UAVs can recharge at any station any number of times. The

goal function minimizes the total travel cost. This problem was solved by an exact

method, an adapted Lagrangian branch-cut-and-price approach.

A problem very close to the CMP, CMPID and CMPIDP was considered in [64].

The area is represented as a grid, where every cell has an initial time delay from
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the previous visit. The UAVs have an endurance constraint and can recharge at any

station. Service of a point requires no time, since the authors consider nonholonomic

vehicles that cannot hover at one point. The goal of the problem is to minimize the

maximal time delay of the cells over an infinite period of time. The main di↵erence

to the CMP and its extensions is that the vehicles can recharge an infinite number of

times as opposed to the limited number of batteries in the CMP. The authors sug-

gested a control policy that takes into account the endurance constraint and dynamics

of the vehicles. Some evaluation tests were performed on a real testbed.

A UAV routing problem described by Sundar and Rathinam [85] was modeled as

a single-vehicle VRP with a refueling constraint. A UAV must visit each target at

least once without exceeding its capacity. The capacity can be renewed in multiple

ground stations. The total travel cost is minimized. The problem was solved in

two steps. First, an initial solution is found by constructing a TSP-route with Lin-

Kernighan-Helsgaun algorithm and inserting charging stations whenever required.

The second step is to improve the obtained solution by 2-opt, 3-opt or adjacent one

point exchange.

2.6 Summary

State of the art in artificial intelligence and operational research communities con-

siders a number of related problems. Most problems do not consider renewal of the

energy capacity or allow an infinite number of renewals. Due to a number of reasons,

in many application cases such as disaster area monitoring, infinite recharging of ve-

hicles might not be feasible. The other essential issue is the goal function, as most of

the problems apart from the patrolling task minimize a metric not related to maxi-

mal information gain, for example, total travel distance or number of vehicles. To the

best of our knowledge, there exists no problem that covers all aspects of the aerial

monitoring with limited energy resources at replenishment facilities. This thesis aims

to fill this gap as an attempt to draw more attention to this real-life problem.
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Chapter 3

Solution Procedures

As we mentioned earlier, the CMP and its extensions are generalizations of the vehicle

routing problem, which is an NP-hard problem. Therefore, they are also NP-hard,

and there exists no polynomial time algorithm to find the optimal solution. This

implies that the real-life scenarios can be solved in reasonable time only by a heuristic

approach.

The remainder of this chapter is organized as follows. We provide some general

information on the related approaches in Section 3.1. We proceed with the solving

methods for the CMP in Section 3.2, the CMPID in Section 3.3 and the CMPIDP

in Section 3.4. Section 3.5 explains the constraint programming model, used to ob-

tain the optimal solutions. We conclude with the details on applying the proposed

heuristics to the problems with dynamic environment in Section 3.6.

3.1 Related Heuristics

3.1.1 Clarke and Wright Algorithm

This heuristic (that is also known as savings algorithm) was introduced by Clarke

and Wright in 1964 [21] and is still widely used due to its simplicity and short com-

putational time. It solves the vehicle routing problem with heterogeneous fleet, where

trucks deliver the requested merchandise to a large number of customers from a single

depot. The goal is to construct such routes (at most one per vehicle) that fulfill de-

mands of the customers with minimal traveled distance and do not exceed capacities

of the vehicles.

The method is based on a ‘savings’ value that stands for the distance-wise ben-

efit from connecting two customers in one route. The algorithm starts with single-

customer routes starting and finishing at the depot. Then the savings value is com-
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puted for every pair of customers i and j as the distance saved when the customers

are visited in one route:

s
i,j

= (d0,i + d
i,0 + d0,j + d

j,0)� (d0,i + d
i,j

+ d
j,0) = d

i,0 + d0,j � d
i,j

,

where d0,i, ..., dj,0 are the distances between two points, point 0 is the depot, points i

and j are the customers. The routes before and after connecting customers i and j

as well as their travel distances are depicted in Figure 3.1. Non-directed edges depict

single-customer routes.

0

i

j

0

i

jd0,i

dj,0

di,j

Length: d0,i + di,0 + d0,j + dj,0 d0,i + di,j + dj,0

Figure 3.1: Routes before and after the points i and j are connected.

The remaining steps of the savings algorithm are as follows. All possible pairs of

customers are ordered by their savings value in descending order. Then the algorithm

iteratively joins the routes. For this, it takes the next not explored pair of customers

with the maximal savings value. It connects these points if:

• they belong to di↵erent routes;

• both points are connected to a depot via at least one direct edge;

• after removing the two routes, there is a vehicle with su�ciently large capacity

for the new joint route.

Figure 3.2 illustrates the workflow of this algorithm on a small example with six

points and one vehicle. Savings values are reported in the savings table and colored

so that the higher values have darker shade of gray. First, the customers 4 and 5 are

connected, as they have the highest savings value. The next highest savings value

belong to customers 2 and 4 that are therefore connected next. The third highest

savings value has a pair 3 � 4. However, point 4 violates the seconds condition, as

it is in the middle of the route. Thus, these two points are not connected and the

algorithm proceeds to the next pair. The last image depicts the complete solution.
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A table with savings values
Nodes 1 2 3 4 5 6

1 0.00 18.76 7.20 6.79 1.83 0.56
2 18.76 0.00 26.41 34.54 18.60 2.58
3 7.20 26.41 0.00 31.93 23.76 7.37
4 6.79 34.54 31.93 0.00 36.46 11.62
5 1.83 18.60 23.76 36.46 0.00 19.36
6 0.56 2.58 7.37 11.62 19.36 0.00
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Figure 3.2: Sequential route construction by the Clarke and Wright algorithm.

3.1.2 Solomon’s Insertion Heuristic

Solomon proposed a heuristic approach for a vehicle routing problem with time win-

dows in 1987 [82]. In his formulation, the problem minimizes a weighted sum of the

total travel distance and waiting time. Vehicles have limited capacity but the number

of vehicles is unlimited.

As described in [82],the insertion heuristic constructs one route at a time by

inserting one point after the other until all points have been visited. The following

steps are used:

1. Start a new route with a selected customer. Solomon suggested several selection

parameters such as a maximal travel distance or an earliest deadline;

2. For every unrouted customer chose the best feasible insertion position that

does not violate the capacity and time windows constraints. The most e�cient

selection criteria of Solomon combines distance- and time-based parameters.
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Given a customer u and a position between consecutive customers i and j, the

distance-based parameter is computed as follows:

c11(i, u, j) = d
i,u

+ d
u,j

� µ · d
i,j

, µ � 0 ,

where d
i,u

, d
u,j

and d
i,j

are the distances between the corresponding customers,

µ is a coe�cient of the algorithm. The parameter c11(i, u, j) shows how much

the travel distance of the route would increase if the point u is inserted.

The time-based parameter defines how much later the service at the customer j

will start after the insertion:

c12(i, u, j) = bnew
j

� b
j

,

where b
j

and bnew
j

are the service start times of the customer j before and after

the insertion.

Finally, the best position for the customer u is between consecutive customers

i⇤ and j⇤ that minimizes the following function:

c1(i, u, j) = ↵1 · c11(i, u, j) + ↵2 · c12(i, u, j) , ↵1 + ↵2 = 1 , ↵1 � 0,↵2 � 0,

where ↵1 and ↵2 are the coe�cients defining the importance of each parameter.

3. Select the best feasible unrouted customer. For instance, the following metric

can be used:

c2(i, u, j) = � · d0,u � c1(i, u, j) , � � 0,

where d0,u is the distance from the depot to the candidate customer u, � is a

coe�cient of the algorithm.

It interesting that if ↵1 = 1,↵2 = 0, µ = 1,� = 1 then this function equals to

savings from inserting u between customers i and j.

4. If a customer was selected, insert it at the corresponding best position and go

to step 2. If all points are scheduled, return the obtained solution; otherwise,

go to step 1.

The criteria c1 and c2 are also called evaluation functions. These functions should

reflect the optimization criteria of the problem but are not equal to it. The reason

for that is that they measure quality of a partial solution that is required for route

construction. The goal function of a problem, on the contrary, evaluates the complete

solution and therefore cannot be used for constructing the routes.
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3.1.3 Variable Neighborhood Search

The first works on the variable neighborhood search (VNS) were presented in [59] and

[60]. It is a metaheuristic that includes multiple neighborhood operators instead of a

single one to systematically explore solution neighborhoods. During the exploration

a local search routine refines solutions obtained by the neighborhood operators.

The VNS starts with an initial solution obtained by using a construction heuristic

and iteratively improves it. A set of operators N
k

(k = 1, . . . , k
max

) can be applied

to the current state (current solution) resulting in a set of successor states. The set

of successor states generated by applying an operator N
i

is a neighborhood of the

current solution. A state is randomly selected from the neighborhood and improved

by local search techniques. Then an acceptance phase evaluates whether the current

solution is accepted or not based on the achieved improvements. If a solution is

not accepted, the neighborhood is switched to the next one, i.e., another operator is

applied. In short, the basic VNS steps are as follows:

1. Obtain a feasible initial solution x
i

by exploiting a construction heuristic. Select

a set of operators with cardinality k
max

which will be applied to modify a

solution. Choose a stopping condition, e.g., a limit on computational time or

on the number of iterations.

2. Initialize current solution x x
i

. Repeat the following steps until the stopping

condition is met:

(a) Set index of operator k  1;

(b) Repeat the steps below until k = k
max

:

i. Shaking. Generate a new solution x0 by applying kth operator to the

current solution;

ii. Local search. Apply a local search method to x0 which outputs x00 as

a local optimum;

iii. Acceptance phase. If the local optimum x00 is better than the solution x

or another acceptance criterion is met, set x  x00 and continue to

search starting with the first operator (k  1); otherwise, set k  
k + 1.

This method and its variations were used for a large number of problems like the

TSP and the VRP in the last two decades. For more details on the VNS-related state

of the art reader is forwarded to a survey by Hansen et al. [37].
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3.2 Solving Continuous Monitoring Problem

Let us describe the heuristics developed for the CMP. We use an approach, where the

initial solution can be constructed by a modified Clarke and Wright algorithm (CW)

or a queue-based insertion heuristic (QI). Then it is iteratively improved by using a

variable neighborhood search (VNS).

3.2.1 Modified Clarke and Wright Algorithm

The original Clarke and Wright algorithm (see Section 3.1.1) was proposed for the

vehicle routing problem with restricted vehicle capacity and unlimited number of

vehicles. There are several aspects in which the CMP di↵ers from this problem (see

Table 3.1).

Vehicle routing problem Continuous monitoring problem
• single depot • multiple depots
• every point is visited exactly once • multiple visits at every point
• unlimited number of vehicles • limited number of vehicles
• every vehicle has at most one route • every vehicle can have multiple trips,

number of trips is limited by the number
of available batteries

Table 3.1: Di↵erences between the CMP and the vehicle routing problem described
by Clarke and Wright

The following extensions are incorporated into the savings algorithm to deal with

the di↵erences listed above:

• for multiple depots : savings value for every pair of points (i, j) is calculated with

respect to the closest base station x 2 N
b

, i.e., x arg min
x

02Nb
(d

x,i

+ d
x,j

);

• for multiple visits of points : routes for every coverage of the whole area are

computed separately by applying the savings algorithm;

• for multiple trips, limited number of batteries and vehicles : the savings algo-

rithm is applied until no more batteries are available or mission time is reached

for all vehicles. Initially the modified savings algorithm starts with an empty set

of routes as opposed to single-point routes like in the original savings algorithm.

Later, when two points i and j are included in route station� i� j � station,

the route is assigned a vehicle that can follow this route without exceeding its

capacity. If there is no such vehicle, this route is not created.

33



Algorithm 1 describes the main steps of the modified Clarke and Wright algorithm:

compute and sort savings values S in descending order (lines 2–8), build routes for

one coverage at a time (lines 9–28). As explained above, savings values are calculated

with respect to the closest base station.

Algorithm 1: Modified Clarke and Wright algorithm
input : problem description
output: a set of routes R = {R

v

|v 2 V }
1 R {} ;
2 S  () ;
3 for i, j 2 N

p

(i 6= j) do
4 x arg min

x

02Nb
(d

x,i

+ d
x,j

) ;
5 s

i,j

 d
i,x

+ d
x,j

� d
i,j

;
6 S  S [ s

i,j

;
7 end
8 sortDecending(S) ;

9 repeat
10 R

cur

 {} ;
11 for s

i,j

2 S do
12 r

i

 r
x

2 R
cur

, where i 2 r
x

;
13 r

j

 r
y

2 R
cur

, where j 2 r
y

;

14 if r
i

= null and r
j

= null then
15 v  chooseVehicle(i, j) ;
16 if v 6= null then
17 r

new

 (homeSt
v

, i, j, homeSt
v

) ;
18 R

cur

 R
cur

[ r
new

;
19 nBat

homeStv ,typev -- ;
20 end
21 end

22 else if violateNoConstraint(i, j, r
i

, r
j

) then
23 r

new

 join(i, j, r
i

, r
j

) ;
24 R

cur

 R
cur

[ r
new

;
25 end
26 end

27 R R [R
cur

;
28 until

P
t2T nBat

t

= 0;

To construct routes for the current coverage R
cur

, the algorithm sequentially con-

siders every pair of points in the savings list. Depending on the status of the points,

there are di↵erent conditions for connecting them:
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1. Both points of a savings pair are not in the routes R
cur

. They form a new route,

if there is a vehicle that can visit them without violating any of the constraints.

Such vehicle is selected by function chooseVehicle(i, j) so that its current

mission time is minimal, its capacity or maximal mission time are not exceeded

and there is a spare battery to perform the new route.

2. At least one savings point is in the routes R
cur

. The points are connected if

they are not in the same route or in the middle of a route, and the joint route

does not violate the capacity and maximal mission time constraints. This is

ensured by function violateNoConstraint(i, j, r
i

, r
j

) that returns true in

case of success.

The routes are merged by function join(i, j, r
i

, r
j

). If both points are in the

existing routes, these routes are merged. Then a vehicle requires only one spare

battery instead of two and the needless battery is returned to the list of available

batteries. If one of the points is not in R
cur

, it is simply added to the route of

the second point.

If neither of the conditions hold, no connection between the two points is added.

3.2.2 Queue-based Insertion Heuristic

Solomon introduced the original insertion heuristic for the vehicle routing problem

with time windows (VRPTW) [82]. The CMP di↵ers from the VRPTW in several

aspects such as multiple visits per point and no time windows. Therefore, a new

insertion heuristic has to be adapted to the CMP. In particular, it has to define a

more suitable evaluation function and an order in which picture points will be inserted.

A good solution for the continuous monitoring problem is the one where the points

are visited with nearly equal frequencies. Consequently, an e�cient algorithm should

avoid a situation where some points have significantly more visits than the others.

Therefore, all picture points are placed in a queue Q = (q1, ..., qm) that defines an

order in which they will be inserted. In every step the first point of the queue Q is

considered for insertion. Initially the points in the queue are ordered in ascending

order by their value lvt
p

, which is the time di↵erence since the last visit.

Our evaluation function chooses a vehicle (1) whose last visited point is located

as close as possible to the insertion point q1 and (2) that can arrive at the insertion

point the earliest. These parameters aim at optimizing the distance traveled by every
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vehicle, and minimizing the time between visits at the insertion point, respectively.

The evaluation function combines these conflicting goals by using a weighted sum:

g(q1, v) = ↵1 · d(v, q1) · scale+ ↵2 · art(v, q1) , ↵1 + ↵2 = 1,↵1 � 0,↵2 � 0 ,

where q1 and v are the point and vehicle considered for insertion, d(v, q1) is the dis-

tance between the last point visited by v and point q1, art(v, q1) is the possible arrival

time of vehicle v at point q1. The scale coe�cient brings the distance parameter to

the same order of magnitude as arrival time and equals 10 to the corresponding power.

The weights ↵1 and ↵2 reflect how much every parameter, i.e., distance and arrival

time, influences the final decision.

Values of the coe�cients should be chosen for a type of instances, i.e., number of

vehicles, size of an area and presence of large obstacles. As soon as the values are

selected for a type, no further tuning is required for new instances of the same type.

The best values of the coe�cients for some types are reported in Section 4.1.2.

Steps of the queue-based insertion heuristic are shown in Algorithm 2. First,

the algorithm constructs a queue Q and initializes the first routes of the vehicles by

inserting their initial locations (lines 1–3). After that, the heuristic iteratively extends

the routes. In every iteration, if possible, the first point of the queue is added to the

last route of the selected vehicle bestVehicle; otherwise, it is removed from the queue.

The insertion loop terminates when there are no more points in the queue. Then

the algorithm adds the final stations where UAVs will land and returns the obtained

solution R.

The main loop (lines 4–30) starts by setting initial values to the following vari-

ables: vehicle bestV ehicle that will visit the first queue point q1, the corresponding

evaluation value minV alue and the flag change indicating whether a battery change

is required.

The for-loop selects bestV ehicle among the vehicles that can visit the point q1

without exceeding the mission time limit. Every vehicle is evaluated in several steps.

First, if after visiting point q1 a vehicle cannot reach its home station with its on-

board capacity, it must replace its battery at the home station before visiting the

point. This condition is indicated by the function needBatChange(v,R
v

,q1) re-

turning true. Then, if 1) no other vehicle visits the point at the same time, i.e.,

noCollision(v,R
v

, q1, homeSt
v

) = true, where the last argument is the station for

a vehicle to change the battery before visiting point q1 if required, and 2) the new

evaluation value is better than the best so far, this vehicle is selected. The variable

change is set to the value returned by the function needBatChange(v,R
v

,q1).

36



Algorithm 2: Queue-based insertion heuristic
input : problem description
output: a set of routes R = {R

v

|v 2 V }
1 Q (q1, ..., qm) s.t. 8i 2 [1,m� 1] , lvt

qi  lvt
qi+1 , q

i

, q
i+1 2 N

p

;
2 R {} ;
3 for v 2 V do R

v,1.add(inLocv) ;

4 repeat
5 bestV ehicle null ;
6 change false ;
7 minV alue 1 ;

8 for v 2 V s.t. noMTimeViolation(R
v

, q1) do
9 if needBatChange(v,R

v

,q1) then
10 if noCollision(v,R

v

, q1, homeSt
v

) and g(q1, v) < minV alue then
11 bestV ehicle v ;
12 change true ;
13 minV alue g(q1, v) ;
14 end
15 else
16 if noCollision(v,R

v

, q1, null) and g(q1, v) < minEvalV alue then
17 bestV ehicle v ;
18 change false ;
19 minEvalV alue g(q1, v) ;
20 end
21 end
22 end

23 if bestV ehicle = null then
24 Q Q\q1 ;
25 else
26 Q (q2, ..., q|Q|, q1) ;
27 end

28 if change then R
bestV ehicle

.initializeNewRoute() ;
29 R

bestV ehicle,last

.add(q1);
30 until Q = ;;
31 addFinalStations();
32 return R;
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If no vehicle remain that can visit point q1, then this point is removed from the

queue; otherwise, it becomes the last point in the queue. This way algorithm ensures

that the other points will be considered in the next steps.

If insertion is feasible, the point is added to the last route of the selected vehicle. If

required, a new route is initialized before the insertion so that the on-board capacity

is renewed.

3.2.3 Variable Neighborhood Search

In order to apply the VNS to a specific problem or to a class of problems, the following

three components should be defined: computation of an initial solution, modification

procedures for shaking and local search steps, and acceptance strategy. An initial

solution is computed by using either the CW or the QI heuristics described in the

previous sections. The other two components are described below.

The purpose of the shaking step (see Section 3.1.3, step 2(b)i) is to modify the

current solution in order to give way for improvements and escape from the local

optimum. For this, various neighborhood operators are applied to the solution.

Cross-exchange [86] and move [78] operators are the most widely used inter-route

operators [41]. The cross-exchange operator exchanges two equally long sequences of

points of two routes. For instance, in Figure 3.3a, sequences (x1, ..., y1) and (x2, ..., y2)

are removed from their initial routes r1 (black) and r2 (gray) and are inserted in the

other routes r2 and r1, respectively. The move operator relocates a sequence of points

from one route to another. Sequence (x1, ..., y1) is removed from its initial route and

is added to another route as shown in Figure 3.3b. Both operators choose routes,

sequences and their lengths randomly. The sequence length can take any values up to

the maximal allowed sequence length shown in Table 3.2 for every applied operator.

Variable n is the shortest length of the two chosen routes; k is the sequential number

of an operator (see Section 3.1.3).

a) cross-exchange b) move

Figure 3.3: Neighborhood operators for the shacking step
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Monitoring is more e�cient if picture points are visited more often. Therefore, in

addition to the cross-exchange and move operators we introduce an insert operator

which inserts points at random positions into a randomly chosen route. Table 3.2

shows the maximal possible number of insertion points for this operator. We use the

order of the neighborhood operators that is determined by our experiments described

in Section 4.1.2.

k Operator Maximal sequence length
1 move min(1, n)
2 move min(2, n)
3 move min(3, n)
4 cross min(1, n)
5 cross min(2, n)
6 cross min(3, n)
7 cross min(4, n)
8 cross min(5, n)
9 cross min(6, n)

Maximal number of points
10 insert min(1, n)
11 insert min(2, n)
12 insert min(3, n)

Table 3.2: Neighborhood structure for the continuous monitoring problem, where k
is the sequential number of an operator in the neighborhood

After the shaking step, every modified route is optimized by a local search (see

Section 3.1.3, step 2(b)ii). For the local search phase we apply the commonly used

2-opt and 3-opt strategies depicted in Figure 3.4. These strategies are special cases

of the k-opt [51], [39] algorithm.

The k-opt reconnects every combination of k arcs in a route in all possible ways

so that the result is still a route. If the new route has a better cost value, it is

accepted. In our implementation, travel distance of a route is used as a cost function,

as it reduces the energy consumption and, consequently, more points can be inserted

in the route. Since this cost function is based only on the local information about

a single route, it is very time-e�cient. The reconnection procedure is applied until

there are no more possible improvements. The obtained solution is called k-optimal.

The computational time of the k-opt increases exponentially with k. However,

larger k rarely are beneficial. Therefore, it is a common practice to apply only 2-opt

and 3-opt.
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a) 2-opt b) 3-opt

Figure 3.4: Local search procedures

The purpose of the last step, acceptance phase, is to determine whether to

keep or discard the current solution. The acceptance phase exploits various strategies

depending on the number of feasible solutions and their distribution in the solution

space. For example, the first improved strategy used in this thesis accepts only

solutions with a better cost. While exploration of the solution space is still supported

due to the random components of the neighborhood operators, this strategy focuses

more on exploiting. It allows us to achieve significant improvements in short time.

Another commonly used acceptance strategy is the simulated annealing by Kirk-

patrick et al. [47]. Along with improved solutions, it also accepts non-improved

solutions with a certain probability, which decreases over time. Our preliminary

studies show that the simulated annealing does not give significant improvements for

our real-life scenarios within the given 5-minutes time slot and, therefore, the first

improved strategy was preferred.

3.3 Solving CMP with Inter-Depot Routes

The CMPID di↵ers from the CMP in one major aspect - it allows vehicles to travel

between the stations. This limits applicability of the CMP methods to this problem

and a↵ects their performance.

The Clarke and Wright algorithm as well as the proposed modified version has a

high computational speed and simplicity, but lacks flexibility [23]. It cannot be easily
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adapted to the inter-depot extension and is therefore discarded, regardless of its good

performance on the CMP instances.

The idea behind insertion heuristics is very general: they iteratively extend a

solution, one point at a time, based on a metric. In order to adapt an insertion

heuristic to a new constraint, it is su�cient in many cases to change only its metric.

In this section, two new insertion heuristics for the CMPID are introduced: inter-

depot insertion heuristic (IDIH) in Section 3.3.1 and IDIH with battery reservations

(IDIH-Reserve) in Section 3.3.2. Some details on the VNS for the CMPID are given

in Section 3.3.3.

3.3.1 Inter-Depot Insertion Heuristic

The inter-depot insertion heuristic does not exploit the queue principle from the

queue-based insertion heuristic (see Section 3.2.2). Instead, the IDIH selects both a

vehicle and a point for insertion based on an evaluation function. This enables the

exploration of more point-vehicle combinations.

The aforementioned evaluation function selects a point-vehicle pair based on three

parameters: traveling distance from the vehicle’s position to the point, last visit time

of the point, and expected arrival time. The first parameter aims at minimizing the

total travel distance of a vehicle. Minimizing the last visit time directs the search

towards the points that have not been visited the longest. Finally, minimizing the

arrival time algorithm indirectly minimizes time delays between visits of the points.

The evaluation function combines these parameters as follows:

g0(p, v) =↵1 · d(v, p) + ↵2 · ⌧p + ↵3 · art(v, p) ,

↵1 + ↵2 + ↵3 = 1,↵1 � 0,↵2 � 0,↵3 � 0 ,

where p and v are a point and a vehicle considered for insertion, d(v, p) is the dis-

tance from the last point visited by vehicle v to point p, ⌧
p

is the last visit time of the

point, art(v, p) is the expected arrival time of vehicle v at point p. The arrival time

is measured from the beginning of the mission and takes into account the current

routes of vehicle v. Coe�cients ↵1,↵2 and ↵3 dictate the influence of each param-

eter. Section 4.2.2 suggests the best values of the coe�cients based on performed

evaluations.

The workflow of the IDIH is presented in Algorithm 3. First of all, a route is

created for every vehicle v by adding its given initial location inLoc
v

as the first

element. Then the main loop in lines 3–35 inserts new points to the solution, one at

a time. It terminates when no point-vehicle pair is selected (line 29).
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Algorithm 3: Inter-depot insertion heuristic
input : problem description
output: a set of routes R = {R

v

|v 2 V }
1 R {};
2 for v 2 V do R

v,1.add(inLocv) ;
3 repeat
4 bestV ehicle null;
5 bestPoint null;
6 bestChStation null;
7 minV alue 1;

8 for v 2 V do
9 for p 2 N

p

s.t. noMTimeViolation(R
v

, p) and p 6= lastPoint(v)
do

10 if needBatChange(v,R
v

,p) then
11 chStation computeStation(v,R

v

, p);

12 if chStation 6= null and noCollision(v, R
v

, p, chStation) and
g0(p, v) < minV alue then

13 bestV ehicle v;
14 bestPoint p;
15 bestChStation chStation;
16 minV alue g0(p, v);
17 end
18 else
19 if noCollision(v,R

v

, p, null) and g0(p, v) < minV alue then
20 bestV ehicle v;
21 bestPoint p;
22 bestChStation null;
23 minV alue g0(p, v);
24 end
25 end
26 end
27 end

28 if bestV ehicle = null then
29 break;
30 end

31 if bestChStation 6= null then
32 R

bestV ehicle

.initializeNewRoute(bestChStation);
33 end
34 R

bestV ehicle,last

.add(bestPoint);
35 until false;

36 addFinalStations();
37 return R;
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The algorithm first assigns initial values of the main variables: a vehicle bestV ehicle

and a point bestPoint for the insertion, their value minV alue of the evaluation func-

tion g0(p, v) and an intermediate base station bestChStation, where vehicle bestV ehicle

will renew its capacity if it is required (otherwise, bestChStation is equal to null).

The algorithm selects a point-vehicle pair that has the minimal value of the eval-

uation function and does not violate the following constraints:

• after visiting point p, vehicle v can still land at a station before the end of

mission time mt. It is ensured by function noMTimeViolation(R
v

, p);

• point p was not the last point at the last route of vehicle v (the second condition

in line 9), i.e., a vehicle cannot visit the same point again without visiting at

least one other point or station;

• no other vehicle will visit the point at the same expected arrival time. This

is indicated by function noCollision(v,R
v

, p, chStation) returning true. The

last argument of this function is an intermediate station for changing a battery,

if required;

• visiting point p does not cause violation of the battery capacity constraint.

The last condition is ensured by the following steps. The algorithm checks if

vehicle v can visit point p and land at a station with its remaining on-board capacity.

In case of success, function needBatChange(v,R
v

,p) returns false. Otherwise, the

vehicle must change its battery at an intermediate station before visiting the point.

The intermediate station is chosen by function computeStation(v, R
v

, p) described

in Algorithm 4. The station must be reachable by vehicle v, have a spare battery of

the corresponding type, and have the shortest distance to the insertion point and the

current vehicle’s location. If there is no such base station, this function returns null.

This means that point p cannot be visited by vehicle v without violating the capacity

constraint, and, therefore, this point-vehicle pair is not considered as a candidate for

insertion.

3.3.2 Inter-Depot Insertion Heuristic with Reservations

The IDIH with battery reservations (IDIH-Reserve) extends the IDIH with a bat-

tery reservation procedure that includes a negotiation mechanism. The purpose of

this mechanism is to distribute batteries among vehicles as evenly as possible. It en-

ables the simultaneous use of the maximal number of vehicles and, as a consequence,

achieves a better visitation frequency.
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Algorithm 4: Function computeStation(v,R
v

, p)

1 bestStation null;
2 minDist 1;
3 for b 2 N

b

do
4 if d

v,b

+ d
b,p

< minDist and nBat
b,typev > 0 and canReach(R

v

, b) then
5 minDist d

v,b

+ d
b,p

;
6 bestStation b;
7 end
8 end
9 return bestStation;

Let us now explain the basic steps of the IDIH-Reserve. These steps are based on

the assumption that the available batteries are su�cient for all vehicles to fly until the

end of the mission. The steps needed if this assumption does not hold are explained

afterwards.

The basic steps of the IDIH-Reserve heuristic are presented in Algorithm 5. As the

IDIH, it first initializes the routes of the vehicles by inserting their initial locations.

Then the heuristic iteratively adds one point at a time to the last route of a vehicle.

Both a point and a vehicle are selected based on the evaluation function so that no

constraints are violated. The iterations terminate when no more points can be added

to a solution.

The di↵erences between the IDIH-Reserve and the IDIH are the following:

1. The IDIH-Reserve introduces a battery reservation mechanism based on auc-

tions. The goal of the reservation mechanism is to ensure that, at any time dur-

ing the solving process, every vehicle has at least one reachable battery reserved

for its next flight. It is implemented via the procedures reserveBatteries(v)

for initial reservations, and updateReservations(bestV ehicle, bestChStation)

for keeping the reservations up-to-date. More details about the procedures are

given below.

2. The IDIH-Reserve extends the function needBatChange(v,R
v

,p). This func-

tion determines if vehicle v must visit an intermediate station before traveling

to point p. In the IDIH, the visit was required only if vehicle v could not reach a

station after visiting point p. The IDIH-Reserve considers a second case, when

the battery change is needed. It applies if a vehicle can reach some stations

but cannot change its battery in any of them. This one-step lookahead proce-
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Algorithm 5: Inter-depot insertion heuristic with battery reservations
input : problem description
output: a set of routes R = {R

v

|v 2 V }
1 R {} ;
2 for v 2 V do R

v,1.add(inLocv) ; reserveBatteries(v) ;
3 repeat
4 bestV ehicle null ;
5 bestPoint null ;
6 bestChStation null ;
7 minV alue 1 ;

8 for v 2 V do
9 for p 2 N

p

s.t. noMTimeViolation(R
v

, p) and p 6= lastPoint(v)
do

10 if needBatChange(v,R
v

,p) then
11 chStation computeStation(v,R

v

, p);

12 if chStation 6= null and noCollision(v, R
v

, p, chStation) and
g00(p, v) < minV alue then

13 bestV ehicle v ;
14 bestPoint p ;
15 bestChStation chStation ;
16 minV alue g00(p, v);
17 end
18 else
19 if noCollision(v,R

v

, p, null) and g00(p, v) < minV alue then
20 bestV ehicle v ;
21 bestPoint p ;
22 bestChStation null ;
23 minV alue g00(p, v) ;
24 end
25 end
26 end
27 end

28 if bestV ehicle = null then break ;
29 if bestChStation 6= null then
30 R

bestV ehicle

.initializeNewRoute(bestChStation);
31 end
32 R

bestV ehicle,last

.add(bestPoint);
33 updateReservations(bestV ehicle, bestChStation);
34 until false;

35 addFinalStations();
36 return R;
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dure helps to avoid the situation in which a drone has to terminate its mission

prematurely, as it can only reach stations without energy supplies.

3. Another modified function is computeStation(v,R
v

, p). This function selects

an intermediate base station for vehicle v to renew its capacity. In the IDIH,

the chosen intermediate station must be reachable by vehicle v and have the

minimal distance to both point p and the last point visited by v. In contrast

to the IDIH, the IDIH-Reserve prefers the base stations that have the shortest

distance only to point p. This selection criteria saves the maximal amount of

energy for the next route, while still fulfilling the capacity constraint.

4. The evaluation function of the IDIH-Reserve is based on relative time-based

parameters instead of absolute ones. The function is discussed in detail later.

The main steps of the reservation procedure reserveBatteries(v) are depicted

in Algorithm 6. In lines 1–6, vehicle v is assigned one battery from each station

that 1) is reachable by v and 2) has a non-reserved battery of the corresponding

type. The reservations resBatIn
v

of vehicle v are defined as a set of stations that

fulfill the aforementioned constraints. If vehicle v could not reserve any battery at

any station, it would not be able to continue its mission after it uses all capacity

on board. Therefore, to receive a battery for the next flight, vehicle v initiates an

auction involving vehicles of the same type. During the auction such vehicles o↵er

every reserved battery for which the following conditions are fulfilled. First of all, an

o↵ering vehicle must have more than one reserved battery. Secondly, it o↵ers every

battery that is in a station that the initiating vehicle v can reach. Then vehicle v

selects the best o↵er, which is a battery located at the closest station. In case of ties,

o↵ering vehicles with more reserved batteries are preferred.

After the initialization steps, the two for -loops of the IDIH-Reserve iterate through

all possible point-vehicle pairs to select a feasible combination with the minimum

evaluation value. The selected pair must fulfill the same set of constraints as in the

IDIH with the aforementioned enhancements.

If a point-vehicle pair was selected, the heuristic performs insertion and updates

battery reservations for the selected vehicle. The reservations are updated by us-

ing the procedure updateReservations(bestV ehicle, bestChStation). This proce-

dure is similar to reserveBatteries(v) with the only di↵erence that all previous

reservations of bestV ehicle must be canceled before making new ones. Since vehicle

bestV ehicle will use a battery from station bestChStation, one battery is removed

from this station.
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Algorithm 6: Negotiation-based function reserveBatteries

input : vehicle v
output: updated reservations 8v0 2 V resBatIn

v

0

1 for b 2 N
b

, nBat
b,typev > 0 do

2 if d
inLocv ,b/speedtypev  inRemCap

v

then
3 resBatIn

v

.add(b) ;
4 nBat

b,typev  nBat
b,typev � 1 ;

5 end
6 end

7 if |resBatIn
v

| = 0 then
8 bestV ehicle null ;
9 bestStation null ;

10 for v0 2 V, type
v

0 = type
v

, v0 6= v, |resBatIn
v

0 > 1| do
11 for b0 2 resBatIn

v

0 do
12 if d

inLocv ,b
0/speed

typev  inRemCap
v

then
13 if bestVehicle = null then
14 bestV ehicle v0 ;
15 bestStation b0 ;
16 else
17 if (d

inLocv ,b
0 < d

inLocv ,bestStation) or
(d

inLocv ,b
0 = d

inLocv ,bestStation and
18 resBatIn

v

0 > resBatIn
bestV ehicle

) then
19 bestV ehicle v0 ;
20 bestStation b0 ;
21 end
22 end
23 end
24 end
25 end
26 if bestV ehicle 6= null then
27 resBatIn

bestV ehicle

.remove(bestStation);
28 resBatIn

v

.add(bestStation);
29 end
30 end
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An evaluation function, as mentioned before, reflects the optimization criteria but

is not equal to it. The evaluation function of the IDIH-Reserve selects a point and a

vehicle to be inserted, based on the three parameters:

• distance from the current position of a vehicle to a point. This parameter

minimizes the total travel distance;

• arrival time of a vehicle at a point. When this parameter is minimized, a vehicle

with the shortest duration of the current schedule is selected;

• time of the last visit at a point in order to select the longest waiting point.

Every time routes are extended, time-based parameters increase. On the contrary,

the distance parameter always stays within boundaries, because the distance matrix

is fixed. The influence of such controversial behavior on the selection process should

be minimized. Therefore, the evaluation function of the IDIH-Reserve uses relative

time-based parameters, i.e., parameters based on other variable measurements. Rel-

ative arrival time �art(v, p) is computed as art(v, p)�min
v

02V [cmt
v

0 ], the di↵erence

between the actual arrival time art(v, p) and the minimal current mission time of a

vehicle (see Figure 3.5). Relative time of the last visit �⌧
p

equals to ⌧
p

�min
p

02P [⌧
p

0 ],

the di↵erence between the last visit time ⌧
p

and the minimal last visit time among

all points (see Figure 3.6).

0
time

v1

v2

art(v1,p) 

art(v2,p) minv'�V(cmtv')

current mission 
time cmtv

arrival time 
art(v,p)

Figure 3.5: Illustration of the relative arrival time �art(v, p) for vehicles v1 and v2.

0
timep1

p2

p2

p1minp'�Np( p')

p3
last visit 
time p

previous 
visit time

p3 = 0

Figure 3.6: Illustration of the relative last visit time �⌧
p

for vehicles v1 and v2.
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Taking into account the aforementioned changes, the evaluation function of the

IDIH-Reserve is computed according to the following formula:

g00(p, v) =↵1 · d(v, p) + ↵2 ·�art(v, p) + ↵3 ·�⌧
p

; (3.1)

↵1,↵2,↵3 � 0; ↵1 + ↵2 + ↵3 = 1 ,

where d(v, p) is the distance that vehicle v has to travel to point p, �art(v, p) is the

relative arrival time of vehicle v at point p, �⌧
p

is the relative last visit time of point p.

Weight coe�cients ↵1,↵2 and ↵3 define which of the mentioned parameters influence

the final decision more. The coe�cient scale used in the IDIH is not required, as

all parameters have the same order of magnitude. Section 4.2.2 suggests the best

performing values of the coe�cients.

The steps described above are su�cient to solve the CMPID problem with a large

number of charged batteries. However, it is not as e�cient if not all drones can fly

simultaneously throughout the mission, due to the small number of batteries. Next

we describe how the IDIH-Reserve heuristic is extended to consider this case.

Monitoring tasks require that up-to-date information is provided throughout the

mission time. Therefore, in case of very limited energy resources, they should be

distributed among the vehicles so that the maximum number of them covers the whole

planning horizon. Such distribution is illustrated in Fig. 3.7. The figure depicts an

example in which two vehicles have to monitor three target points with four batteries.

The left image represents the battery distribution that can be achieved with the basic

steps. The image on the right demonstrates the optimal battery distribution: vehicle

1 utilizes all four batteries, whereas vehicle 2 is not deployed. This is the aim of an

extended version of the heuristic. In addition to covering the whole mission time,

minimizing the number of deployed vehicles has an additional advantage: it increases

safety especially for a challenging environment.The top charts show assignments of the

batteries to the vehicles. The bottom charts demonstrate the resultant distribution

of visits. Red lines indicate given mission time.

The second strategy can be extended further to consider cases when a vehicle has

not enough batteries to cover the whole mission time, e.g., in the aforementioned

example, vehicle 1 has only 3 batteries. For this purpose, a vehicle can stay at

the base stations longer than needed to renew its capacity. Such waiting time can

be distributed evenly between visits to the stations and computed as the remaining

time to cover, i.e., the di↵erence between the mission time and the maximal possible

mission time given the number of batteries, divided by the number of battery changes.
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Figure 3.7: Solution parameters for the IDIH-Reserve with the basic and enhanced
steps.

The extended IDIH-Reserve regulates distribution of the batteries according to

the following steps:

1. Estimate the number of batteries required for a UAV of each type to cover the

whole mission time:

nBatMT
t

=

⇠
mt� avgRemCap

t

batCap
t

+ tChBat
t

⇡
,

wheremt is the given mission time, avgRemCap
t

is the average initial remaining

capacity of vehicles of type t, batCap
t

is the battery capacity of this type,

tChBat
t

is the time required to change a battery.

2. Based on this estimation, compute the maximum number of vehicles of type t

that can fly until the mission ends:

maxNV eh
t

=
j
nBat

t

/nBatMT
t

k
,

where nBat
t

is the total number of batteries of this type. In case maxNV eh
t

<

1, the time tChBat
t

is increased s.t. maxNV eh
t

= 1, i.e., after changing its

battery a drone of type t will wait at the ground station in order to cover the

whole mission time.

3. Estimate the number of batteries that remain after all maxNV eh
t

vehicles

utilize their batteries:

nBatRemain
t

= nBat
t

� nBatMT
t

·maxNV eh
t

.

4. Start performing the basic steps of the IDIH-Reserve algorithm. As soon as

maxNV eh
t

vehicles of type t start their second route, an additional constraint

50



is imposed for vehicles of this type. Only these maxNV eh
t

vehicles are allowed

to change their batteries as long as required. If some batteries still remain

(nBatRemain
t

6= 0) then one more vehicle can use nBatRemain
t

batteries.

Other vehicles terminate their mission after finishing their first routes.

3.3.3 Variable Neighborhood Search

Within this implementation of the variable neighborhood search, an initial solution

is constructed by the IDIH or IDIH-Reserve. The other steps of the VNS for the

CMPID are discussed further.

In the shaking step a solution is modified by an operator in order to switch

to another solution in the neighborhood. The new operator replace is introduced

and applied together with the three operators used for the CMP problem: the insert

[54], move, and cross-exchange operators [41] (see Section 3.2.3). The move(x, ⌘)

operator relocates a sequence of ⌘ points from one route to another. The cross-

exchange(x,⌘) operator exchanges two sequences of ⌘ points between two di↵erent

routes. The insert(x,⌘) operator adds ⌘ new points, each at some position in a

chosen route. Finally, the replace(x,⌘) operator substitutes ⌘ routed points with

new points that have least number of visits. All sequences, points and routes are

selected randomly. These operators are applied in the following order: insert(x,⌘),

replace(x,⌘), move(x,⌘), exchange(x,⌘) with ⌘ = 1. The selection of both order and

value of ⌘ is discussed in Section 4.2.2.

Local search step performs only local optimization. For example, it can min-

imize the travel distance of each route modified during the shaking step. The VNS

for the CMPID is based on the reduced variable neighborhood search, a variation of

the VNS without local search [37]. Due to the inter-depot routes, complexity of the

problems increased comparing to the CMP. Therefore, the local search requires larger

computational e↵ort while delivering smaller improvements.

Acceptance phase determines whether the new solution provided by the local

search is accepted or not. This phase utilizes the same strategy as the VNS for the

CMP. It is called the first improvement strategy, because it selects every solution that

has a better value of the goal function.

3.4 Solving CMPID with Priorities

The objective of the CMPIDP is di↵erent to the CMP and CMPID problems solved

in the previous sections. The CMP and CMPID aim at distributing visits evenly over

51



the fixed mission time. The CMPIDP does not include the fixed mission time. Thus,

by minimizing the time lag between the visits, it minimizes the overall mission time

as well. Solution of the CMPIDP exploits all vehicles simultaneously to perform visits

with shorter time delays between visits. With the same number of charged batteries,

visits of a CMPID solution can be allocated farther from each other in order to cover

a fixed planning horizon.

Another distinction between the CMPIDP and the CMP/CMPID is the presence

of priorities. Priority of a point defines its importance and, as a consequence, the ratio

of its visit frequency as well as the visit frequency of the points with other priority

values.

An unlimited planning horizon makes the search space wider, whereas the priori-

ties lead to a more constrained problem. The restricted computational time as in the

CMP and CMPID and the increased complexity prevent the use of metaheuristics,

which produce improvements but are too time-consuming. Therefore, in this section

we focus on a construction heuristic. In case when the longer computational time is

acceptable, the VNS described in the previous section can be used.

3.4.1 Inter-Depot Insertion Heuristic with Reservations

This algorithm is the IDIH-Reserve heuristic adapted to the CMPIDP problem. This

was realized in the following two steps: eliminating the information about the fixed

mission time, and incorporating the priority-related information. The first step is

realized by utilizing only the basic steps without the battery redistribution and the

noMTimeViolation(R
v

, p) function (see Algorithm 2). During the second step the

evaluation function g00(p, v) (3.1) was modified as follows:

g000
pr

(p, v) = ↵1 · d(v, p) + ↵2 ·�art(v, p) + ↵3 ·�⌧
p

/(pr
p

)� + ↵4 · scale · nV is
p

/(pr
p

)�;

↵1,↵2,↵3,↵4, � � 0 ; ↵1 + ↵2 + ↵3 + ↵4 = 1 , (3.2)

where d(v, p) is the distance that vehicle v has to travel to visit point p, �art(v, p)

is the relative arrival time of vehicle v at point p, �⌧
p

is the relative last visit time

of point p, pr
p

is the priority of point p, nV is
p

is the number of visits made at point

p. More information on the relative coe�cients is given in Section 3.3.2. Coe�cient

scale brings the number of visits to the same order of magnitude as other parameters.

It was set to 100 for our scenarios. Coe�cient � defines the influence of priorities.

The bigger the �, the more points with higher priorities are preferred. The suggested

values of all coe�cients are reported in Section 4.3.2.
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3.5 Constraint-based Programming

In order to obtain optimal solutions, the continuous monitoring problem and its ex-

tensions were modeled as constraint optimization problems and solved by a constraint

programming solver. Further we describe the background terminology, and illustrate

modeling techniques on the traveling salesman problem. Then we discuss several

constraints from the models of the CMP, CMPID and CMPIDP.

A constraint satisfaction problem (CSP), also called a constraint network, is a

mathematical problem defined by a tuple (X,D,C), where X = {x1, x2, ..., xn

} is

the set of variables, D = {d1, d2, ..., dn} is the set of domains such that d
i

2 D is a

finite set of all possible values for variable x
i

2 X and C = {c1, c2, ..., cm} is a set of

constraints.

An assignment sets values from domains to variables. An assignment is complete

if every variable has an assigned value. An assignment is consistent if it satisfies all

constraints. A solution of a constraint satisfaction problem is a complete consistent

assignment.

Constraint optimization problem (COP) is a constraint satisfaction problem aug-

mented with a goal function. A solution of a COP is a complete consistent assignment

of values to variables that minimizes/maximizes the goal function.

Modeling of COPs is performed in a declarative way, i.e., it requires only a defi-

nition of solution properties in a form of constraints without specifying solving steps.

To solve the obtained model, a CP solver uses various search techniques like constraint

propagation and backtracking. More information on constraint processing techniques

can be found in [26].

Constraint optimization problems can be modeled with a constraint programming

(CP) language such as MiniZinc [63] and then solved by a CP solver. MiniZinc

is a declarative modeling language that allows to model both CSP and COP. This

language has a number of advantages. Due to its simplicity and expressivity, MiniZinc

is suitable for fast prototyping. A MiniZinc program consists of three major parts:

parameters and variable declarations, constraints as well as a solve statement. The

language supports definition of predicates and provides a set of global constraints.

Another advantage is that a MiniZinc model can be easily transformed to a FlatZinc

model which can be solved by many existing CP solvers, e.g., Gecode, Opturion CPX,

OR-Tools or Choco. In this thesis the CP solver Gecode [35] has been used as it has

won a number of the recent MiniZinc competitions in 2008–2012.
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Let us demonstrate the modeling techniques of the MiniZinc on a sample bin

packing problem (BPP) [34]. Given a set of objects, each with a predefined size, and

a set of bins with a limited capacity, the goal is to pack the objects into the minimal

number of bins.

The aforementioned input parameters can be defined in MiniZinc as shown in

Listing 3.1. Declaration of a parameter includes its type. MiniZinc supports such

basic types as integers (int), booleans (bool), floating point numbers (float), and

strings (string) as well as two composite types, arrays and sets. An array or a set

includes values of the same basic type. For example, the array size contains size of

every object that is integer. To declare an array, one must specify numbering of every

dimension and the type of its elements. The array size is one dimensional, and the

number of its elements equals nObjects, i.e., [1.. nObjects] defines the numbering.

1 int : nObjects ; % number o f ob j e c t s
2 array [ 1 . . nObjects ] of int : s i z e ; % the s i z e o f each ob j e c t
3 int : b i nS i z e ; % s i z e o f a bin
4 int : nBins ; % number o f a v a i l a b l e b ins

Listing 3.1: Declaration of the input parameters of the bin packing problem

Let us consider an example of the BPP instance. Three objects should be packed

into at most three bins. The sizes of the objects are 5, 10 and 3. The maximum load

of a bin is equal to 10. The listing below defines the described input in the MiniZinc

format.

1 nObjects = 3 ; s i z e = [ 5 , 1 0 , 3 ] ; b inS i z e = 10 ; nBins = 3 ;

Listing 3.2: An example of the bin packing problem instance

Next we define the decision variables that represent a solution, see Listing 3.3.

The decision variables are declared with their domain and a keyword var. A domain

can be specified either by the type of a variable or by a range (e.g., [1..10] ). The

array packed reflects assignment of objects to bins. If object o is loaded into bin b,

then the element packed[b,o] equals 1; and 0 otherwise. Note that the elements of this

array have the domain defined as a range [0..1] . The variable binLoad[b] is the total

size of objects packed into bin b. Its value cannot exceed the size of a bin, what is

ensured by its domain. The number of bins loaded with objects is defined as variable

nUsedBins. Its value must be minimized.

1 array [ 1 . . nBins , 1 . . nObjects ] of var 0 . . 1 : packed ;
2 array [ 1 . . nBins ] of var 0 . . b inS i z e : binLoad ;
3 var 0 . . nBins : nUsedBins ;

Listing 3.3: Declaration of the decision variables of the bin packing problem
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Constraints in MiniZinc are declared by a keyword constraint and a boolean ex-

pression. A simple boolean expression can be, for example, a relational expression

such as a > b. More complex expressions consist of simple expressions connected with

a boolean operator such as conjunction (/\), disjunction (\/), negation (not) and im-

plication (�>). Keywords forall and exists are used to generate multiple conjunctions

and disjunctions, respectively.

Listing 3.4 demonstrates how the constraints of the BPP can be represented. The

total load of every bin is computed by a built-in aggregation function sum in lines

2–4. The summands are defined by the expression size [o]⇤packed[b,o], where o and b

are replaced with elements of the sets {1.. nObjects} and {1.. nBins}, respectively. The
next statement in lines 6–8 guarantees that every object is packed in exactly one bin.

The equality in the last line counts the number of loaded bins. It uses a built-in

function bool2int that translates boolean values to integers: true is interpreted as 1,

and false as 0. Thus, the aggregate function sum counts the number of bins that fulfill

the condition binLoad[b] > 0.

1 c on s t r a i n t
2 f o r a l l (b in 1 . . nBins ) (
3 binLoad [ b ] = sum( o in 1 . . nObjects ) ( s i z e [ o ]⇤ packed [ b , o ] ) )
4 /\
5 f o r a l l ( o in 1 . . nObjects ) (
6 sum(b in 1 . . nBins ) ( packed [ b , o ] ) = 1 )
7 /\
8 nUsedBins = sum(b in 1 . . nBins ) ( boo l 2 i n t ( binLoad [ b ] > 0) ) ;

Listing 3.4: The constraints of the bin packing problem

The optimization objective of the classical BPP is to minimize the number of bins

as in Listing 3.5. The MiniZinc allows both minimization (keyword minimize) and

maximization (maximize) objectives and guarantees finding an optimal solution. To

solve a decision problem, the keyword satisfy should be used instead.

1 s o l v e minimize nUsedBins ;

Listing 3.5: The objective function of the BPP

Listing 3.6 summarizes the complete model of the bin packing problem. The last

line defines the variables that should be displayed in the output of the solver, i.e.,

nUsedBins and packed.

The remainder of the section describes several constraints of the CMP model. The

complete encodings of the CMP, CMPID and CMPIDP as well as an example of the

instances are given in Appendixes A and B.
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1 % INPUT
2 int : nObjects ; % number o f ob j e c t s
3 array [ 1 . . nObjects ] of int : s i z e ; % the s i z e o f each ob j e c t
4 int : b i nS i z e ; % s i z e o f a bin
5 int : nBins ; % number o f a v a i l a b l e b ins
6

7

8 % OUTPUT ( d e c i s i o n v a r i a b l e s )
9 % 1 i f an ob j e c t i s packed in a bin ; 0 otherw i se

10 array [ 1 . . nBins , 1 . . nObjects ] of var 0 . . 1 : packed ;
11

12 % the t o t a l s i z e o f ob j e c t s packed in to a bin
13 array [ 1 . . nBins ] of var 0 . . b inS i z e : binLoad ;
14

15 % number o f used b ins
16 var 0 . . nBins : nUsedBins ;
17

18 % CONSTRAINTS
19 c on s t r a i n t
20 % compute the t o t a l s i z e o f the ob j e c t s in a bin ;
21 % i t cannot exceed the s i z e o f a bin � i t i s ensured by the domain
22 f o r a l l (b in 1 . . nBins ) (
23 binLoad [ b ] = sum( o in 1 . . nObjects ) ( s i z e [ o ]⇤ packed [ b , o ] )
24 )
25 /\ % every ob j e c t i s packed exac t l y once
26 f o r a l l ( o in 1 . . nObjects ) (
27 sum(b in 1 . . nBins ) ( packed [ b , o ] ) = 1
28 )
29

30 /\ % ca l c u l a t e the number o f used b ins
31 nUsedBins = sum(b in 1 . . nBins ) ( boo l 2 i n t ( binLoad [ b ] > 0) ) ;
32

33 % minimize the number o f used b ins
34 s o l v e minimize nUsedBins ;
35

36 % PRINT
37 output [ show ( nUsedBins ) , show ( packed ) ] ;

Listing 3.6: The complete model of the bin packing problem

Let us first introduce the input parameters and decision variables required for

defining the constraints. The parameters are shown in Listing 3.7. It contains two new

terms maxNVisitsV and maxNVisitsP that are used for declaring the decision variables.

The maxNVisitsV is the maximal number of nodes that a vehicle can visit including

its initial location. The parameter maxNVisitsP estimates the maximal number of

observations taken at a point.

1 int : nSt ; % number o f s t a t i o n s
2 int : nP ; % number o f po in t s
3 int : nN = nSt + nP ; % number o f nodes
4 int : nT ; % number o f types
5
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6 % number o f b a t t e r i e s o f a type in a s t a t i o n
7 array [ 1 . . nSt , 1 . . nT ] of int : nBat ;
8

9 int : nV; % number o f v e h i c l e s
10 array [ 1 . . nV] of 1 . . nT : vehType ; % type o f a v e h i c l e
11 array [ 1 . . nV] of 1 . . nN: i n i tLoc ; % i n i t i a l l o c a t i o n o f a v e h i c l e
12 array [ 1 . . nV] of 1 . . nSt : vehStat ion ; % home s t a t i o n o f a v e h i c l e
13

14 int : maxNVisitsV ; % maximal number o f v i s i t s made by a v eh i c l e
15 int : maxNVisitsP ; % maximal number o f v i s i t s o f a po int
16 int : mT; % mis s s i on time

Listing 3.7: A subset of the input parameters from the CMP model

A solution of the CMP is a set of routes for every vehicle. We model it as an

array of variables visit (Listing 3.8), where every element visit [v, j ] is a j-th node that

vehicle v visits. Nodes are represented as integer numbers: 1.. nSt for stations and

nSt+1..nN for points. All routes of one vehicle are defined as a sequence of nodes.

1 array [ 1 . . nV, 1 . . maxNVisitsV ] of var 1 . . nN+1: v i s i t ;
2 array [ 1 . . nP , 1 . . maxNVisitsP ] of var int : aTimeP ;
3 array [ 1 . . nP ] of var int : f i r s tArTime ;
4 array [ 1 . . nP ] of var int : c o s t s ;

Listing 3.8: A subset of the decision variables from the CMP model

Vehicles might visit di↵erent number of nodes, while their routes are represented

by an array with fixed length maxNVisitsV. Therefore, this model introduces the notion

of a “dummy” node that is equal to nN+1 and determines the end of the last route. In

other words, all array elements after the last visited node equal to the dummy node.

For example, there are 4 points to be visited and a station. A vehicle can visit at most

10 nodes, i.e., maxNVisitsV=10, and its route is 1� 2� 3� 4� 1� 5� 1. Then these

routes can be represented as the following array: visit = [1, 2, 3, 4, 1, 5, 1, 6, 6, 6],

where the dummy node equals 6. We have selected the value nN+1 for a dummy node

instead of 0 because of the admissible indexes of distance matrix that are positive

integers that exclude 0.

The other decision variables are used to compute a value of the goal function. The

variable aTimeP is the sequence of arrival times for each point, ordered in decreasing

order. In case if a point has less visits than maxNVisitsP, the remaining array elements

are set to 0. The variable firstArTime contains the first arrival time of every point.

The penalty cost of every point is stored in costs.

Listing 3.9 describes several constraints of the CMP. The first constraint ensures

that every vehicle starts its first route at the initial location. The constraint in lines

3–8 allows vehicles to visit only their home stations vehStation and picture points, i.e.,

nodes from the range nSt+1..nN. The last constraint guarantees that the vehicles do
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not use more batteries than there are available. It computes the number of times

when vehicles of type iT changed the batteries at station iS, i.e., number of visits at

this station excluding the last visit when a UAV lands and the first visit when the

station can be the initial location of a vehicle.

1 c on s t r a i n t f o r a l l ( iV in 1 . . nV) ( v i s i t [ iV , 1 ] == in i tLoc [ iV ] ) ;
2

3 c on s t r a i n t
4 f o r a l l ( iV in 1 . . nV) (
5 f o r a l l ( iM in 2 . . maxNVisitsV ) (
6 v i s i t [ iV , iM ] = vehStat ion [ iV ] \/ v i s i t [ iV , iM]>nSt ) ) ;
7

8 c on s t r a i n t
9 f o r a l l ( iS in 1 . . nSt ) (

10 f o r a l l ( iT in 1 . . nT) (
11 l e t {var int : nChanges = sum( iV in 1 . . nV, iV i s in 2 . . maxNVisitsV�1)
12 ( boo l 2 i n t ( vehType [ iV ] == iT /\ v i s i t [ iV , iV i s ] == iS /\
13 v i s i t [ iV , iV i s +1] != nN+1) ) } in
14 nChanges <= nBat [ iS , iT ]
15 ) ) ;

Listing 3.9: A subset of the constraints from the CMP model

The continuous monitoring problem minimizes the squared delays between the

consecutive visits of all points. Its objective function (2.1) can be modeled as pre-

sented in Listing 3.10. Previously we defined a decision variable costs in a form of

array, where every element is the penalty for a single point, i.e., a sum of the squared

delays. The constraint in the listing defines these penalties for two possible cases: if

there are no observations of point iP (lines 3–4) and if the point was visited at least

once (lines 6–13). If a point was not visited, the cost of the point penalizes the whole

mission time and the parameter lvt
p

, i.e., the di↵erence between the last observation

before the monitoring started and the beginning of the mission. In the second case

when the point was observed, the penalty consists of three parts: a penalty on the

time before the first visit (line 13), a penalty on the delays between the visits (lines

7–10) and a penalty on the time from the last visit to the end of the mission (line 12).

The total cost is derived in line 16. The statements in line 17 specify the optimization

objective.

The constraint model partially presented in this section allows to calculate the

optimal solutions for the CMP, CMPID, and CMPIDP problems. Although solving

the model with a CP solver finds the optimal solution, its applicability is limited to

instances with only a few points. The real-life scenarios contain hundreds of points

and, thus, can only be solved by an approximate algorithm. Comparisons of the
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heuristic approaches proposed in the previous sections with optimum are presented

in Sections 4.1.3, 4.2.3, and 4.3.3.

1 c on s t r a i n t
2 f o r a l l ( iP in 1 . . nP) (
3 aTimeP [ iP , maxNVisitsP ] == 0 /\
4 c o s t s [ iP ] = (mT + lv t [ iP ] ) ⇤(mT + lv t [ iP ] )
5 \/
6

7 aTimeP [ iP , maxNVisitsP ] != 0 /\
8 l e t {var int : co s tBetweenVi s i t s = sum( i in 1 . . maxNVisitsP�1)
9 ( ( aTimeP [ iP , i +1] � aTimeP [ iP , i ] ) ⇤

10 (aTimeP [ iP , i +1] � aTimeP [ iP , i ] ) ⇤
11 boo l 2 i n t (aTimeP [ iP , i ] !=0) ) } in
12

13 c o s t s [ iP ] = cos tBetweenVi s i t s +
14 (mT � aTimeP [ iP , maxNVisitsP ] ) ⇤(mT � aTimeP [ iP , maxNVisitsP ] )+
15 ( f i r s tArTime [ iP ] + l v t [ iP ] ) ⇤( f i r s tArTime [ iP ] + l v t [ iP ] )
16 ) ;
17

18 var int : t o ta lCos t = sum( iP in 1 . . nP) ( c o s t s [ iP ] ) ;
19 s o l v e minimize to ta lCos t ;

Listing 3.10: Calculation of the goal function value

3.6 Incorporating Environmental Changes

Often route planning algorithms are designed for stable conditions and do not consider

possible environmental changes like failures of vehicles or changes of objectives. This

section shows how IDIH-Reserve can be applied in case of changing conditions.

When the problem instance is changed, the mission must be re-planned accord-

ingly. Let �T
R

be the upper bound for the time needed to compute a new solution.

For our real world scenarios this upper bound can be assigned to 15 seconds.

The actual re-planning is performed as follows. First, the UAVs receive a com-

mand to halt at the next node in their routes. If a UAV cannot reach this node within

�T
R

it halts at a location where it will arrive in �T
R

. For such locations, “dummy”

stations are created. They act only as departure nodes, do not store any batteries,

and the drones cannot land there at the end of the mission. Next, a new problem in-

stance is generated for the system state expected in �T
R

. Based on the new problem

instance, the mission is recomputed and sent to the vehicles. Ideally �T
R

would be 0.

However, if �T
R

is significantly smaller than the travel times between points (which

is the case for our method) then the impact of �T
R

> 0 on the solution quality is

negligible.
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The most common events and the corresponding updates of a problem instance

are the following:

• A UAV fails and can no longer operate. Remove this UAV from the list, refresh

the battery reservations.

• An obtained picture is of poor quality and cannot be used. Change its last visit

time to the previous one.

• There are new drones or batteries. Add new drones/batteries, reassign the

batteries.

• There are new obstacles. Recompute the picture points [72] and the distance

matrix, set the last visit time of the points as described in Section ??.

• Priorities change. Set new priority values.

• A base station has moved. Change location of the station, recompute the dis-

tance matrix and refresh the battery reservations. After moving the station

some drones might not have enough capacity to reach any station. Then there

is no feasible solution and the user should be warned.

• A base station can no longer operate. Remove the station from the list, recom-

pute the distance matrix and refresh the battery reservations. If a drone cannot

reach any station, no feasible solution exists. The situation described in the

previous paragraph, where the drones are not able to land, might occur during

this event. The corresponding warning should be delivered to a user.

3.7 Summary

The continuous monitoring problem and its extensions are variations of the vehi-

cle routing problem that is NP-hard. Due to complexity of the CMP, CMPID and

CMPIDP, exact approaches are currently not able to solve real-life instances. There-

fore, we propose a number of approximate algorithms for each problem.

We developed two construction heuristics for the CMP: queue-based insertion

heuristic (QI) and modified Clarke and Wright algorithm (CW). The QI orders all

points into a queue and iteratively inserts them in this order into a solution as long

as insertions are possible. The heuristic selects a position where a point is inserted

based on an evaluation function. The CW is initialized with single-point routes, one
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for each point. Then the routes with the maximal savings value are connected. The

procedure is repeated for every coverage of an area separately until all batteries are

used. The solutions obtained with the QI and CW are then improved by variable

neighborhood search (VNS).

The CMPID extends the CMP with inter-depot routes, i.e., vehicles can renew

their energy capacity at any of the stations. To solve this problem, we propose inter-

depot insertion heuristic (IDIH) and IDIH with battery reservations (IDIH-Reserve).

Similar to the QI, these approaches extend partial solutions by one point at a time.

In contrast to the QI, they also exploit their evaluation functions for selecting a point

that will be inserted. The main di↵erences between the IDIH and IDIH-Reserve

are the parameters of the evaluation function and a negotiation-based mechanism

introduced in the IDIH-Reserve for a better battery use. These approaches can be

used in a combination with a VNS.

The third problem, CMPIDP, includes priority information for every point and

does not fix the mission time. We show how the IDIH-Reserve can be applied to the

CMPIDP with minor changes.

The advantage of approximate algorithms over the exact approaches is their short

computational time. This allows to apply our heuristics for plan adaptation to several

environmental changes such as drone failure or changed wind conditions.

When a new heuristic is introduced, it should be compared with an optimum

on instances where optimal solutions are computable in admissible time. To obtain

optimal solution costs for the CMP, CMPID and CMPIDP, we model the problems as

constraint optimization problems and solve the models with a constraint programming

solver.
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Chapter 4

Computational Results

This thesis is dedicated to three route planning problems: the continuous monitoring

problem (CMP), the CMP with inter-depot routes (CMPID), and the CMP with

inter-depot routes and priorities (CMPIDP). Each problem is solved by the heuristic

approaches. Their computational results are shown in this chapter.

The performance of the heuristics was evaluated empirically according to several

criteria. The first criteria is the deviation of their solutions from optimum. It is

essential, as heuristic approaches do not guarantee to find an optimal solution. Then

we evaluate solution quality and scalability of the heuristics on real-life scenarios,

as they cannot be solved optimally in a feasible amount of time due to the problem

complexity. The scalability study shows how the performance of the heuristics evolve

with the increasing instance size.

The conducted studies have the following details in common. The heuristics are

implemented in Java 1.7. All tests were performed on Intel Core i5 2.50 GHz system

with 8GB RAM running Windows 7. During computations no rounding of costs was

performed to eliminate the bias introduced by rounding [61].

The chapter groups the performed studies into sections based on the problem:

the CMP heuristics in Section 4.1, the CMPID approaches in Section 4.2, and the

CMPIDP algorithms in Section 4.3. Each section consists of four parts describing:

the used benchmarks1 and their generation process (Test instances), the parameter

selection for the heuristics (Tuning), the performance with respect to optimum (Com-

parison with Optimum), and the performance on real-life scenarios and other large

benchmarks (Evaluation on Real-Life Instances).

1All benchmarks are available online: http://uav.lakeside-labs.com/publications/

test-data/planning/
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4.1 Continuous Monitoring Problem

4.1.1 Test Instances

Two benchmark sets were generated to evaluate the CMP heuristics: 9 optimum and

36 real-life instances. Instances of two sets significantly di↵er in size, since optimum

cannot be computed for the large scenarios.

Optimum instances include 6 picture points and 2 base stations. Coordinates of

the points were generated randomly in the interval [0, 40]. Every base station stores

1 drone and 2–4 batteries with capacity equal to 50 time units. The drones fly with

the average speed equal to 1. Their service time is set to 1 time unit, whereas battery

change requires 5 time units. The vehicles are initially located at randomly selected

picture points. The initial remaining capacity of every vehicle is chosen randomly

from the interval [d
min

, 50�d
min

], where d
min

is the minimal distance between a base

station and its initial location. The mission time is limited by the longest possible

mission of a drone, i.e., up to four battery capacities.

A set of real-life benchmarks represents several scenarios that we had, e.g., a

territory at the fire-fighters drill in Wietersdorf or the area around the university of

Klagenfurt. Generation of these instances was performed in several steps. First, the

size of an area that can be covered by one picture is derived from the flight altitude

and the camera resolution. Then the minimal number of points is spread equally over

the area of interest. Every picture must have a certain overlap with at least three

neighboring images. It is required for their stitching afterwards. More details on the

picture points placement, stitching procedure and its requirements can be found in

[72]. The number of points in this scenarios ranges from 46 to 441.

Every scenario has a fleet of 3, 6 or 9 UAVs and a set of 3–22 batteries equally

distributed between the base stations. Parameters such as drone’s velocity, maximal

flight duration and service time are set to the real values of the drones used in our

project, i.e., 2.5m/s, 1200 s and 3 s, respectively.

Some of the large instances contain obstacles where drones are not allowed to

fly, e.g., buildings or tall trees. The obstacles are denoted as polygons. In order to

take obstacles into account, distance matrix is computed based on visibility graph

that is widely used in di↵erent areas including robotics [13]. Our visibility graph

consists of nodes, i.e., picture points, base stations and obstacle points, as well as

edges connecting them. Edges connect two nodes only if the straight line between

them does not intersect any edge of an obstacle. Then distance between the picture
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points and base stations is computed as the length of the shortest path between them

on the visibility graph.

The following naming template is applied to all mentioned instances. The first

letter of the name stands for the instance type: “O” for the optimum and “L” for

the real-life instances. The following numbers represent the number of points, base

stations, batteries, and vehicles, respectively. For example, the instance depicted by

Figure 4.1 is named as “L 442p 3d 22b 6v”. This instance is a real-life scenario that

includes 3 base stations, 22 batteries and 6 vehicles.
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Figure 4.1: The real-life scenario “L 442p 3d 22b 6v”. The right part of the figure is
the satellite picture of the University of Klagenfurt taken from Google Earth

TM
.

4.1.2 Tuning

Careful selection of the heuristic coe�cients as well as the order and parameters of

neighborhood operators might significantly improve performance of a method. This

section is dedicated to tuning of the methods proposed for the CMP.

Selecting coe�cients for the queue-based insertion heuristic (QI) The

evaluation function (3.2.2) of this insertion heuristic is based on two semantically

di↵erent measurements: distance and time. The first measurement is introduced to

minimize the total travel distance. The second measurement is required to minimize

the time delays between the visits. In order to achieve high performance, it is impor-

tant to find a balance between the two parameters by setting the optimal values to

their weight coe�cients.

Values of the coe�cients were selected as follows. For every coe�cient a determin-

istic set of possible values is defined. This set is called domain of a coe�cient. Then
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the QI solves every training instance with all possible combinations of coe�cients’

values. The real-life scenarios with less than 100 points were used as a training set.

Every combination is evaluated according to the costs of the obtained solutions.

The coe�cients were set to values from the following domains. The domain of

the coe�cient ↵1 was a set of the following values {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. Value
of coe�cient ↵2 can be computed as ↵2 = 1 � ↵1. The larger ↵1 value, the more

important distance to the point is and the less influence arrival time has. The last

coe�cient, scale, is responsible for balancing order of magnitude of the mentioned

parameters. The coe�cient scale was set to the following values {1, 10, 100}.
We evaluate the performance of each combination based on three measurements:

number of times a combination returned the best solution, average and maximal

percentage deviations from the best solution. The achieved results are reported in

Table 4.1.

↵1 scale Number of best Deviation from best solution, %
solutions Average Maximal

0 1 1 3.177 13.240
0 10 1 3.177 13.240
0 100 1 3.177 13.240

0.1 1 1 2.978 13.240
0.1 10 4 2.833 12.730
0.1 100 2 2.164 8.717
0.3 1 2 3.134 15.384
0.3 10 2 2.295 14.122
0.3 100 1 1.928 9.348
0.5 1 2 3.107 12.730
0.5 10 3 1.905 8.717
0.5 100 1 2.033 12.265
0.7 1 4 2.584 12.730
0.7 10 5 1.461 7.218
0.7 100 1 2.135 12.265
0.9 1 5 1.467 8.717
0.9 10 0 2.285 12.265
0.9 100 1 2.221 12.959
1 1 0 1.810 10.307
1 10 0 1.810 10.307
1 100 0 1.810 10.307

Table 4.1: Performance of di↵erent values of the coe�cients of the QI heuristic

Performance of di↵erent combinations di↵ers by fractions of percent on smaller

instances. However, solution quality on a few larger instances varied significantly. It

is indicated by values of the maximal deviation from the best solution. Therefore,
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the maximal deviation was the main criterion of selection. The best combination of

values was ↵1 = 0.7, ↵2 = 0.3 and scale = 10. Based on the selected values of the

↵ coe�cients, we can make conclusions about the most important impact factors for

selecting a point-vehicle pair. Since the selected value of ↵1 is greater than the values

of other ↵-coe�cients, the distance between a vehicle and a point is more important

than the time-based parameters, i.e., arrival time and last visit time.

Selecting neighborhood structure for the variable neighborhood search

Each neighborhood operator in a metaheuristic influences the solution di↵erently.

As a consequence, their correct order is significant for achieving improvements. The

process of selecting the order of the operators applied within the proposed VNS

metaheuristicis is discussed below.

The study was conducted on a training set consisting of the three randomly se-

lected real-life scenarios: “L 46p 3d 3b 6v”, “L 69p 3d 9b 6v”, and “L 86p 3d 11b 6v”.

The initial solutions were constructed by the modified Clarke and Wright heuristic.

Then the VNS solved each training instance with 104 iterations and every possible

sequence of operators. In this thesis, the sequence of operators includes the move

(m) and cross-exchange (c) operators 3 and 6 times, respectively, as in [41]. Since

frequent application of the insert (i) operator minimizes the non-used energy per

route, it is exploited in the sequence only 3 times. Otherwise, the number of feasible

moves achievable by the other two operators can converge to zero. To minimize the

influence of randomness produced by the operators, each instance was solved 10 times

and the achieved results were averaged over all runs.

Each operator was evaluated individually and in combination with the others.

The individual performance of every operator was measured as the number of times

when the operator led to an improved solution. Each sequence of the operators

was evaluated by their average percentage improvement per iteration and the total

percentage improvement of one run.

Results achieved by the four best sequences are reported in Table 4.2. The se-

quence m-c-i produced the best average improvement per iteration and the largest

final gain. The reason is that the move and cross-exchange operators precede the

insert operator. They minimize the length of the routes that leads to more feasible

moves for this operator. The insert operator decreases the optimization function

value the most, as it increases the number of visits.
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k m-c-i c-m-i i-m-c c-i-m
1 m 4 c 3 i 50 c 3
2 m 5 c 1 i 5 c 4
3 m 3 c 2 i 4 c 1
4 c 3 c 2 m 3 c 3
5 c 4 c 2 m 2 c 2
6 c 3 c 2 m 0 c 4
7 c 3 m 3 c 1 i 52
8 c 2 m 4 c 1 i 8
9 c 2 m 4 c 0 i 2
10 i 69 i 56 c 2 m 4
11 i 9 i 5 c 1 m 2
12 i 2 i 3 c 2 m 3

Aver. improvement 0.00121 0.00111 0.00114 0.000999
Total improvement 12.11268 11.13094 11.41604 9.989225

Table 4.2: Performance of the four best sequences of the neighborhood operators

4.1.3 Comparison with Optimum

When a heuristic is proposed, its performance should be assessed with respect to the

state-of-the-art approaches [11]. In case if no method exists for the studied problem,

one should provide an estimation of how close to optimum the heuristic’s solutions

are.

This study evaluates the solution costs provided by the QI, CW heuristics and

their combinations with the VNS towards the optimum. The evaluation was con-

ducted on the set of optimum instances. To find optimal solutions, we model the

CMP in MiniZinc (G12 MiniZinc to FlatZinc converter version 1.6.0) as described in

Section 3.5 and solve the model with the Gecode solver (version 4.2.1).

Figure 4.2 depicts the achieved performance as the deviation from optimum. The

solutions computed by the QI and CW are at most 26.897% and 41.413% and on

average 11.67% and 25.337% far from optimum, respectively. After 104 iterations

the VNS significantly decreased the maximal deviations till 9.499% for the QI and

16.802% for the CW. The QI heuristic outperformed the CW on all scenarios except

one and reached optimum on one instance.

The short computational time of the heuristics demonstrates the advantage of

approximate algorithms. For instance, finding the optimal solutions took 4832.72 s on

average, whereas the VNS required at most 1ms for 104 iterations for every instance.
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Figure 4.2: Deviation from optimum of the QI and CW heuristics and their combi-
nations with VNS

4.1.4 Evaluation on Real-Life Instances

The practical CMP scenarios are significantly larger than the instances, where opti-

mum can be computed. Therefore, it is important to estimate the performance of the

proposed heuristics on realistic examples. This section reports the results achieved by

the suggested construction heuristics QI and CW on a set of the real-life instances.

The evaluation criterion was the objective function of the CMP (2.1). We selected

the best found solution for every instance and compare the heuristic to their cost.

The results obtained by both heuristics are shown in Table 4.3. Their performance

di↵ers depending on the instance size. The QI outperforms the CW heuristic on most

of the scenarios with less than 90 points. It showed worse results only on 6 scenarios

with over 85 points and the least number of vehicles. On the contrary, the CW

obtained better solutions than the QI on larger instances. Its performance was worse

only on two of such scenarios by around 6% and 13.5%.

Both heuristics require a very short computational time. For all instances, the QI

and CW required only 0.355 s and 1.323 s, respectively.

Summarizing, both QI and CW heuristics are good candidates for real-life appli-

cations due to their low computational e↵ort and ease of deployment. The preference

should be given to one of them depending on the scenario size: the QI is more e↵ective

on the smaller instances, the CW provides better results on the larger benchmarks.
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(a) Smaller instances with less than 90 points

Number of obtained Deviation from the best solution in %
best solutions average maximal

QI 20 4.87 37.16
CW 6 7.29 18.15

(b) Larger instances

Number of obtained Deviation from the best solution in %
best solutions average maximal

QI 2 6.89 16.90
CW 8 1.95 13.47

Table 4.3: The performance of the QI and CW heuristics on the real-life scenarios

4.1.5 Summary

This section presents the evaluation results of the approximate algorithms developed

for solving the continuous monitoring problem. Among the two construction ap-

proaches, the QI heuristic achieved better results for the smaller real-life instances

and when compared with optimum. The second heuristic CW was more e�cient on

larger real-life instances. We suggest to apply one of these heuristics depending on

instance size.

The VNS metaheuristic significantly improved the initial solutions provided by

the QI and CW. The costs decreased by up to 24% for the optimum instances and

12% for the real-life instances.

4.2 CMP with Inter-Depot Routes

4.2.1 Test Instances

To make a thorough evaluation of our method, five sets of instances2 were generated:

10 small optimum instances, 12 patrolling, 48 life, 60 random, and 24 clustered sce-

narios. The first set is used to compare the proposed heuristic IDIH-Reserve with

optimum, whereas the other sets are larger in size and are used to estimate perfor-

mance on realistic examples. Fig. 4.3 depicts examples of the instances.

2All sets are available online at http://uav.lakeside-labs.com/publications/test-data/planning/

69



0 3 6 9 120

3

6

9

12

meters

m
et
er
s

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

meters
m
et
er
s

Set 1: optimum Set 2: patrolling

�200 �100 0 100 200

�200

�100

0

100

200

meters

m
et
er
s

�400 �200 0 200 400

�400

�200

0

200

400

meters

m
et
er
s

Set 3: real-life Set 4: random

0 250 500 750 1000 1250 1500
0

100

200

300

meters

m
et
er
s

Set 5: clustered

Figure 4.3: Examples of instances from the five test sets. Red circles denote stations,
white circles represent picture points.
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Optimum instances are significantly smaller than real-life scenarios. Therefore,

it is possible to calculate optima in a feasible amount of time. This set consists of

10 instances with 6 points and 2 stations. Coordinates for the picture points and the

base stations were selected randomly in the interval [0, 12]. All points are split in two

clusters so that the first and the second clusters have priorities 1 and 2, respectively.

Each scenario has 5 batteries and 2 homogeneous vehicles. The batteries are

randomly allocated at the stations. Their capacity is su�cient for several overview

images. The vehicles have average speed, battery change time, and service time equal

to 1. Their initial locations and remaining energy capacities as well as the delay lvt
p

of each points are selected randomly.

Since an optimum cannot be found for common real-life scenarios, the IDIH-

Reserve solutions are compared with the optimal solutions for the patrolling task.

It is a related problem that relaxes some constraints, thus, providing a lower-bound

for the CMPIDP optimum. The vehicles are homogeneous with unlimited battery

capacity. The goal of patrolling is to compute a set of routes for a fleet of vehicles to

repeatedly visit a set of points with a minimal average delay.

The patrolling instances are generated so that the solutions provided by the

TSP-based strategy by Almeida et al. [3] are guaranteed to be optimal. This strategy

constructs a TSP route through all the points and places the robots along it with

equal distances between each other. It guarantees equal and minimal delays between

visits.

In order to generate the aforementioned patrolling instances, the following steps

were performed:

1. Placing the points The points are placed in a grid with 20m step size. The total

number of points is within 45–375. Each point has the same priority, and the

parameter lvt
p

is equal to zero.

2. Placing the stations The first station is placed at the left-most bottom point

with coordinates (0, 0). The remaining four stations are placed along the opti-

mal TSP route with equal distances between them. Fig. 4.4 shows an example

of a TSP-route and the corresponding stations.

3. Generating vehicles and batteries One vehicle is initially located in each sta-

tion. The vehicles are homogeneous and move with the average speed 1m/s.

Since patrolling ignores battery capacity limitation, this constraint is relaxed as

follows. The battery capacity is equal to the travel time between the stations.

The service time and the time to change the battery are equal and set to 0 s.
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Figure 4.4: An example of a TSP route for generating the patrolling instances.

4. Setting the planning horizon The IDIH-Reserve was developed for the prob-

lem with limited number of energy resources. The patrolling strategy, on the

contrary, does not set any upper bound on the planning horizon. For a fair

comparison, the mission time is set to several values: the travel time of the

TSP route multiplied by 2, 4, 6 or 8.

The third set (real-life scenarios) consists of several scenarios that we observed

in practice, e.g., an area around the University of Klagenfurt or a construction site

near Vienna. More details on the picture point generation for this set can be found

in Section 4.1.1.

The picture points of the random scenarios are placed randomly with coordinates

in the following intervals: [�300, 300] for 200–300 points, [�400, 400] for 301–600

points, [�500, 500] for 601–800 points. The random scenarios have 200–800 points.

The remaining parameters of the real-life and random instances are generated

as follows. Three or six base stations are randomly allocated with coordinates in

the mentioned intervals. Each scenario has 4, 7 or 8 vehicles of 2, 3 or 4 types,

respectively. The number of batteries is chosen so that the area can be covered 3

or 6 times. The batteries are either assigned to the stations randomly or distributed

among them evenly. Depending on the type, the maximal flight time with one battery

is either 1200 s or 2400 s. For simplicity all vehicles have the same average speed of

2.5m/s. Their initial location and remaining energy capacity, as well as the delay

lvt
p

of the points are generated randomly.

Clustered scenarios were generated to evaluate the algorithm performance in

extreme cases when the points are grouped in clusters and a vehicle has to visit an

intermediate station to travel between the clusters.

We have used two types of cluster allocation: triangular and sequential. Fig. 4.5

illustrates both types. As shown in the figure, every triangular scenario has 6 base

stations, whereas every sequential scenario has 5 stations. Every cluster has 70, 130
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or 200 points placed randomly within the boundary of the cluster depicted as a dotted

line. Batteries su�cient to cover the area at least 3 or 6 times are assigned to the

stations randomly. Each scenario contains 2 or 4 vehicles.
60
0
m

300m 300 m

Figure 4.5: Allocation of clusters in the clustered scenarios: triangular and sequential.

All large instances are named according to the following rule. The first letter

stands for the instance type: “P” for patrolling, “L” for real-life, “R” for random and

“C” for clustered scenarios. The next three numbers define the number of points,

stations and vehicles. The last number stands for the minimal number of times

that the whole area can be covered with the given batteries. For the real-life and

random scenarios an additional letter is introduced. It defines whether the batteries

are distributed randomly or equally among the stations. For example, a file named

“L 251p 3s 4dr 3ov E” is a real-life scenario with 251 points, 3 stations, 4 vehicles,

where the area can be covered at least 3 times. The stations have equal number of

batteries of each type.

Names of the optimum instances are simplified, as all the parameters used for

naming the large instances have the same values. They are generated as a combination

of the letter “O” that stands for optimum and the sequential number of an instance.

For example, the first optimum instance is named as “O 01”.

4.2.2 Tuning

Selecting coe�cients for the construction heuristics Typically, parameter tun-

ing results in noticeable improvements. In the following, we describe the process of

selecting the best-performing parameters for the IDIH and IDIH-Reserve heuristics

for the CMPID problem: coe�cients ↵1, ↵2 and ↵3 = 1 � ↵1 � ↵2. For this process

we focused on the life, random and clustered instances. In order to avoid over-fitting,

every third instance was excluded. Every instance was solved with its initial mission
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time mt as well as mt · 1.5 and mt · 2.5. We evaluate all possible combinations of the

coe�cients from the interval [0, 1] with the step 0.1.

The best performing combination of values was selected in two stages. The first

stage determines the most e�cient combination for every instance set and mission

time value. In the second stage we make the final selection as described later.

The first stage starts by eliminating the combinations that did not consistently

perform among the best. The performance is based on the average deviation from the

best solution found for each instance. The next step selects three best combinations

for every instance set and mission time value. The best combinations must have the

least maximal deviation among all instances and one of the least average deviations.

Results of this selection are reported in Tables 4.5 and 4.6 for the IDIH and IDIH-

Reserve, respectively.

Set of instances Mission time ↵1 ↵2 ↵3 Average deviation
multiplier in %

1

0.5 0.1 0.4 19.207
0.2 0.1 0.7 21.468
0.5 0.3 0.2 22.363

1.5

0.5 0.1 0.4 20.645
real-life 0.5 0.4 0.1 23.455

0.7 0.3 0 23.687

2.5

0.9 0.1 0 16.664
0.7 0.3 0 18.770
0.5 0.1 0.4 20.607

1
0.4 0.1 0.5 18.420
0.6 0.1 0.3 20.425

1.5

0.8 0.2 0 28.898
0.4 0.1 0.5 31.932

random 0.2 0.1 0.7 32.988

2.5

0.8 0.2 0 19.546
0.4 0.1 0.5 23.507
0.7 0.3 0 25.005

1

0.4 0.6 0 23.792
0.3 0.6 0.1 24.103
0 0.3 0.7 24.795

1.5

0.4 0.6 0 24.701
0 0.6 0.4 25.658

clustered 0.2 0.8 0 26.480

2.5

0.2 0.8 0 16.001
0.4 0.6 0 17.536
0.7 0.3 0 20.792

Table 4.5: Preliminary selection of ↵-coe�cients for the IDIH heuristic
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Set of instances Mission time ↵1 ↵2 ↵3 Deviation in %
multiplier average maximal

1

0.3 0.6 0.1 2.281 14.862
0.4 0.5 0.1 2.920 24.984
0.2 0.7 0.1 3.195 26.887

1.5

0.3 0.6 0.1 2.733 7.409
real-life 0.4 0.5 0.1 2.030 7.855

0.5 0.4 0.1 3.395 8.510

2.5

0.6 0.3 0.1 1.755 5.369
0.7 0.2 0.1 1.912 5.428
0.3 0.6 0.1 2.535 6.389

1

0.2 0.7 0.1 3.545 7.681
0.5 0.4 0.1 2.982 10.606
0.4 0.5 0.1 2.720 13.034

1.5

0.4 0.5 0.1 2.418 8.141
random 0.3 0.6 0.1 3.077 8.430

0.2 0.7 0.1 3.256 8.542

2.5

0.5 0.4 0.1 1.229 4.147
0.4 0.5 0.1 1.659 5.516
0.7 0.2 0.1 1.977 6.322

1

0.4 0.2 0.4 3.550 11.870
0.5 0.2 0.3 3.474 11.903
0.6 0.3 0.1 5.832 13.687

1.5

0.5 0.2 0.3 4.574 8.131
clustered 0.1 0.8 0.1 3.949 8.807

0.5 0.3 0.2 4.366 10.662

2.5

0.5 0.4 0.1 3.581 8.598
0.6 0.3 0.1 3.360 9.801
0.2 0.7 0.1 2.630 11.932

Table 4.6: Preliminary selection of ↵-coe�cients for the IDIH-Reserve heuristic
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During the second stage we analyzed the results obtained in the previous sec-

tion and could derive performance patterns. The coe�cients of the IDIH heuristic

showed quite high dependency on distribution of points, whereas performance of the

IDIH-Reserve coe�cients di↵ered only between clustered and non-clustered instances.

Table 4.7 presents the coe�cients value that we suggest based on the analysis.

(a) IDIH

Set of instances ↵1 ↵2 ↵3

real-life 0.5 0.1 0.4
random 0.4 0.1 0.5
clustered 0.4 0.6 0

(b) IDIH-Reserve

Set of instances ↵1 ↵2 ↵3

real-life 0.4 0.5 0.1
random 0.4 0.5 0.1
clustered 0.5 0.2 0.3

Table 4.7: The best coe�cients values for the QI and CW heuristics

Selecting neighborhood structure A neighborhood structure specifies the

neighborhood of the current solution where the search process looks for a better

solution. It can be given either implicitly by listing all neighboring solutions or ex-

plicitly by a sequence of modification operators. Metaheuristics use the second way

of exploring the search space.

A good neighborhood structure increases e�ciency of a metaheuristic [37]. The

order of the operators influences the shape of a neighborhood, whereas parameters

of the operators define its size. In the following we describe the procedure to define

both the order and the parameters of the used VNS operators (see Section 3.3.3).

The study is conducted in two steps. The first step selects the best value of the

parameter ⌘ for every operator: move, cross-exchange, replace and insert. This pa-

rameter stands for the maximal length of a sequence(s) for the first two operators and

the maximal number of points for the other two moves. We also use this parameter

as an indicator of how often each operator is used in the neighborhood sequence. The

second step derives the best order of the operators.

The mentioned steps have the following setup. Initial solutions are constructed

by the IDIH-Reserve heuristic. Since it is a deterministic algorithm, solution quality

is not biased by the construction heuristic. Then the VNS performs the improvement

stage with 104 iterations. The influence of the random components of the VNS

operators is minimized by running the metaheuristic ten times with every used setting.

The obtained results are averaged over all runs. The studies are conducted on the

10 instance from the real-life set. For every number of points, we select the largest

instance, i.e., with 6 stations and 7 vehicles that can cover the area at least 6 times.
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During the first step, the best value of the parameter ⌘ is selected from the set

{1, 2, 3}. Performance of di↵erent ⌘ values is measured as the average percentage

improvement from the initial solution cost. The results are presented in Figure 4.6 for

all operators. In this case parameter ⌘ does not significantly e↵ect the performance.

Therefore, it is set to value 1 for all the operators to encourage frequent neighborhood

change.
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Figure 4.6: Average total improvement from a single operator with parameter ⌘ equal
1 (white), 2 (gray) and 3 (black).

The goal of the next step was to select the best performing sequence of the op-

erators. Performance of each sequence was measured as the solution cost on each

instance. We also evaluate the contribution of each individual operator by the num-

ber of its uses that lead to an improvement.

The improvement achieved by di↵erent sequences does not di↵er significantly after

the 104 iterations. Their deviation from the best average improvement is less than
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1%. This means that the improvement achieved by the VNS is not influence by the

order of its operators in a general case of the CMPID. For further evaluations the

order insert-exchange-move-replace is selected, as for the most instances, the number

of improving moves decreases with increasing operator index. This is the expected

behavior in a sequence of neighborhood operators [41].

4.2.3 Comparison with Optimum

In order to solve our real-life instances in acceptable time we have to apply heuristics

which may result in non-optimal solutions. Therefore, we evaluate how far from

optimum the proposed heuristics can get.

The IDIH and IDIH-Reserve heuristics are compared with optimum on optimum

instances. The heuristics use the coe�cient values chosen in the previous section.

Their performance is evaluated as the deviation from the cost of optimal solutions

that is reported in Table 4.9.

Instance Optimal cost
IDIH IDIH-Reserve

cost deviation cost deviation
O 01 92121 98649 7.09 98649 7.09
O 02 97044 99036 2.05 99036 2.05
O 03 7984 9876 23.70 9210 15.36
O 04 9656 10804 11.89 9976 3.31
O 05 8158 8854 8.53 8528 4.54
O 06 7832 7912 1.02 8390 7.12
O 07 9132 9964 9.11 9964 9.11
O 08 6465 8985 38.98 7257 12.25
O 09 8333 8565 2.78 8931 7.18
O 10 7865 7943 0.99 7943 0.99

Table 4.9: Deviation from optimum of the solutions obtained by the IDIH and IDIH-
Reserve heuristics

The IDIH-Reserve heuristic outperformed the IDIH on 8 out of 10 instances. The

di↵erence in performance is the most significant on the two hardest instances “O 03”

and “O 08”. In these instances, points are distributed in such a way that most of the

points can be reached by only a single UAV. In this case it is extremely important

how heuristics handle the batteries and select the points. More discussion on that is

provided in Section 4.2.4.

As expected, computation time di↵ers significantly between the solver and the

two heuristics. Heuristics require milliseconds, whereas solver spends hours even for

the smaller scenarios. This is a good illustration of the problem complexity. It shows
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how important it is to find a balance between the solution quality and computational

e↵orts.

4.2.4 Evaluation on Real-Life Instances

In this section we present the evaluation of the proposed heuristics on large instances.

First, the heuristics are compared between each other. Next, we evaluate their solu-

tion quality on the problem without the inter-depot routes (CMP) and the patrolling

task problem. The section concludes with the scalability test for the VNS.

Comparison of the construction heuristics In this study we compare the

performance of the IDIH and IDIH-Reserve heuristics. Both of them iteratively con-

struct a solution by adding one picture point at a time. A point and a place where

it is inserted are selected based on an evaluation function. The di↵erences between

the two approaches are in the parameters of this function and a battery reservation

procedure implemented by the IDIH-Reserve.

The study had the following settings. It was conducted on the real-life, random

and clustered instances. Their mission time had three possible values: its original

value mt as described in Section 4.2.1 as well as mt · 0.75 and mt · 1.5. The heuristics
used the coe�cients values suggested in Section 4.2.2. Their performance was assessed

by the CMPID goal function.

Figure 4.7 shows the achieved results. They are grouped by the mission time value.

The Y-axis depicts percentage of instances that were solved by the IDIH-Reserve with

the corresponding improvement over the IDIH (X-axis). The IDIH-Reserve outper-

formed the IDIH on almost all instances with up to 87.6% improvement. The im-

provement is significant regardless of the instance size, the distribution of the picture

points or the mission time.

There are two major reasons for such significant improvement. First, due to a

reservation policy introduced in the IDIH-Reserve, all vehicles have a spare battery at

every step. In contrast, the IDIH can extend vehicle’s route relying on the last battery

at a station that can be taken by another drone at the next step. In this case, the first

vehicle has to finish its mission as soon as its battery is discharged. This can happen at

any time during the mission. This leads to a non-optimal use of batteries. The second

reason is that the evaluation function includes relative time-based parameters that do

not increase with the mission time unlike absolute parameters. Absolute time-based

arguments (arrival time and last visit time) influence selection of the insertion point

more, as mission proceeds. With long mission duration, they can completely overrule

the distance parameter which makes routes less e�cient. Fig. 4.8 illustrates the e↵ect
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Figure 4.7: Improvement of the IDIH-Reserve heuristic over the IDIH on random
(blue), real-life (red) and clustered (green) instances.

of relative measurements on the instance “L 251p 3st 4dr 3ov E”. This figure shows

how values of the parameters change in both the IDIH and IDIH-Reserve approaches.

The IDIH time-based parameters are constantly increasing, whereas the IDIH-Reserve

parameters stay within certain boundaries. Therefore, we can conclude that the IDIH

is highly dependent on the instance size unlike the IDIH-Reserve.

Comparison with the CMP approaches This study estimates the benefit of

introducing inter-depot routes to the continuous monitoring problem. It compares

the IDIH+VNS approach with the CMP algorithms, i.e., QI+VNS and CW+VNS.

We conducted this evaluation as follows. The test set consisted of the real-life

and random instances. The CMP methods were used with the parameters suggested

in Section 4.1.2. We ran the VNS for 104 iterations 10 times for each scenario, and

the results are then averaged over all runs. The performance of the heuristics are

compared by both solution cost, i.e. the CMP goal function (2.1), and computational

time.

Figures 4.9 and 4.10 summarize the achieved results: the cost deviation from the

best found solution and the computational time, respectively. The figures cover only
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Figure 4.8: Value of the parameters of the evaluation functions on the instance
“L 251p 3st 4dr 3ov E”.

a selection of the instances, in particular scenarios with random battery allocation.

The results on other instances are similar and, thus, this selection can be used to

reason about the heuristics’ performance.

According to Figure 4.9 depicting the cost deviation from the best solution, the

CMPID heuristic significantly outperforms the CMP approaches. This applies to all

but two instances. There are two reasons for that. First of all, the VNS for the

CMPID has a di↵erent neighborhood structure that provides more improvements.

The second reason is the problem extension with the inter-depot routes. In the CMP

approaches, vehicles are forced to utilize only batteries of their home stations. As a

consequence, the picture points are visited with di↵erent frequencies depending on the

distribution of batteries and vehicles. On the contrary, the CMPID heuristic allows

traveling between the stations and, consequently, uses the given energy resources more

e�ciently.

Figure 4.10 shows that the CMP methods require longer computational time than

the IDIH+VNS approach. It is caused by the local search step included in the VNS

for the CMP. According to our preliminary results, the improvements achieved by
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Figure 4.9: Comparison of the solution costs achieved by the IDIH+VNS (green) and
the CMP approaches, i.e., QI+VNS (blue) and CW+VNS (red).
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Figure 4.10: Comparison of the computational time required by the IDIH+VNS
(green) and the CMP approaches, i.e., QI+VNS (blue) and CW+VNS (red).
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the local search in the VNS for the CMPID are negligible comparing to the compu-

tational e↵orts. Therefore, this step is omitted for the CMPID version of VNS. If the

CMP VNS is applied without local search, it requires similar run-time as the CMPID

version.

Comparison with the patrolling strategy This study evaluates the proposed

heuristics on the patrolling task problem that, similar to the CMPID, minimizes the

average delay between visits of points and variance of delays. However, in contrast

to the monitoring problem, patrolling assumes unlimited battery capacities.

For this evaluation, we use the TSP-based patrolling strategy by Almeida et al. [3]

as a basis. It first creates a TSP route through all target points. Then robots are

placed at some locations along the TSP route with equal distances between them.

The TSP-based patrolling strategy and the tailored patrolling instances guarantee

solutions with equal and minimal delays between consecutive visits. We employ these

instances as stress tests to evaluate the solutions of our more general methods. Since

the IDIH-Reserve heuristic outperformed the IDIH, we use only IDIH-Reserve for this

comparison.

The performance of the IDIH-Reserve and the TSP-based strategy is compared

regarding the average delay between the visits. The box plots in Fig. 4.11 show the

results achieved by the IDIH-Reserve. The bold lines depict the delays of the TSP-

based strategy. As expected due to the setup of the study, our heuristic deviates from

the patrolling solution. In particular, this deviation increases only linearly with the

number of visits. The average delay is only 10.72% above the optimum on the largest

scenario with 8 rounds corresponding to 4 hours mission time.
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Figure 4.11: Average delays for the patrolling instances.

Scalability of the VNS The final evaluation was conducted to check the scalabil-

ity of the proposed improvement step, i.e., how well it performs on di↵erent scenario

sizes.
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This study was conducted on the real-life and random scenarios as follows. First,

the IDIH computes an initial solution and its value of the goal function for each

scenario. Then the VNS is ran 10 times, for 10 minutes in each run. The obtained

improvement, i.e., deviation of the cost from the initial value, is averaged over these

10 runs.

The results are reported in Fig. 4.12. The left and the right charts show the

achieved cost improvement for the scenarios with equal and random resource alloca-

tion, respectively. The proposed VNS provides improvements to the initial solution

regardless of scenario size. Furthermore, the computational time used to achieve these

results was only 10 minutes. Thus, a team of first responders can use this metaheuris-

tic at the initial stage of the rescue operation when the UAVs are getting ready to

take o↵.
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Figure 4.12: Improvements of the solution quality after 10 minutes. Gray markers:
real-life scenarios; black markers: random scenarios.

4.2.5 Summary

This section assesses solution quality and other characteristics of the heuristics de-

veloped for the CMPID problem. When compared with optimum on smaller in-

stances, the IDIH-Reserve deviates from optimum by only 6.9% on average and at

most 15.36%. On larger instances including several real-life scenarios, the IDIH-

Reserve outperforms the other construction heuristic IDIH. This is due to a battery

reservation mechanism and another evaluation function.

The proposed metaheuristic VNS improves initial solutions for large random and

real-life instances obtained by the IDIH on 3–30% in only 10 minutes.

A combination of the VNS and IDIH outperforms the approaches for the CMP,

QI+VNS and CW+VNS in 3 times in solution quality and in 481 times in computa-
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tional time. This shows that introducing inter-depot routes increases e�ciency, i.e.,

vehicles visit more target points at a more uniform frequency. In our application this

leads to more recent information updates which are important for situations where a

small missed change can be critical.

The next study compares the performance of the proposed heuristic with the

optimal solutions of the patrolling problem. The used instances were generated by

relaxing the essential energy constraints. Even though these instances are favorable

for patrolling, the average delay of the IDIH-Reserve solutions deviates by only 11%

from the optimal patrolling strategy on the largest scenarios.

4.3 CMPID with Priorities

4.3.1 Test Instances

The CMPIDP is a variation of the CMPID problem with priority information and

without the fixed mission time. Therefore, the CMPID instances from Section 4.2 can

be used for evaluating the CMPIDP methods with minor changes. In this section we

involve all benchmark sets except the patrolling scenarios. The following modifications

were made to the instances: we omit the mission time limit and include additional

information about priorities of the points.

Priorities are assigned as follows. For the optimum instances, the picture points

are split in two clusters so that the first and the second clusters have priorities 1 and

2, respectively. The real-life, random and clustered instances include 3 priority levels.

To assign them, the area is split into either 3 clusters (for clustered scenarios and

scenarios with up to 200 points) or 6 clusters. All points in a cluster have the same

priority from the set {1, 2, 3}. For the instances with 6 clusters each priority level has

to be assigned to exactly two clusters.

4.3.2 Tuning

Typically, parameter tuning leads to noticeable improvements. In the following, we

describe the process of selecting the best-performing coe�cients for the IDIH-Reserve

heuristic for the CMPIDP.

The study was conducted on three benchmark sets: the real-life, random and

clustered instances. In order to avoid overfitting, every third instance was excluded.

Tuning of coe�cients is typically performed by comparing the performance of a

heuristic with all possible combinations of coe�cient values from a fixed domain.
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In this study, all coe�cients (except scale) took values from the interval [0, 1] with

step 0.1. The coe�cient scale was set to 100. The performance of a combination

on an instance was measured by the cost deviation from the best obtained solution

on this instance. The best combination has minimal average and minimal maximal

deviations among all instances.

The obtained results showed that the instances require di↵erent coe�cients de-

pending on instance size and points distribution. Table 4.10 reports the suggested

values for the subgroups of instances.

Set of instances ↵1 ↵2 ↵3 ↵4 �
clustered 0.2 0.2 0.2 0.4 0.9

non-clustered (> 100 points) 0.3 0.4 0.2 0.1 0.7
non-clustered (< 100 points) 0.2 0.6 0.1 0.1 0.7

Table 4.10: Coe�cients of the IDIH-Reserve for the CMPIDP

According to the selected values of the ↵-coe�cients, the arrival time dominates

the other parameters of the evaluation function on the real-life and random instances.

On instances with more scattered picture points, the parameters have almost equal

impact. This change of influence is a mechanism to deal with bottleneck situations

like in our clustered scenarios.

4.3.3 Comparison with Optimum

This evaluation estimates performance of the IDIH-Reserve heuristic with respect to

optimum. We use the optimum instances, where the optimal solutions were found by

solving a MiniZinc model (see Section 3.5) with the Gecode solver. Solution quality

is measured by the CMPIDP goal function.

The achieved solution costs are reported in Table 4.11. They show that the pro-

posed heuristic is on average only 4.09% and at most 13.66% worse than the optimum.

Moreover, the heuristic requires less than a second to solve each instance instead of

minutes or hours required by the solver.

4.3.4 Evaluation on Real-Life Instances

In the presence of priorities, areas of higher importance should be visited more often.

This study shows that the IDIH-Reserve provides such solutions with the update

frequency proportional to the priority level.

The real-life, random and clustered instances were solved twice. In the first run,

average delays for each of the three priorities were determined. The second run
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Instance Optimal IDIH-Reserve
Nr. cost cost deviation in %
1 30364 30884 1.71
2 23441 23961 2.22
3 17267 17983 4.15
4 19073 19497 2.22
5 18378 19156 4.23
6 23795 24239 1.87
7 25038 26074 4.14
8 19348 20426 5.57
9 23158 26322 13.66
10 20111 20335 1.11

Table 4.11: Comparison with optimum

ignored the priority information and, thus, all points were equally important. The

performance was measured as the average delay between visits of points of the same

priority.

Fig. 4.13 demonstrates the results of the study. Average visit frequencies of the

first run are shown as percentages of the visit frequency of the second run. These

charts also show the variations among the measurements.
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Figure 4.13: The average delay of each priority in the first run.

As expected, delays of the first run are approximately proportional to the priori-

ties, i.e. around 60, 100 and 170% for low, medium and large priorities, respectively.

Moreover, delays of the medium priority are close to the delays of the second run.

This means that delays between visits are not significantly a↵ected by use of priorities.

It was observed that, as the number of points increases, delays within one priority

level deviate more. This is an expected consequence of the increasing complexity of

the problem. Moreover, there was no significant di↵erence between the performance
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on the life and random scenarios. The clustered instances appeared to be harder to

solve.

To demonstrate the e↵ect of instance size on computational time, the IDIH-

Reserve solved every instance from the real-life, random and clustered sets ten times.

Fig. 4.14 reports the computational time averaged over all runs. The run-time in-

creases linearly with the number of points, vehicles and visits.
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Figure 4.14: Computational time of the IDIH-Reserve.

The linear increase of the run-time comes from the algorithm’s complexity that

depends on the number of points, vehicles and visits. The upper bound on the number

of visits is maxCap/minTrT ime, where maxCap is the maximal total capacity of

all batteries of the same type, minTrT ime is the minimal travel time between two

points. Then the complexity of the heuristic is O(|N
p

| · |N
v

| ·maxCap/minTrT ime).

According to the evaluation results, even the largest instances are solved in seconds,

e.g. the instances with 800 points are solved at most in 10.69 s. These results show

that the IDIH-Reserve heuristic can be used in time-critical applications.

4.3.5 Summary

In this section we describe the evaluation studies conducted for the IDIH-Reserve

heuristic proposed for the CMPIDP problem. The algorithm is on average only 4%

and at most 14% far from optimum for cases where an optimum is computable. It

also achieves good results for the real-life CMPIDP instances in short time, e.g. in

less than 11 s for the largest instance with 800 points. The solutions obtained by the

IDIH-Reserve have visit frequency proportional to the priority level as required by

the problem. Moreover, the method is linear in the number of points, vehicles and

visits.
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Chapter 5

Conclusion

In this thesis we described route planning problems for area monitoring: the continu-

ous monitoring problem (CMP), CMP with inter-depot routes (CMPID) and CMPID

with priorities (CMPIDP). We proposed solution methods for these problems. These

problems arise in many real-life scenarios such as continuous aerial surveillance of a

crime scene or an open-air concert. We supported the problems with a scenario where

a fleet of unmanned aerial vehicles assists first responders by periodically providing

an overview of a disaster site.

The CMP is a variation of the well-known NP-hard problem, vehicle routing

problem. The goal of the CMP is to compute a sequence of routes for a fleet of

vehicles in order to periodically visit a set of points. An optimal solution minimizes

delays between consecutive visits and maximizes the number of visits within the fixed

planning horizon. The vehicles can be heterogeneous, i.e., have di↵erent travel speed

and energy supply on board. The energy supply can be renewed at a vehicle home

station.

Due to the complexity of the problem, we proposed heuristic approaches to solve

the CMP. An initial solution can be constructed with a queue-based insertion heuris-

tic (QI) or a modified Clarke and Wright algorithm (CW). Then the solution is

improved by a metaheuristic VNS. The methods were evaluated on a set of real-life

benchmarks. The runtime of both construction heuristics QI and CW is less than

one second even for the largest scenarios. The QI achieved better results on smaller

instances, whereas the CW outperformed the QI on larger benchmarks. Since these

methods are not exact algorithms, we compared their solutions with optima on in-

stances where an optimum was computable in an admissible amount of time. For

these test cases our metaheuristic obtained solutions at most 27% worse than the

optimum. We also analyzed several neighborhood structures with a new insert oper-

90



ator. The best operator sequence improved the initial solution cost provided by the

CW on approximately 12% on large scenarios.

The CMPID emerges when the vehicles are not assigned to certain stations and

can recharge at any of them. By relaxing this CMP constraint, we could gain better

e�ciency.

To solve the CMPID problem, we developed two construction heuristics: inter-

depot insertion heuristic (IDIH) and IDIH with battery reservations (IDIH-Reserve).

The IDIH-Reserve achieves better results than the IDIH on most large instances due

to its battery reservation policy and new parameters in the evaluation function. The

IDIH-Reserve also returns near-optimal solutions with the average deviation from an

optimum of only 7%. When compared with an optimal patrolling strategy on large

instances which are generated in favor of patrolling, the IDIH-Reserve solution quality

is worse by only 11%.

Solutions provided by the IDIH and IDIH-Reserve can be further improved by a

VNS. The VNS di↵ers from the version applied to the CMP, as it contains a new

neighborhood operator and does not include a local search procedure. This allows an

increase in the solving speed, while keeping improvements at a high level, i.e., initial

solutions of the real-life scenarios are improved by 3–30% in only 10 minutes.

The CMPIDP problem arises in scenarios where parts of an area have di↵erent

importance, e.g., the terrain on the edge of a forest fire or locations of survivors. Apart

from the problem parameters given in the CMPID, the CMPIDP includes priority

information and does not have a fixed mission time. Its goal is to construct routes

for periodical visitation of points that utilizes a maximal number of energy supplies

and minimizes delays between visits proportional to priorities.

The IDIH-Reserve heuristic was extended to solve the CMPIDP problem. This

heuristic is only 4% on average worse than the optimum. For the larger random, clus-

tered and real-life instances, this heuristic constructs routes with delays proportional

to the priorities of points. We also showed that the performance of the IDIH-Reserve

does not decrease from introducing priorities. Moreover, the algorithm is linear in

the number of points, vehicles and visits and solves largest instances with 800 points

in only 11 seconds.

In a real-life environment, di↵erent kinds of disturbances are very likely to occur.

Since feasible solutions for the large real-world scenarios of the CMP and its extensions

are found in seconds, the proposed methods can be used for quick plan adaptation

to some scenario changes such as drone failure or change of priorities. The required

minor modifications of the input information is described for each scenario.
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We envision several directions to extend the research presented in this thesis:

1. A drawback of the approaches proposed in this thesis comes from their advan-

tage: good coe�cients settings lead to high-quality solutions, however, wrong

coe�cient values can decrease the e�ciency. This can be solved by introducing

dynamically adjusting coe�cients. Their values change during the execution

based on a partial solution of a problem.

2. In this work the connectivity between the drones and the base stations is as-

sumed to be su�cient for the mission, e.g., for sending pictures to the stations.

This does not hold in environments cluttered with obstacles such as urban sce-

narios. Future work could be to develop an approach that involves network

connectivity into the planning process.

3. In this thesis we assume that each battery is used only once. In real life, batteries

can be recharged at base stations and, thus, can be used multiple times. In that

case where a drone leaves the battery becomes critical, as it influences further

planning. The prospective future direction is to consider the use of recharged

batteries.

4. A robotic system can include both aerial and ground robots. In this case,

the ground robots could serve as charging stations and constantly adjust their

locations to the flight paths of the UAVs. The future work is to extend the

UAV route planning with moving charging stations.

5. To avoid collisions between drones, we currently check the UAVs flight paths

on intersections in time and space. Assuming the drones fly in a straight line

between the two points, the intersections of drone trajectories are easily com-

putable. However, vehicles do not always follow a straight line during flight,

e.g., their paths are curved in a strong wind. In this case, we envision three

possible solutions: to fly at di↵erent altitudes, to cluster the area, or to forbid

intersections within a certain time interval in order to compensate for real-life

disturbances like wind.

6. In this thesis we considered only heterogeneous sensing drones, i.e., drones tak-

ing pictures. The future research direction is to introduce di↵erent types of

services. For example, in a disaster scenario, we can distinguish between sens-

ing, rescue and networking agents. A networking agent is a relay in an aerial
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network to provide a better connectivity between the drones and the base sta-

tions. Additionally, di↵erent UAV platforms can be used for di↵erent tasks,

e.g., fixed-wing UAVs for sensing and multi-copters for rescue and networking

tasks.
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Appendix A

COP Model

Usage: when solving the CMP, CMPID or CMPIDP, rules used for other problems

should be commented out or removed.

1 % PARAMETERS ( input )
2 int : nSt ; % number o f s t a t i o n s
3 int : nP ; % number o f po in t s
4 int : nN = nSt + nP ; % number o f nodes
5

6 array [ 1 . . nN, 1 . . nN] of int : d i s t ; % d i s t anc e between two nodes
7

8 array [ 1 . . nP ] of int : pr ; % p r i o r i t y o f a po int f o r the CMPIDP
9 array [ 1 . . nP ] of int : l v t ; % time s i n c e the l a s t v i s i t o f a po int

10

11 int : nT ; % number o f types
12 array [ 1 . . nT ] of int : c apac i ty ;
13 array [ 1 . . nT ] of int : speed ;
14 array [ 1 . . nT ] of int : servTime ; % e . g . , to take a p i c tu r e
15 array [ 1 . . nT ] of int : time2chBat ; % time to change a bat te ry
16

17 % number o f b a t t e r i e s o f a type in a s t a t i o n
18 array [ 1 . . nSt , 1 . . nT ] of int : nBat ;
19

20 int : nV; % number o f v e h i c l e s
21 array [ 1 . . nV] of 1 . . nT : vehType ; % type o f a v e h i c l e
22

23 % i n i t i a l remaining bat te ry capac i ty o f a v e h i c l e
24 array [ 1 . . nV] of int : initBatCap ;
25 array [ 1 . . nV] of 1 . . nN: i n i tLoc ; % i n i t i a l l o c a t i o n o f a v e h i c l e
26

27 % only f o r the CMP
28 array [ 1 . . nV] of 1 . . nSt : vehStat ion ; % home s t a t i o n o f a v e h i c l e
29

30 int : maxNVisitsV ; % maximal number o f v i s i t s made by a v eh i c l e
31 int : maxNVisitsP ; % maximal number o f v i s i t s o f a po int
32 int : mT; % mis s s i on time f o r the CMP and CMPID
33 % DECISION VARIABLES ( output )
34 % a sequence o f nodes v i s i t e d by each v eh i c l e
35 array [ 1 . . nV, 1 . . maxNVisitsV ] of var 1 . . nN+1: v i s i t ;

94



36

37 % PREDICATES
38 % f i r s t S t V i s i t equa l s the index o f a v i s i t when v eh i c l e v v i s i t s a
39 % st a t i o n f o r the f i r s t time . I t i s r equ i r ed f o r the goa l f unc t i on
40 pr ed i c a t e f i r s t V i s i t 2 S t a t i o n (var int : f i r s t S tV i s i t ,
41 array [ 1 . . nV, 1 . . maxNVisitsV ] of var 1 . . nN+1: v i s i t , int : iV )=
42 l e t {array [ 1 . . maxNVisitsV ] of var 1 . . maxNVisitsV : y} in
43 y [ 1 ] = min (maxNVisitsV ,
44 1 + boo l 2 i n t ( not ( v i s i t [ iV ,1]<=nSt ) ) ⇤maxNVisitsV ) /\
45 f i r s t S t V i s i t = y [ maxNVisitsV ] /\
46 f o r a l l ( iV i s in 2 . . maxNVisitsV ) (
47 y [ iV i s ] = min (y [ iVis �1] ,
48 iV i s + boo l 2 i n t ( not ( v i s i t [ iV , iV i s ]<=nSt ) ) ⇤maxNVisitsV )
49 ) ;
50

51 % Counts v i s i t s made at po int iP .
52 pr ed i c a t e coun tV i s i t s (array [ 1 . . nV , 1 . . maxNVisitsV ] of var int : v i s i t ,
53 var nSt +1. .nN: iP , var int : c ) =
54 c = sum( iV in 1 . . nV, iV i s in 1 . . maxNVisitsV )
55 ( boo l 2 i n t ( v i s i t [ iV , iV i s ] == iP ) ) ;
56

57 % Sets maxTime to the maximal miss ion time among v e h i c l e s (CMPIDP)
58 pr ed i c a t e getMaxMTime(array [ 1 . . nV] of var int : vehMTime ,
59 var int : maxTime) =
60 l e t {array [ 1 . . nV] of var int : y} in
61 y [ 1 ] = vehMTime [ 1 ] /\
62 maxTime = y [nV] /\
63 f o r a l l ( iV in 2 . . nV) (
64 y [ iV ] = max(vehMTime [ iV ] , y [ iV�1])
65 ) ;
66

67

68 % CONSTRAINTS
69 %Every v eh i c l e must s t a r t i t s f i r s t route at the i n i t i a l l o c a t i o n .
70 c on s t r a i n t f o r a l l ( iV in 1 . . nV) ( v i s i t [ iV , 1 ] == in i tLoc [ iV ] ) ;
71

72 % Veh i c l e s cannot stay at one node except f o r the ‘dummy’ node .
73 c on s t r a i n t
74 f o r a l l ( iV in 1 . . nV) (
75 f o r a l l ( iM in 2 . . maxNVisitsV ) (
76 v i s i t [ iV , iM�1] == nN+1 /\ v i s i t [ iV , iM�1] == v i s i t [ iV , iM ]
77 \/
78 v i s i t [ iV , iM�1] != v i s i t [ iV , iM ] /\ v i s i t [ iV , iM�1] != nN+1
79 )
80 ) ;
81 % Al l v e h i c l e s must f i n i s h t h e i r miss ion at a s t a t i o n .
82 c on s t r a i n t
83 f o r a l l ( iV in 1 . . nV) (
84 f o r a l l ( iV i s in 1 . . maxNVisitsV�1) (
85 not ( v i s i t [ iV , iV i s ] > nSt /\ v i s i t [ iV , iV i s ] <=nN) \/
86 v i s i t [ iV , iV i s +1] <=nN
87 ) /\
88 ( v i s i t [ iV , maxNVisitsV]<=nSt \/ v i s i t [ iV , maxNVisitsV]==nN+1)
89 ) ;
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90

91 % Fl i gh t time o f a route cannot exceed batte ry capac i ty .
92 array [ 1 . . nV, 1 . . maxNVisitsV ] of var int : usedCap ;
93 c on s t r a i n t
94 f o r a l l ( iV in 1 . . nV) (
95 l e t { var 1 . . maxNVisitsV : f i r s t S t V i s i t } in
96 f i r s t V i s i t 2 S t a t i o n ( f i r s t S tV i s i t , v i s i t , iV ) /\
97 usedCap [ iV , f i r s t S t V i s i t ]<=initBatCap [ iV ] /\
98 usedCap [ iV , 1 ] = 0 /\
99 f o r a l l ( iV i s in 2 . . maxNVisitsV ) (

100 l e t {var bool : p r ev I sPo int=v i s i t [ iV , iVis �1]>nSt/\
101 v i s i t [ iV , iVis�1]<=nN,
102 var bool : isDummy = v i s i t [ iV , iV i s ] == nN+1} in
103 isDummy /\ usedCap [ iV , iV i s ] = 0 \/
104 not isDummy /\
105 usedCap [ iV , iV i s ] <= capac i ty [ vehType [ iV ] ] /\
106 usedCap [ iV , iV i s ] = ( usedCap [ iV , iVis �1] +
107 servTime [ vehType [ iV ] ] ) ⇤ boo l 2 i n t ( prev I sPo int /\ iV i s !=2)+
108 d i s t [ v i s i t [ iV , iVis �1] , v i s i t [ iV , iV i s ] ] d iv
109 speed [ vehType [ iV ] ]
110 )
111 ) ;
112

113 % For the CMP and CMPID: v e h i c l e s cannot use more b a t t e r i e s than
114 % there are a v a i l a b l e .
115 c on s t r a i n t
116 f o r a l l ( iS in 1 . . nSt ) (
117 f o r a l l ( iT in 1 . . nT) (
118 l e t {var int : nChanges = sum( iV in 1 . . nV,
119 iV i s in 2 . . maxNVisitsV�1)
120 ( boo l 2 i n t ( vehType [ iV ] == iT /\ v i s i t [ iV , iV i s ] == iS /\
121 v i s i t [ iV , iV i s +1] != nN+1) ) } in
122 nChanges <= nBat [ iS , iT ]
123 )
124 ) ;
125 % For the CMPIDP: v e h i c l e s must use a l l b a t t e r i e s .
126 c on s t r a i n t
127 f o r a l l ( iS in 1 . . nSt ) (
128 f o r a l l ( iT in 1 . . nT) (
129 l e t {var int : nChanges = sum( iV in 1 . . nV,
130 iV i s in 2 . . maxNVisitsV�1)
131 ( boo l 2 i n t ( vehType [ iV ] == iT /\ v i s i t [ iV , iV i s ] == iS /\
132 v i s i t [ iV , iV i s +1] != nN+1)
133 ) } in
134 nChanges == nBat [ iS , iT ]
135 )
136 ) ;
137

138 % For the CMP: a v eh i c l e v i s i t s only i t s home s t a t i o n and po in t s .
139 c on s t r a i n t
140 f o r a l l ( iV in 1 . . nV) (
141 f o r a l l ( iM in 2 . . maxNVisitsV ) (
142 v i s i t [ iV , iM ] = vehStat ion [ iV ] \/ v i s i t [ iV , iM]>nSt
143 )
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144 ) ;
145 % Arr iva l time during every v i s i t that a v eh i c l e makes
146 array [ 1 . . nV, 1 . . maxNVisitsV ] of var int : aTimeV ;
147 c on s t r a i n t
148 f o r a l l ( iV in 1 . . nV) (
149 aTimeV [ iV , 1 ] = 0 /\
150

151 l e t { 1 . . nT : iT = vehType [ iV ]} in
152 f o r a l l ( iV i s in 2 . . maxNVisitsV ) (
153 l e t {var bool : p r ev I sPo int=v i s i t [ iV , iVis �1]>nSt /\
154 v i s i t [ iV , iVis�1]<=nN,
155 var bool : isDummy = v i s i t [ iV , iV i s ] == nN+1} in
156 isDummy /\ aTimeV [ iV , iV i s ] = 0 \/
157 not isDummy /\ aTimeV [ iV , iV i s ] = aTimeV [ iV , iVis �1] +
158 d i s t [ v i s i t [ iV , iVis �1] , v i s i t [ iV , iV i s ] ] d iv
159 speed [ vehType [ iV ] ] +
160 boo l 2 i n t ( prev I sPo int /\ iV i s !=2) ⇤ servTime [ iT ] +
161 boo l 2 i n t ( not prev I sPo int /\ iV i s !=2)⇤ time2chBat [ iT ]
162 )
163 ) ;
164

165 %Counts how many times a po int i s an i n i t i a l l o c a t i o n o f a v e h i c l e
166 array [ 1 . . nP ] of var int : i s I n i t L o c ;
167 c on s t r a i n t
168 f o r a l l ( iP in 1 . . nP) (
169 i s I n i t L o c [ iP ]=sum( iV in 1 . . nV) ( boo l 2 i n t ( i n i tLoc [ iV]==iP+nSt ) )
170 ) ;
171 % Def ines the t o t a l number o f v i s i t s o f each po int .
172 array [ 1 . . nP ] of var int : nVis i t sP ;
173 c on s t r a i n t
174 f o r a l l ( iP in 1 . . nP) (
175 coun tV i s i t s ( v i s i t , iP+nSt , nVis i t sP [ iP ] )
176 ) ;
177

178 % Der ives an ordered array o f a r r i v a l t imes o f every po int .
179 array [ 1 . . nP , 1 . . maxNVisitsP ] of var int : aTimeP ;
180 c on s t r a i n t
181 f o r a l l ( iP in 1 . . nP) (
182 % f i r s t a r r i v a l time equa l s to 0 i f number o f v i s i t s i s l e s s
183 % than the maximal p o s s i b l e number o f v i s i t s
184 ( maxNVisitsP != nVis i t sP [ iP ] /\ aTimeP [ iP , 1 ] = 0 \/
185 maxNVisitsP == nVis i t sP [ iP ] /\ aTimeP [ iP , 1 ] > 0)
186 /\
187 % de f i n e s the order and which a r r i v a l t imes should be
188 % equal to 0
189 f o r a l l ( iVisP in 2 . . maxNVisitsP ) (
190 aTimeP [ iP , iVisP ] >= aTimeP [ iP , iVisP �1]
191 /\
192 ( iVisP <= maxNVisitsP � nVis i t sP [ iP ] + i s I n i t L o c [ iP ] /\
193 aTimeP [ iP , iVisP ]=0
194 \/
195 iVisP > maxNVisitsP � nVis i t sP [ iP ] + i s I n i t L o c [ iP ] /\
196 aTimeP [ iP , iVisP ]>0)
197 )
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198 /\
199

200 % inc lude only a r r i v a l t imes o f the corre spond ing po int
201 f o r a l l ( iV in 1 . . nV, iV i s in 1 . . maxNVisitsV ) (
202 v i s i t [ iV , iV i s ] == iP+nSt /\
203 e x i s t s ( iVisP in 1 . . maxNVisitsP )
204 (aTimeP [ iP , iVisP ] == aTimeV [ iV , iV i s ] )
205 \/
206 v i s i t [ iV , iV i s ] != iP+nSt
207 )
208 ) ;
209

210 % No two v e h i c l e s can v i s i t a po int at the same time .
211 c on s t r a i n t
212 f o r a l l ( iV1 , iV2 in 1 . . nV where iV1<=iV2 ) (
213 f o r a l l ( iVis1 , iV i s2 in 1 . . maxNVisitsV where
214 not ( iV1 == iV2 /\ iV i s1 == iVi s2 ) )
215 (
216 aTimeV [ iV1 , iV i s1 ] != aTimeV [ iV2 , iV i s2 ] \/
217 v i s i t [ iV1 , iV i s1 ] != v i s i t [ iV2 , iV i s2 ] \/
218 v i s i t [ iV1 , iV i s1 ] <= nSt \/ v i s i t [ iV1 , iV i s1 ] == nN + 1
219 )
220 ) ;
221

222 % For the CMP and CMPID: no v eh i c l e can f i n i s h i t s f i n a l f l i g h t
223 % a f t e r the end o f miss ion .
224 c on s t r a i n t
225 f o r a l l ( iV in 1 . . nV) (
226 f o r a l l ( iV i s in 1 . . maxNVisitsV ) ( aTimeV [ iV , iV i s ] <= mT )
227 ) ;
228

229 % Time when a po int was v i s i t e d the f i r s t time .
230 array [ 1 . . nP ] of var int : f i r s tArTime ;
231 c on s t r a i n t
232 f o r a l l ( iP in 1 . . nP) (
233 aTimeP [ iP , 1 ] != 0 /\ f i r s tArTime [ iP ] = aTimeP [ iP , 1 ]
234 \/
235 aTimeP [ iP , 1 ] == 0 /\ aTimeP [ iP , maxNVisitsP ] != 0 /\
236 f o r a l l ( iVisP in 2 . . maxNVisitsP ) (
237 aTimeP [ iP , iVisP �1] == 0 /\ aTimeP [ iP , iVisP ] != 0 /\
238 f i r s tArTime [ iP ] = aTimeP [ iP , iVisP ]
239 \/ aTimeP [ iP , iVisP �1] != 0
240 \/ aTimeP [ iP , iVisP ] == 0)
241 \/ aTimeP [ iP , maxNVisitsP ] == 0 /\ f i r s tArTime [ iP ] = 0
242 ) ;
243

244

245 % Pena l t i e s f o r the problems with f i x ed miss ion time ,CMP and CMPID
246 array [ 1 . . nP ] of var int : c o s t s ;
247 c on s t r a i n t
248 f o r a l l ( iP in 1 . . nP) (
249 aTimeP [ iP , maxNVisitsP ] == 0 /\
250 c o s t s [ iP ] = (mT + lv t [ iP ] ) ⇤(mT + lv t [ iP ] )
251 \/
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252

253 aTimeP [ iP , maxNVisitsP ] != 0 /\
254 l e t {var int : co s tBetweenVi s i t s = sum( i in 1 . . maxNVisitsP�1)
255 ( ( aTimeP [ iP , i +1] � aTimeP [ iP , i ] ) ⇤
256 (aTimeP [ iP , i +1] � aTimeP [ iP , i ] ) ⇤
257 boo l 2 i n t (aTimeP [ iP , i ] !=0) ) } in
258 c o s t s [ iP ] = cos tBetweenVi s i t s +
259 (mT � aTimeP [ iP , maxNVisitsP ] ) ⇤(mT � aTimeP [ iP , maxNVisitsP ] )+
260 ( f i r s tArTime [ iP ] + l v t [ iP ] ) ⇤( f i r s tArTime [ iP ] + l v t [ iP ] )
261 ) ;
262

263 % Pena l t i e s f o r the problem without f i x ed miss ion time , CMPIDP
264 % Fir s t , compute the miss ion time , i . e . , maximal miss ion time
265 % among a l l v e h i c l e s . . .
266 var int : mT;
267 array [ 1 . . nV] of var int : vehMTime ;
268 c on s t r a i n t
269 f o r a l l ( iV in 1 . . nV) (
270 l e t {var int : nChanges = sum( iV i s in 2 . . maxNVisitsV�1)
271 ( boo l 2 i n t ( v i s i t [ iV , iV i s ]<=nSt /\ v i s i t [ iV , iV i s +1]!=nN+1) ) } in
272

273 vehMTime [ iV ] = nChanges ⇤ ( capac i ty [ vehType [ iV ] ] +
274 time2chBat [ vehType [ iV ] ] ) + initBatCap [ iV ]
275 ) ;
276

277 c on s t r a i n t getMaxMTime(vehMTime , mT) ;
278

279 % . . . then compute the p e n a l t i e s
280 array [ 1 . . nP ] of var int : c o s t s ;
281 c on s t r a i n t
282 f o r a l l ( iP in 1 . . nP) (
283 aTimeP [ iP , maxNVisitsP ] == 0 /\
284 c o s t s [ iP ] = (mT + lv t [ iP ] ) ⇤(mT + lv t [ iP ] )
285 \/
286 aTimeP [ iP , maxNVisitsP ] != 0 /\
287 l e t {var int : co s tBetweenVi s i t s = sum( i in 1 . . maxNVisitsP�1)
288 ( ( aTimeP [ iP , i +1]�aTimeP [ iP , i ] ) ⇤
289 (aTimeP [ iP , i +1]�aTimeP [ iP , i ] ) ⇤
290 boo l 2 i n t (aTimeP [ iP , i ] !=0) ) } in
291 c o s t s [ iP ] = ( cos tBetweenVi s i t s +
292 (mT � aTimeP [ iP , maxNVisitsP ] ) ⇤(mT � aTimeP [ iP , maxNVisitsP ] )+
293 ( f i r s tArTime [ iP ] + l v t [ iP ] ) ⇤( f i r s tArTime [ iP ] + l v t [ iP ] )
294 ) ⇤ pr [ iP ]⇤ pr [ iP ]
295 ) ;
296

297 % OBJECTIVE
298 % Compute a value o f the goa l f unc t i on .
299 var int : t o ta lCos t = sum( iP in 1 . . nP) ( c o s t s [ iP ] ) ;
300 s o l v e minimize to ta lCos t ;
301

302 % OUTPUT
303 % Print the cor re spond ing ass ignments .
304 output [ show ( v i s i t ) , show ( to ta lCos t ) ] ;
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Appendix B

COP Input for the CMPIDP

1 nSt = 2 ; % number o f s t a t i o n s
2 nP = 6 ; % number o f po in t s
3

4 % di s t anc e between two nodes
5 d i s t =
6 [ |0 , 1 0 , 9 , 5 , 1 1 , 4 , 4 , 4 ,
7 |10 , 0 , 10 , 13 , 5 , 7 , 10 , 11 ,
8 |9 , 10 , 0 , 7 , 6 , 9 , 1 2 , 5 ,
9 |5 , 13 , 7 , 0 , 1 1 , 8 , 9 , 2 ,

10 |11 , 5 , 6 , 11 , 0 , 8 , 11 , 9 ,
11 |4 , 7 , 9 , 8 , 8 , 0 , 4 , 6 ,
12 |4 , 10 , 12 , 9 , 11 , 4 , 0 , 8 ,
13 | 4 , 1 1 , 5 , 2 , 9 , 6 , 8 , 0 | ] ;
14

15 pr = [ 1 , 1 , 2 , 2 , 2 , 1 ] ; % p r i o r i t y o f a po int
16 l v t = [ 1 5 , 6 , 2 0 , 1 1 , 6 , 9 ] ; % time s i n c e the l a s t v i s i t o f a po int
17

18 nT = 1 ; % number o f types
19 capac i ty = [ 2 4 ] ;
20 speed = [ 1 ] ;
21 servTime = [ 1 ] ; % e . g . , to take a p i c tu r e
22 time2chBat = [ 1 ] ; % time to change a batte ry
23

24 nBat = [ | 1 | 3 | ] ; % number o f b a t t e r i e s o f a type in a s t a t i o n
25

26 nV = 2 ; % number o f v e h i c l e s
27 vehType = [ 1 , 1 ] ; % type o f a v e h i c l e
28

29 % i n i t i a l remaining bat te ry capac i ty o f a v e h i c l e
30 initBatCap = [ 6 , 1 2 ] ;
31 i n i tLoc = [ 4 , 7 ] ; % i n i t i a l l o c a t i o n o f a v e h i c l e
32

33 maxNVisitsV = 11 ; % maximal number o f v i s i t s made by a v eh i c l e
34 maxNVisitsP = 5 ; % maximal number o f v i s i t s o f a po int
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