
Anita Sobe, Dipl. Ing.

Self-Organizing Multimedia Delivery
Towards Emerging Delivery Paradigms for Non-Sequential Media Access

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin

der Technischen Wissenschaften

Alpen-Adria Universität Klagenfurt

Fakultät für Technische Wissenschaften

1. Begutachter: Prof. Dipl.-Ing. Dr. Laszlo Böszörmenyi

Institut: Institut für Informationstechnologie

2. Begutachter: Prof. Pascal Felber, Ph.D.

Institut: Institut d’informatique, Université de Neuchâtel, Switzerland

Dezember 2011

Ehrenwörtliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende wissenschaftliche Arbeit selbständig

angefertigt und die mit ihr unmittelbar verbundenen Tätigkeiten selbst erbracht habe.

Ich erkläre weiters, dass ich keine anderen als die angegebenen Hilfsmittel benutzt habe.

Alle ausgedruckten, ungedruckten oder dem Internet im Wortlaut oder im wesentlichen

Inhalt übernommenen Formulierungen und Konzepte sind gemäß den Regeln für wis-

senschaftliche Arbeiten zitiert und durch Fußnoten bzw. durch andere genaue Quellen-

angaben gekennzeichnet.

Die während des Arbeitsvorganges gewährte Unterstützung einschließlich signifikanter

Betreuungshinweise ist vollständig angegeben.

Die wissenschaftliche Arbeit ist noch keiner anderen Prüfungsbehörde vorgelegt worden.

Diese Arbeit wurde in gedruckter und elektronischer Form abgegeben. Ich bestätige, dass

der Inhalt der digitalen Version vollständig mit dem der gedruckten Version übereinstimmt.

Declaration of Honour

I hereby confirm on my honour that I personally prepared the present academic work

and carried out myself the activities directly involved with it. I also confirm that I have

used no resources other than those declared. All formulations and concepts adopted

literally or in their essential content from printed, unprinted or Internet sources have

been cited according to the rules for academic work and identified by means of footnotes

or other precise indications of source.

The support provided during the work, including significant assistance from my super-

visor has been indicated in full.

The academic work has not been submitted to any other examination authority. The

work is submitted in printed and electronic form. I confirm that the content of the

digital version is completely identical to that of the printed version.

I am aware that a false declaration will have legal consequences.

Signature:

Klagenfurt, 18. Dezember 2011

i

Contents

List of Tables vi

List of Figures viii

Acknowledgements xiii

Abstract xv

1. Introduction 1

1.1. Motivation . 1

1.2. Contributions . 3

1.3. Outline . 5

2. The Context: Self-Organizing Multimedia Architecture - SOMA 7

2.1. Interfaces to the SOMA Layers . 9

2.2. Use Cases . 9

2.2.1. SOMA World Games . 9

2.2.2. Anniversary Festival at the Alpen-Adria University Klagenfurt -

UniSommer . 11

2.2.3. The Long Night of Research - Die lange Nacht der Forschung . . . 11

3. Background 13

3.1. Content Distribution in Peer-to-Peer Networks 13

3.1.1. Basic Concepts . 13

3.1.2. Search in Unstructured Peer-to-Peer Networks 15

3.1.3. Content Delivery Applications . 17

3.2. Self-Organization . 20

3.2.1. Applications of Bio-inspired Self-organization 20

3.2.2. Specific Applications for Content Delivery 26

iii

4. Describing and Calculating the Multimedia Lifecycle 29

4.1. Related Work . 30

4.1.1. Presentation . 30

4.1.2. Transport . 32

4.2. The Video Notation (ViNo) . 33

4.2.1. Simple examples . 35

4.2.2. Introducing QoS . 38

4.2.3. Simple Examples with QoS . 42

4.2.4. Introducing Wildcards . 43

4.3. Applicability of ViNo for Describing Content Delivery Networks 44

4.4. Applicability of ViNo for Requests and Video Presentation 53

4.5. Summary and Discussion . 54

5. Non-sequential Multimedia Caching 57

5.1. Related Work . 57

5.2. Flexible Caching . 59

5.3. Evaluation . 61

5.3.1. Scenario 1: Two Competing User Groups 62

5.3.2. Scenario 2: Two Groups, Two Replacement Strategies 64

5.3.3. Scenario 3: Four Groups . 67

5.4. Summary and Discussion . 69

6. Bio-inspired Self-Organizing Multimedia Delivery 71

6.1. Introduction and Related Work . 71

6.2. Algorithm Description . 73

6.3. Parameter Settings . 78

6.4. Application in a Proxy Network . 79

6.4.1. Evaluation Settings . 80

6.4.2. Results . 81

6.4.3. Discussion . 87

6.5. Replication Strategies for Bio-inspired Delivery in Peer-to-Peer Networks 88

6.5.1. Existing Replication Strategies 88

6.5.2. Proposed Replication Strategies 89

6.5.3. Evaluation Settings . 91

6.5.4. Results . 93

6.5.5. Discussion . 96

iv

6.6. Storage Balancing by Introducing Clean-up Mechanisms 96

6.6.1. 50 Nodes Random Network . 97

6.6.2. Impact of Peer Churn . 101

6.6.3. 1,000 Nodes Scale-free Network 103

6.6.4. Discussion . 105

6.7. Summary . 106

7. Artificial Hormone Systems as a Middleware for Content Delivery 107

7.1. Related Work . 107

7.2. Artificial Hormone System Middleware - MASH 108

7.3. Case Study . 110

7.3.1. Settings . 110

7.3.2. Results . 111

7.4. Summary and Discussion . 116

8. Conclusions and Future Work 119

9. List of Publications 125

A. ViNo EBNF Specification 127

B. Interface Specification 129

v

List of Tables

4.1. Temporal evolution of the video delivery including presentation 37

4.2. Temporal evolution of the video delivery including presentation 38

4.3. CDNsim configuration parameters [1] . 45

4.4. Surrogates service during simulation, the average sequential delay and the

delay improvement if pipelining is used [1] 50

6.1. Parameters to configure at system startup 78

6.2. Parameter settings of the proxy scenario [2] 80

6.3. Parameter settings . 92

7.1. Parameter settings . 111

vii

List of Figures

2.1. Informal description of the SOMA layers 8

2.2. Overview of the composition/decomposition/distribution relationship [3] 10

3.1. Examples for peer-to-peer overlay architectures 14

4.1. Sequential and parallel time line of a SMIL presentation 30

4.2. Sample video delivery system with one origin server S, five proxies P1�
P5, and one client C, where the client wants to get u1, u2, u3 sequentially 36

4.3. Sample video delivery system with one origin server S, five proxies P1�
P5, and one client C, where the download is done over a number of proxies 37

4.4. Sample network with delay (D) as QoS parameter 42

4.5. Sample architecture using CDNsim [1] 44

4.6. Delay comparison between ViNo and CDNSim of one miss web site chosen

per client[1] . 47

4.7. Comparing ViNo routers and CDNSim - delay of the first 200 web sites

of client c1020 [1] . 49

4.8. Comparing ViNo generic and CDNSim - delay of the first 200 web sites

of client c1020 [1] . 49

4.9. Video Browser with 3x3 aligned units [4] 51

4.10. Video Browser with tree-like presentation of units [4] 52

4.11. Video Browser request interface using ViNo [5] 53

5.1. Two semantic groups with distinct users and partly shared content . . . 59

5.2. Hit rate comparison of two competing user groups using simple and rank-

based admission with LRU [6] . 62

5.3. Comparison of prefetching requests of two competing user groups using

simple and rank-based admission [6] . 63

5.4. Requests forwarded to the server using simple and rank-based admission

with di↵erent cache sizes [6] . 63

ix

5.5. Hit rate comparison of pure, simple and rank-based admission using LRU

for two user groups with overlapping interests [1] 65

5.6. Factor of server requests compared to user requests (LRU vs. popularity

replacement) [1] . 65

5.7. Hit rate comparison of the admission policies using LRU and popularity

replacement [1] . 66

5.8. Hit rate di↵erences with restrictive and non-restrictive cache for 4 user

groups . 67

5.9. Hit rate comparison for 4 user groups . 68

5.10. Server request load comparison for 4 user groups 68

6.1. Example for a hormone trail for a unit. Thick connections mean better

QoS [7] . 74

6.2. Delay comparison of hormone and routing system for 5 nodes with di↵er-

ent clean-up functions [2] . 82

6.3. Hit rate comparison of hormone and routing system for 5 nodes [2] . . . 82

6.4. Delay comparison of hormone system for 10, 20, and 50 nodes [2] 84

6.5. Delay comparison of the routing algorithm with smart clean-up for a 10,

a 20, and a 50 nodes network . 84

6.6. Copy and move comparison if LRU or the proposed clean-up function is

applied [2] . 85

6.7. Delay distribution with and without 50 % node failure, routing algorithm,

50 nodes [2] . 86

6.8. Delay distribution with and without 50 % node failure, hormone algo-

rithm, 50 nodes [2] . 87

6.9. Delay distribution in the best e↵ort scenario [7] 93

6.10. Utilization comparison [7] . 94

6.11. Failed request rate [7] . 94

6.12. Delay comparison of the di↵erent clean-up mechanisms [8] 98

6.13. Hormone, LRU and LFU utilization comparison [8] 99

6.14. Hormone, LRU and LFU request failed rate comparison [8] 99

6.15. Delay distribution of hormone ranking with hormone clean-up if 5,10, 20

nodes fail [8] . 101

6.16. Delay distribution of path adaptive with LRU if 5, 10, 20 nodes fail [8] . 102

6.17. Failed request rate in case of peer churn [8] 102

6.18. Delay distribution of hormone ranking with hormone clean-up if 100, 200,

500 nodes fail [8] . 104

x

6.19. Delay distribution of path adaptive with LRU if 100, 200, 500 nodes fail [8]104

6.20. Failed request rate in case of peer churn [8] 105

7.1. MASH Structure . 109

7.2. Inter-request delay distribution . 112

7.3. Hit rate of di↵erent unit sizes developed over simulated time 112

7.4. Boxplot with 1.5 inter quantile whiskers of the deadline misses 113

7.5. Inter-request delay distribution . 114

7.6. Hit rate of di↵erent unit sizes in a scale-free network 115

7.7. Boxplot with 1.5 inter quartile whiskers of the deadline misses in a scale-

free network . 115

B.1. Interface for notifying the composition layer if a unit or a request is

completed . 129

B.2. Request interface at the middleware to be used by the composition layer 130

B.3. Node representation as interface to the network layer 130

xi

Acknowledgements

I have to exceptionally thank my advisor Professor Laszlo Böszörmenyi for his support

during this thesis. I appreciated that he took the time for weekly meetings to discuss

new ideas and to evaluate constructively the work so far. He has the skill to make

someone look at a problem from perspectives, which are not obvious from the first sight.

It was a pleasure to learn from such an exceptional person.

I have to thank Dr. Wilfried Elmenreich a lot who stirred up my enthusiasm for self-

organizing systems/complex networks (and Project Euler). I am very grateful for the

lively discussions and support, which helped to combine self-organization with multime-

dia delivery.

My special thanks go to Professor Pascal Felber, who accepted the request to review my

thesis and for his valuable input, also during my stay at Neuchâtel in 2008.

This dissertation would not have been possible without the team of the SOMA project

(SOMA is a cooperative project of the Lakeside Labs GmbH and the Alpen-Adria Uni-

versität Klagenfurt): Dipl.-Ing. Manfred del Fabro, Dipl.-Ing. Marian Kogler, Dipl.-Ing.

Stefan Wieser, Dipl.-Ing. Felix Pletzer, Dr. Roland Tusch, Dr. Mathias Lux, Professor

Bernhard Rinner and Professor Laszlo Böszörmenyi. I appreciated the collaboration and

the many discussions during this project and the great work for the use cases. Special

thanks go to Manfred del Fabro for being premium tester of ViNo, discussion partner

and co↵ee kitchen colleague.

I want to thank my family, especially my mother, for their help and motivation during

this time and to keep my options open to concentrate on this thesis.

Most importantly I want to thank Dipl.-Ing. Bernhard Dieber for his support, time,

humor and patience.

xiii

Abstract

In this thesis the non-sequential delivery of media in dynamic networks is investigated.

Consider a scenario where people participate at a social event. With the increased

popularity of smart phones and tablet computers people produce more and more multi-

media content. They share their content and consume it on popular web platforms. The

production and the consumption of such media are, however, di↵erent from the typical

sequential movie pattern: we call this non-sequential media access. If the infrastructure

is not available, visitors cannot share their content with other visitors during the event.

The idea is to connect the devices directly, which is further robust even if people move

during the event (dynamic networks). Non-sequential media access in combination with

dynamic networks brings new challenges for the whole multimedia life cycle. A formalism

called Video Notation helps to define the single parts of the life-cycle with a simple and

short notation. New measures for transport are needed as well. A caching technique

is introduced that allows for evaluating the goodness of content for being cached based

on its popularity in di↵erent user groups. However, this cache does not cope with the

dynamic network requirement, because such a delivery has to be robust, adaptive and

scalable. Therefore, we concentrate on self-organizing algorithms that provide these

characteristics. In this thesis the implemented algorithm is inspired by the endocrine

system of higher mammals. A client can express its demands by creating hormones

that will be released to the network. The corresponding resources are attracted by this

hormone and travel towards a higher hormone concentration. This leads to a placement

of content near to the users. Furthermore, the robustness and service quality is increased

by placing replicas of the traveling content along the transport path. Unused replicas

are automatically removed from the nodes, to ensure storage balancing. Finally, we

show with a use case that a middleware based on the hormone-based delivery including

well-defined interfaces to the user and to the network can be used for content delivery

other than multimedia. For such general application recommendations on possible

configurations are made.

xv

1. Introduction

This chapter contains the motivation of the thesis topic. Based on that the contri-

butions are summarized and finally the organization of this thesis is described.

1.1. Motivation

With the increasing popularity of smart phones and tablet computers user generated

multimedia content can be created and consumed almost everywhere. Web platforms

such as Flickr1, YouTube2 and Facebook3 allow the users to share their moments with

friends or the public. At live sports events such as the Ironman4 (a triathlon), visitors

produce masses of multimedia data, but there is no specific possibility to exploit this

data for live sharing with other visitors. Although organizers provide video walls,

visitors cannot influence the content presented. The possibility of querying content

such as ”I want an overview of interesting parts of the last 30 minutes” is missing.

Visitors should be able to create their individual presentations depending on their

interests. This includes alternative presentation patterns to the typical sequential

consumption pattern of traditional movies. As an example an overview of the high-

lights could be presented as a combination of short videos as split-screen (in parallel).

Such a scenario is dynamic and complex, since visitors move, have heterogeneous de-

vices and have a di↵erent notion of interestingness. Furthermore, the content quality

is di↵erent from device to device, the area of the sports event is large, popularity of

content changes quickly, etc.

Thus, there is a large potential of research questions in this context. Some of them

are: (1) How can a user interact with others? (2) How can videos and images be

automatically and/or interactively composed to a presentation? (3) How are the user

1www.flickr.com
2www.youtube.com
3www.facebook.com
4www.ironman.com

1

CHAPTER 1. INTRODUCTION 2

devices connected to a network? (4) Given a network topology how can content be

e�ciently delivered to the right places?

These research questions are investigated in the context of the research project SOMA

(Self-Organizing Multimedia Architecture) described in more detail in Chapter 2.

The Ironman scenario further shows that content gets more and more important

both on the consumer and on the producer side. In this scenario visitors produce

multimedia content all around the area, and should also be able to consume anything

(multimedia content), anytime and anywhere they want. However, the transport of

content is still limited to traditional, mostly static, delivery methods. Future Internet

discussions such as described by Hausheer et al. in [9] show that flexible solutions

for delivery are needed.

Flexibility means more exactly that the following system characteristics apply.

1. The system is dynamic – users join and leave, change their interests, ...

2. The system is non-deterministic – it is non-predictable what content will be

popular, what the join and leave rate will be,...

3. The system needs local decisions emerging to a global state – what content

should be moved where to provide better service, ...

4. The system needs adaptability for being robust – join and leave rates of users

should not harm the rest of the network, alternative delivery paths and content

presentations are necessary

These are characteristics of self-organizing systems as defined in [10]. Therefore, I

am specifically interested in self-organizing delivery concepts. Since the dynamics of

the described scenario take on a key role, predefined structures are not maintainable.

Therefore, unstructured peer-to-peer overlays are chosen as a basis.

To realize the delivery, an interface is needed between user requirements and delivery

system. From a user’s perspective di↵erent multimedia files created at a certain event

like the Ironman are dependent on each other. As an example consider a visitor who

wants to see the best athletes of the swim challenge. To fulfill this request a number

of multimedia files might be needed in a specific order. So, a user should be able to

CHAPTER 1. INTRODUCTION 3

express his/her needs in such a manner that multiple files are addressed.

In traditional systems files are independent. Thus, one research question is to find

out how the multimedia dependencies can be implemented. Since these dependencies

can vary from user to user, a global index is not manageable. However, a local index

on each peer needs sophisticated search algorithms. Additionally, when delivering

multimedia content, further requirements apply on transmission quality. A search

mechanism has to take care of the transmission of dependent content to fulfill QoS

requirements, like low delay, low delay jitter, etc.

The transmission itself can be exploited for influencing the performance of future

requests. If everyone only downloads the parts requested, the content cannot spread

e�ciently to fulfill future requests. By acting as intermediate peer for transport, i.e.,

being non-selfish, e�cient replication decisions can be done leading to an e�cient

content placement before it is requested. Replicas result in a smaller search space,

which in turn leads to higher scalability and robustness.

1.2. Contributions

Self-organizing mechanisms are investigated to cover the process from request until

the reception of the required content. In this context a number of contributions are

made in five di↵erent categories and are described in the following. The corresponding

publications are listed in Appendix 9.

1. Describe video networks. The QoS requirements of users can be expressed

by a number of QoS-languages, however, there is no formalism to describe

the transport in order to compare di↵erent delivery solutions. In this thesis a

simple notation called ViNo (Video Notation) is introduced with the goal to

match delivery and requirements in one language. Furthermore, the notation

allows for the expression of low level QoS requirements and high level metadata

requirements. Clients can express their needs for a presentation and a system

designer can describe the way of content from the content provider until the

end of presentation. Due to the simple notation system decisions can be made

and the e↵ort for implementing simulations can be avoided.

2. Handle non-sequential media access. Media that is consumed more flex-

ible than a traditional sequence has also to be handled di↵erently. On the

CHAPTER 1. INTRODUCTION 4

example of a simple proxy cache it is shown, that new consumption patterns

evolve over time, and such a dependency can be exploited for prefetching. If

di↵erent users with di↵erent taste have to be served, a compromise about the

content to be cached has to be made. So, a metric is introduced to evaluate

the interestingness of content for all users with di↵erent taste.

3. Bring content near to the user. In unstructured peer-to-peer networks the

procedure for delivery is usually searching content and if found, downloading

it directly from the peer holding the content. Traditional search algorithms,

such as adapted Breadth First Search in the Gnutella protocol [11], are QoS-

unaware. Either the content is not found or the client is not capable of selecting

the node for download according to QoS. One of my hypotheses is that QoS

based search (based on, e.g., delay, link load, etc.) can positively guard the

later transmission. To achieve this I introduce a self-organizing hormone-based

algorithm for searching and QoS-based routing of content. The hormone-based

algorithm is managed without global knowledge and consists of two parts: (1)

Requests for content are represented by hormones. Hormones are created on

an arriving request, are di↵used to neighbors and evaporate over time; (2) hor-

mones trigger the transport of corresponding content. The creation of hormones

is also influenced by QoS requirements, i.e., for content near to the playback

time the hormone concentration is increased. The concentration of hormones

di↵used to the neighbors is QoS dependent. The better QoS the neighbor can

provide, the more hormones are di↵used to it. This policy does not necessarily

route units on the shortest path, but on the path with the best QoS. Content

is placed where it is needed, whereas content that is never requested does not

move.

4. Reduce search space and increase robustness. Typically, search in un-

structured peer-to-peer networks does not scale well. I show that non-selfishness

of peers (by the provision of some storage space) supports the overall system’s

performance. By creating replicas on the transport path no further system in-

formation is needed. Uninformed and locally informed replication mechanisms

are compared with the goal to reduce search space and place content on peers

before it is requested.

The global replica landscape gives an overview of the currently popular mul-

timedia content. Since the popularity of content is assumed to be dynamic, a

periodical replication clean-up is suggested and investigated. The investigation

targets the comparison of existing clean-up strategies with newly introduced

CHAPTER 1. INTRODUCTION 5

strategies to underpin their strengths and weaknesses. Furthermore, the repli-

cation and clean-up strategies are discussed in a broader context and I show

that the robustness of a system can be increased by the combination of local

knowledge, replication and e�cient storage usage.

5. Combine the findings into a middleware for content delivery. SOMA

describes an architecture that covers the whole multimedia life cycle. The

middleware is a generalization of the SOMA distribution layer providing an

interface to the user, the delivery and the infrastructure. The hormone-based

algorithm transparently delivers and places the content. On the one hand it

gets input from the application on what to deliver and on the other hand it gets

network related information, such as connected neighbors and low level QoS

data of the neighbors. The generalization of the interfaces and the combination

with the hormone-based algorithm to a middleware helps to deploy the SOMA

distribution layer to a real scenario. Furthermore, the middleware should be

applicable in delivery systems for continuous and non-continuous media. Con-

tent, other than continuous media might require di↵erent parameter settings,

e.g., di↵erent chunk sizes. Recommendations are made based on a case study.

1.3. Outline

This thesis is structured as follows. This work is done in the context of a project

called Self-organizing Multimedia Architecture, which will be described informally

in Chapter 2. Since the main topics are peer-to-peer and self-organization, Chap-

ter 3 provides background information. The contributions of this thesis are broad,

therefore, each chapter contains its own section dedicated to related work. Chap-

ter 4 introduces a multi-purpose multimedia formalism, which is henceforth used

for expressing user requests, presentations and QoS requirements and to calculate

multimedia transport. In Chapter 5 caching policies are discussed for the e�cient

usage for non-sequential media. These caching mechanisms are not yet applicable for

the usage for self-organizing delivery. Chapter 6 contains the main part regarding

self-organizing multimedia delivery, where a bio-inspired algorithm is introduced and

combined with replication (the adaptation of the caching algorithm from Chapter 5)

and measures for increasing the storage e�ciency. In Chapter 7 an artificial hormone-

based middleware is introduced, that generalizes the before mentioned characteristics

for content delivery. Chapter 8 concludes this thesis and outlines future work.

2. The Context: Self-Organizing

Multimedia Architecture - SOMA

This work is part of the SOMA (Self-organizing Multimedia Architecture) project 1.

SOMA strives to cover the whole life cycle of multimedia with a focus on dynamic

environments. Dynamic environments can be seen as multimedia systems that de-

pend on the interaction of persons with each other and their devices. The system

has to adapt to handle dynamic production and consumption of multimedia content.

Examples for such systems are specific tra�c surveillance systems and social events,

e.g., the Ironman (see Introduction).

If the participants of such a dynamic environment are able to share their most inter-

esting multimedia content with other participants, a self-organizing human commu-

nity evolves. Our goal is to enable participants to see situations through the eyes of

the other participants.

At social events visitors are likely to produce videos that have a playback duration

of a few seconds up to a few minutes, i.e., small pieces of video. We call such

pieces units. These units are usually distributed over masses of consumer devices.

By making them available to other visitors, new usage patterns can emerge. The

collection of such units enables users to compose units to an arbitrary presentation.

The users can individually decide what to see, in which order and when they want to

watch the presentation. This flexibility brings new challenges to all parts of a system.

SOMA defines three parts for the life cycle of multimedia: User, Sensors and Dis-

tribution [3]. Users have two roles, consumption and production. Sensors support

the users by producing further content and detecting interesting situations. The

produced content is then spread to the right places and prepared for presentation.

1In this chapter the project is described informally, for a more detailed overview see [3] and a list
of publications can be found at http://soma.lakeside-labs.com/

7

CHAPTER 2. SOMA 8

Figure 2.1.: Informal description of the SOMA layers

The three parts form three layers and their basic functionality is depicted in Figure

2.1. The figure subsumes all topics of interest for each layer in a tag cloud. Larger

tags represent focus topics, which are further described in the following:

1. Sensor layer. Sensors support users in the production of content by automat-

ically detecting interesting events. This is done by the aggregation of low level

sensor features to higher level events. What a higher level event actually is, is

decided locally by the sensors (see [12]).

2. Distribution layer. The distribution layer consists of three sub-layers.

• Composition and decomposition: All content produced by the users is

going through this layer to detect semantically meaningful units. If the

content gets too large, decomposition is necessary.

Users are actively integrated in the process of ”making their own movie”.

Since this sub layer represents the interface to the client, it helps to express

compositions interactively. Besides that, also automatic compositions are

possible, e.g., for video walls (see [5], [13]).

• Resource management and actual delivery: This layer bridges the gap

between the actual network and the user by exploiting QoS information

provided by the next sub layer.

• Infrastructure management: Visitors can participate with their mobile

phones and tablets, as well as by using computers provided by the infras-

tructure of the event. All devices build a random, unstructured overlay,

CHAPTER 2. SOMA 9

or can be clustered to so called Flocks [14]. Flocks are clusters relying on

a dynamically built system wide QoS-map.

3. User layer. The user layer uses implicit and explicit feedback from the con-

sumers as well as from the producers and aggregates this information to enrich

the content with additional metadata. This information has not only impact

on future presentations, but also on the delivery of units (see [15]).

2.1. Interfaces to the SOMA Layers

This thesis covers the resource management and delivery sub layer of the distribution

layer and is therefore connected to the composition/decomposition sub layer and the

infrastructure sub layer.

In Figure 2.2 the relation to the decomposition/composition sub layer is described.

The decomposition layer provides atomic units, containing one semantic part of a

video or a photo and all extracted metadata. The interface to the composition layer

is defined by a formalism called Video Notation (ViNo) that allows for the expression

of requests. ViNo further allows for QoS expressions, also defined by the composition

layer. ViNo is part of this thesis and is described in Chapter 4.

The infrastructure layer is responsible for connecting the devices of the visitors and

to build a dynamic overlay. Thus, this work relies on an existing overlay and the

notion of nodes and neighbors.

2.2. Use Cases

In 2010 we performed three use cases to collect user material and to analyze typical

behavior of visitors at larger events. The use cases showed advantages and disadvan-

tages of traditional as well as of dynamic systems.

2.2.1. SOMA World Games

The aim of the SOMA World Games event was to integrate all layers and their so

far available capabilities.

We provided four interactive video games (e.g., Karaoke, interactive sports, ...) and

simulated that each of the video games can be played in one of four cities around

CHAPTER 2. SOMA 10

Figure 2.2.: Overview of the composition/decomposition/distribution relationship [3]

the world, namely New York, Munich, Tokyo and Rio de Janeiro. Visitors at these

games were able to play and to take photos and videos. Furthermore, they were able

to see automatic compositions from interesting scenes of the own and the other cities.

In this use case we integrated the sensor and the distribution layer and created a

data set for the user layer for further analysis. At the sensor layer simple events were

detected, such as many people and not many people. After that the most interesting

parts were selected and sent to the network. The network was emulated by using

PlanetLab2, a distributed test bed usable for research purposes. The content of

the virtual cities had been injected into the network near the real cities. Thus, the

content had to travel through the real network before it could be presented.

A simplified global index was created to allow the composition sub layer for creating

automatic presentations. Simple patterns such as Munich, Highlights, etc. were the

basis for the presentation.

2www.planet-lab.org

CHAPTER 2. SOMA 11

With this event we were able to define further requirements for our proposed algo-

rithms. Furthermore, the acceptance of such a system for visitors was validated.

2.2.2. Anniversary Festival at the Alpen-Adria University

Klagenfurt - UniSommer

This event was targeted at past, current and future students and at researchers from

the immediate region. Initially planned as presentation platform for researchers the

event evolved to a static program of o�cial presenters and an exhibition displaying

the history of the university.

At this festival we evaluated the applicability of our concepts to a rather rigid environ-

ment. In contrast to the SOMA World Games, the focus was set on the composition

sub layer. Since this event was larger than the first use case we were able to identify

producer patterns. We presented the content to the users by automatic compositions

on di↵erent screens and at a number of terminals, where users were able to interact

with the system. The interaction was also used as a feedback loop that influenced

further presentations. The presentation of user generated content was very popular

and it showed that a system like SOMA would be accepted by a broad audience.

2.2.3. The Long Night of Research - Die lange Nacht der

Forschung

The aim of the final use case was to present our work to a larger public. The Long

Night of Research attracted more than 5,000 visitors to the presentation of 105 re-

search projects over a few hours. The area of the presentation covered the university

itself and the greater campus. Thus, this scenario is perfectly matching the target

scenarios of SOMA. The influence of the visitors on the presentations was further

emphasized and stations with simple software for uploading and consuming videos

were deployed on di↵erent places on the campus.

The goal of this use case was to get a data set of all media provided by the visitors

including metadata and to collect information about consumption and production

behavior of the visitors.

We decided for a simple deployment where all data was uploaded to one server, where

it was further prepared for the presentation. The decision for the central server

CHAPTER 2. SOMA 12

was made to ensure controllability. However, some of the presentations were highly

popular and encouraged even more people to participate with their own content –

as a consequence flash crowds lead to slow service of the server which resulted in

recurring presentations of content. The use case event showed that controllability

has its costs and that a dynamic delivery system would have adapted to such issues,

but would have been harder to set up.

3. Background

The aim of this thesis is to identify possible delivery methods to manage dynamic

situations. Therefore, this chapter covers two topics: traditional delivery over peer-

to-peer systems and the basics of self-organization for future delivery methods.

3.1. Content Distribution in Peer-to-Peer Networks

Peer-to-Peer networks are known to be scalable and fault tolerant and their ap-

plications are wide spread from communication systems, Internet service support,

database systems and content distribution [16]. This section focuses on content

distribution.

3.1.1. Basic Concepts

Peer-to-Peer networks consist of nodes of equal roles and have a notion of neighbor-

hood. Since this neighborhood does not necessarily represent the physical network

connection, we speak of a logical overlay [17]. Such overlays can be either unstruc-

tured, structured or hybrid as shown by example in Figure 3.1.

1. Unstructured networks.

Nodes join and leave as they wish, connecting to a number of other nodes. The

advantage of an unstructured architecture is the capability of handling the high

dynamics of peers leaving and entering the system. However, because of these

dynamics it is hard to hold an index of the provided peer content. Another

problem is to enter the network. To find other peers already connected, a num-

ber of bootstrapping strategies may be applied as described in [18]. (1) One

or a number of bootstrapping servers hold lists of currently available peers; (2)

The peer sends a broadcast or a multicast to find other peers; (3) peers already

in the overlay send periodically broadcast messages containing their connection

information; (4) the peer tries to contact a peer in its cache. In addition to

these four strategies a number of requirements for a successful connection exist.

13

CHAPTER 3. BACKGROUND 14

(a) unstructured (b) structured (c) hybrid

Figure 3.1.: Examples for peer-to-peer overlay architectures

A peer should connect preferably to another peer, which is close in terms of

network proximity and does not have already a high number of other connec-

tions.

2. Structured networks.

The content of the nodes is tightly bound to the logical location of the node.

Nodes are organized to build a given structure, e.g., a ring. These structures are

used to e�ciently locate specific content. Overviews and examples of structured

networks can be found in [16], [18] and [19]. A specific example is a distributed

hash table (DHT). In a DHT each resource and each participating node can be

identified by a unique key. The key defines where the corresponding resource

will be located, i.e., its similarity to a corresponding node identifier (id) specifies

its location. In other words a node is responsible for a range of keys depending

on the system’s definition of key-similarity. The query routing is done based on

the node ids and expects concrete requests, i.e., in most systems range queries

are not supported. Furthermore, there is no possibility to take advantage of

popular files.

3. Hybrid networks.

A hybrid network consists of two tiers. The first tier comprises a number of

so called super-peers, which have a higher capacity than usual peers and are

expected to be always online. The super-peers build an overlay. The second tier

comprises usual peers that connect to other usual peers and/or to super-peers.

The super-node overlay can be organized as a DHT (see [19]), such as seen

for trackerless BitTorrent. Traditionally, peer-to-peer systems are regarded as

CHAPTER 3. BACKGROUND 15

cheap shared storage without the need of system maintenance. Super-peers

that are expected to be always online invalidate these characteristics.

In dynamic systems any structure is hard to manage, therefore we focus on the

use of unstructured peer-to-peer networks and describe in the next section existing

possibilities of content search.

3.1.2. Search in Unstructured Peer-to-Peer Networks

In structured networks the lookup of content is very e�cient, some implementations

reach a complexity of O(logN), where N is the number of nodes in the overlay. If the

nodes’ behavior is very dynamic, i.e., peer churn is high, the management e↵ort for

keeping the structures is influencing the search performance. Unstructured networks

are aware of the peer churn and the algorithms adapt to the given situation. The

drawback of the non-existing structures is that search is less e�cient, which is proven

for the traditional search methods flooding and random walk.

Flooding can be compared to Breadth First Search. Each node forwards the query

to all its neighbors, where advanced algorithms detect and avoid circles. Gnutella

is an example for flooding based search, it uses a time-to-live-limited Breadth First

Search [11]. This search method is executed by forwarding a message to all neighbors

until a time-to-live threshold (TTL) is reached. All results are routed back along the

path the query took. The extensive forwarding of messages is robust, but leads to a

high number of messages and is therefore ine�cient.

Random walk is a strategy to reduce the number of messages by randomly choosing

a neighbor for forwarding the message, but at the risk of not finding the desired

content. The most often used random walk adoption is k-random walk, where k

random searches are started.

To overcome the disadvantages of the two basic techniques researchers proposed a

number of search strategies, compared and subsumed in [18], [20], [21] and [22]. In

the following a selection of these strategies is presented.

Kalogeraki et al. proposed two methods in [23]. The first method uses Breadth

First Search, but limits the number of neighbors for message forwarding. Each node

randomly chooses the half of its neighbors and forwards the query message to them.

CHAPTER 3. BACKGROUND 16

So, this method can be seen as an adaptive version of k-random walk. The second

method, called intelligent search, requires each node to store a profile of the last

replies of its neighbors. The profile calculates the similarity of queries already ful-

filled by this neighbor. The more similar queries were fulfilled the more likely the

query will be forwarded to this neighbor.

Another search mechanism called routing indices is introduced in [24]. It concentrates

on text documents where each of the documents covers a specific topic. If a query for

a document is arriving, the path to which the query should be routed is estimated

by a goodness calculation. This goodness defines the number of related documents

in a given direction, but it does not consider the hop distance to the documents.

Therefore, the goodness calculation is extended to find the most documents within

the shortest range. The new routing indices represent aggregated information until

a predefined hop distance.

The quality of this algorithm depends on the topic definition. If the topics are defined

too detailed a user may not find the required content. If the topics are defined too

coarse the returned content may be too general to meet the user’s expectations.

Yang and Garcia-Molina proposed to use iterative deepening in [25]. The query

source node initiates periodically Breadth First Searches with increasing TTL until

the query is satisfied or in the worst case a predefined maximum depth is reached.

The authors expect a system wide policy that specifies a list of depths and with it

the maximum number of Breadth First Searches. As an example the list {a,b,c}
defines three searches with depth a, b and c. If a request with TTL a arrives at a

node at depth a, but the node cannot satisfy it, the node stores the request. If a

command for Breadth First Search with TTL b arrives it forwards the stored query

to a neighbor. This prevents multiple processing of the same query.

A more dynamic approach is the adaptive probabilistic search (APS) introduced by

Tsoumakos and Roussopoulos in [26]. The search principle is an extension to random

walk, and chooses k walkers to search for a specific object. A node can act optimistic

or pessimistic. The node increases the success probability of a chosen neighbor as-

suming the search in this direction will be successful (optimistic). If it decides for

the pessimistic behavior, it decreases the probability of a chosen neighbor. Initially,

the node is more likely to choose the optimistic strategy. If the estimation was

incorrect an update procedure corrects the probabilities along the path back to the

requester and the node switches to the pessimistic strategy. Although APS performs

CHAPTER 3. BACKGROUND 17

better than random walk, the update procedure requires additional messages. An

enhancement chooses to switch from optimistic to pessimistic strategy more e�ciently

by monitoring the successful queries. If the number of successful queries is high the

ratio of optimistic decisions is increased, otherwise pessimistic decisions are preferred.

Lin et al. propose in [27] a search algorithm that generalizes flooding and random

walk. The algorithm, called dynamic search, di↵ers two phases depending on the

current hop count h and the decision threshold n. If the hop count is smaller than

n flooding is used, otherwise the policy switches to random walk. This ensures that

content is found in any case within a specific search space. The authors evaluate dif-

ferent values for n. If the maximum hop distance is seven, the best search e�ciency

is reached if n = 2. However, the parameter has to be recalculated for each network

scenario.

The authors further propose to substitute the random walk algorithm by knowledge-

based algorithms, such as APS. The performance further increases because of the

good relationship between search performance and cost.

Whereas the before mentioned methods rely on a large overlay, a number of re-

searchers build dynamic sub-overlays to cluster nodes with similar content. An ex-

ample for this is the acquaintance mechanism introduced in [28]. An unstructured

network consists of neighbor links, chosen randomly, and acquaintance links, chosen

because of common interests. A peer connected via acquaintance link is called friend,

of which the peer also has state information. Queries are routed through the network

and acquaintance links are dynamically added or adapted based on successful query

fulfillment. The resulting overlay clusters nodes with similar interests, but leaves

usual (random) links for global connectivity.

3.1.3. Content Delivery Applications

In current content delivery systems the search mechanism is often detached from the

actual distribution. The distribution, however, is optimized for fulfilling multiple

requests for the same content at the same time (multicast), which is often the case

for multimedia content that is either streamed or downloaded. Li in [19] categorizes

delivery methods into tree-based delivery and mesh-based delivery.

Tree-based delivery integrates peers on the intermediate path to realize application

layer multicast. Peers interested in a specific file form a tree-like overlay. This

CHAPTER 3. BACKGROUND 18

structure leads to a fixed delivery path for the whole transmission. All intermediate

peers forward and replicate the content, whereas the leaf nodes do not contribute.

If an intermediate peer leaves the network, the delivery tree has to be rebuilt which

leads to interrupted service for the subtrees of this node.

Therefore, SplitStream[29] splits up the content into pieces and creates for each piece

a di↵erent tree. For increasing the robustness, CoopNet [30] additionally uses multiple

description coding (MDC) [31]. With MDC the content is partitioned in substreams

(either spatially or temporally), where a substream is referred to as a description.

The descriptions are independent, such that any combination of descriptions reaching

the target leads to a consumable video. The more descriptions reach the target, the

better is the final quality of the video.

Another example for tree-based streaming is CrossFlux [32]. CrossFlux generates

one tree-based distribution overlay per stripe of a file. In each tree overlay the

nodes adapt their placement by applying local rules. Nodes with high bandwidth are

placed near to the root and the nodes with low bandwidth are placed near to the

leafs. Furthermore, each tree consists of primary links and backup links. If a node

fails the backup links help to reconnect the overlay. The authors further used the

findings of the distribution trees and analyzed the distribution flows in mesh-based

networks [33]. In mesh-based delivery systems nodes connect to a number of peers

that hold the requested content. The authors found out that the distribution flows

often follow a tree-like structure and therefore optimized the overlay in the same way

as for the tree-based overlay, which increased the throughput of the network.

One of the most famous mesh-based content delivery systems is BitTorrent [34].

BitTorrent divides files into chunks of fixed size and the chunks can be downloaded

from several peers in parallel. Each node has to decide (1) which chunk to download

next and (2) from which peer it is downloaded. The basic policy is to download the

rarest chunk from the connected peers.

Recent activities consider adaptations of BitTorrent for multimedia streaming. Since

the default protocol of BitTorrent is not applicable for streaming [35], other piece

picking algorithms are discussed. Vlavianos et al. propose BiTos in [36] to bal-

ance parallel and sequential downloading of pieces to fulfill the QoS requirements

for streaming and to provide e�cient delivery. This is done by adapting the piece

picking algorithm from rarest first to a probability based algorithm. Pieces are first

CHAPTER 3. BACKGROUND 19

categorized into three classes: already downloaded/missed, near to playback and

rest. With a given probability pieces are more likely to be downloaded from the

near to playback part than from the rest part. Pieces from the rest category can be

downloaded in the rarest first manner, while the near to the playback pieces have to

be downloaded sequentially.

An example for real-life applications of peer-to-peer streaming is PPLive [37], [38],

which is a popular IPTV service in Asia. PPLive follows a double bu↵er strategy,

which allows the peers to e�ciently exchange content and to cover jitter. Although

streaming only supports sequential download of pieces, PPLive only needs some nodes

acting as seeders. The bandwidth of these seeders is adaptively allocated depending

on the measured health of the channels. Additionally, peers that store the whole

content so far also act as bootstrapping servers, which unfortunately leads to high

start-up delays, e.g., up to 2 minutes for less popular channels.

Apart from peer-to-peer systems, the latest multimedia streaming trend is HTTP

Streaming [39]. HTTP streaming targets the traditional Internet, which is based on

TCP. TCP is not popular for video streaming, because of its congestion control and

slow-start policy. However, HTTP over TCP is traditionally used for progressive

download (see YouTube), which allows for watching the content immediately if a

significant part is already downloaded. Progressive download, however, is inflexible

in comparison to traditional streaming, because users have to preselect the quality

version of the content and then stick to that version, which can lead to bad experience

if the infrastructure does not support this decision. Furthermore, VCR actions, such

as fast forward and seek/play, are limited or not supported.

The advantage of progressive download is its simplicity and therefore researchers are

interested in improving it by adaptive streaming. This approach assumes that the

content is split up into segments. Instead of requesting a whole file, the client requests

individual segments via HTTP. This enables VCR actions, because the segments are

small and easily accessible. Furthermore, the segments are available in di↵erent

qualities, therefore the client can also switch between di↵erent bitrates with each

request for a segment. The di↵erent qualities can be encoded in SVC [40], where a

base layer defines the minimum quality and a hierarchy of enhancement layers can

be used for higher quality transmissions.

CHAPTER 3. BACKGROUND 20

3.2. Self-Organization

Self-organization is a hot topic for computer science, because of the increasing dy-

namism and complexity of current systems (see Internet and Web 2.0). It is hard

to predict the advances of a system because of circular dependencies [10], [41]. A

global controller can therefore hardly be designed. A self-organizing system consists

of distributed entities that interact with each other [42]. These entities perform

local decisions, which at some point evolve towards a global equilibrium [10]. The

decisions are influenced by positive and negative feedback. Positive feedback amplifies

the system and leads to a snowballing e↵ect. This can be controlled by the negative

feedback. The global pattern evolves due to the interplay of positive and negative

feedback.

A traditional example for positively and negatively influenced patterns is the human

population. In the recent centuries the births led to a higher population, the o↵-

springs reproduce themselves, which again leads to an even higher population. At a

specific threshold the population might be regulated, either by a higher death rate

or a lower birth rate [42]. The positive and negative feedback allows for adaptability

and guarantees robustness. If a part of the system fails, the overall system may su↵er,

but this will not lead to a sudden breakdown. In contrast to a centralized system: If

one would remove the processor of a computer, the overall system will be unusable

[41].

In the 1940s researchers started to discuss the design of artificial self-organizing

systems [43]. From this time on numerous proposals were published for applying

principles found in nature to the technical world. These systems can be subsumed

under the term bio-inspired self-organizing systems. Depending on the problem con-

text the application of biological patterns can be done in two ways—top-down or

bottom-up. Either the problem context is found in nature (and the possible solutions

are analyzed and rebuilt, e.g., airplane wings), or the problem is abstracted from its

natural context (e.g., ant-based approaches for routing) [44].

3.2.1. Applications of Bio-inspired Self-organization

Babaoglu et al. [45], Mamei et al. [46] and Dressler and Akan [47] collected examples

for bio-inspired applications for computer science and networking.

CHAPTER 3. BACKGROUND 21

For instance researchers abstracted the behavior of ants for routing purposes, epi-

demic patterns for information spreading, genetic algorithms for pattern formation

and firefly flashes for heartbeat synchronization. In the following these applications

are discussed in more detail.

Swarm Intelligence and Social Insects

The most popular pattern is Ant Colony Optimization (ACO) as surveyed by Dorigo

et al. in [48]. ACO is inspired by some species of ants that indirectly communi-

cate by depositing pheromones in the environment. The ants tend to follow stronger

pheromone concentration, which leads them to a near food resource. If no pheromone

is found, the ants follow random paths, which might lead them to a food resource. If

the ant is the first, it will return earlier than the others and on the way to the nest

it spreads pheromones for the other ants.

As described by Dorigo et al. in [48] ACO can be described as a metaheuristic, ap-

plicable as a framework for combinatorial optimization problems (e.g., the traveling

salesman problem). The ACO metaheuristic consists of three phases: (1) solution

construction, (2) improving the solutions by local search and (3) pheromone updates.

The construction of solutions is defined by the trail following behavior of an ant. It

follows a stochastic mechanism that is implementation dependent. The local search

is an optional step to which performs pheromone updates. Pheromone updates em-

phasize good solutions and reduce the number of bad solutions.

As an example the first implementation of ACO was Ant System as described in [49],

followed by a prominent improvement called Ant Colony System [50].

Ant Colony System is an implementation for solving the traveling salesman problem.

The salesman has to find the shortest path visiting a number of given cities, with the

restriction to visit every city only once. Analogue to that the Ant Colony System

expects as an input a graph of connected cities. The links between the cities can hold

pheromones and costs, which are defined as the distance between two cities. Agents

represented by ants travel around the graph and spread pheromones. The decision

to which neighbor the ant routes further is defined as state transition rule. The ant

can follow two strategies: exploitation and exploration. In the first strategy the ant

follows the link with the lowest link costs and a large amount of pheromones. The

second strategy should ensure that also alternative paths will be tried by selecting a

CHAPTER 3. BACKGROUND 22

link randomly.

The traveling salesman problem was also translated to general routing problems in

networks, e.g., by AntNet [51]. The ants are used to build routing tables in packet-

switched networks. Forward ants search for the resource and if found and if the

goodness of the path is su�cient, the routing tables of the intermediate nodes have

to be updated. To solve this, backward ants are created and travel the way back

to the origin. To get the latest information of the network, a node regularly creates

forward ants. The number of ants created depends on the current network conditions

to avoid congestion. The destination of the forward ants is chosen randomly among all

nodes in the network. To which intermediate node a forward ant moves is dependent

on a state transition rule that considers link queue lengths. One important part in

routing is the prevention of cycles. The forward ant simply stores information about

nodes already visited and excludes them from the state transition calculation. If the

ant is forced to travel in a cycle, it continues until its lifetime is over.

Another phenomenon of social insects is called brood sorting [52] performed by specific

species of ants. These ants build their nests in existing crevices in rocks and by sorting

their brood the ants optimize the feeding procedure. If food is restricted some brood

stages are prioritized for better survival. The ants usually use only one nest chamber,

and they arrange their brood in concentric rings to a cluster somewhere away from

the entrance. Each ring contains a di↵erent brood stage, where similar brood stages

are placed near to each other. At nest creation the brood items are placed randomly,

however, later the new brood items tend to be placed near to similarly staged brood

items. In between a resorting of brood items may occur. If a brood item is detected

that is not similar enough to the neighboring items, it is picked up and relocated to

a place where it fits better. Additionally, brood items from small clusters are more

likely to be picked up and brought to larger clusters that finally build the single

concentric cluster of brood items.

This model was applied to distributed sorting problems, e.g., by Melhuish et al.

in [53]. The authors rebuilt the principles in homogeneous robots and let them

sort di↵erent colored plates. The experiment showed that agents can solve sorting

problems much simpler and without the need of specific sensors for spatial orientation.

CHAPTER 3. BACKGROUND 23

Epidemic Spreading

Epidemic spreading refers to biological models that analyze virus transmissions. In

computer science this principle is used for information dissemination in a dynamic

network, e.g., for configuration dissemination for sensor networks [47].

In such a system nodes are connected in a network and communicate according to

a di↵usion algorithm. In an optimal scenario, this algorithm takes care of spreading

the information to the whole network. However, the success of epidemic spreading is

dependent on the network structure. In a random network an epidemic spread tends

to die out quite fast. If the network can be characterized as a scale-free topology

such as the Internet and social networks, the epidemic spread is persistent.

Dynamic networks such as mobile ad-hoc networks (MANET) need a mechanism for

fast and reliable information dissemination, therefore epidemic spreading is popu-

lar [54]. The epidemic spreading mechanism categorizes the participating nodes in

susceptible nodes and infective nodes. The task is to transfer susceptive nodes into

infective ones. Khelil et al. [54] define susceptive nodes to be interested in specific

information and infective nodes as those who carry information. When the users

move around with their nodes holding information, the nodes advertise summaries

of it. Any other node within the sending range consumes information of interest

and further advertises this information. Khelil et al. further defined a mathematical

model for the infection rate of a system. The infection rate is dependent on the

probability of information transmission, the number of contacts of the nodes and on

the number of the overall nodes in the system.

Further examples regard the routing of messages in MANETs, eventually reaching

the target [55]. Infective nodes (holding the packet to deliver) infect all other nodes

they meet, which in turn infect other nodes. Thus, the population of infective nodes

increases. If the destination is infected the delivering node removes the packet from

the bu↵er, to not propagate it further. Additionally, it blocks the reinfection with this

packet by storing the state ”packet delivered”. Adaptations of this basic mechanism

regard the overhead reduction of copied packets, e.g., by introducing a probability of

infecting a node that is not the destination.

CHAPTER 3. BACKGROUND 24

Genetic Algorithms

In the early 1970s John Holland [56] described the idea of adapting evolution and

natural genetics for applications in computer science to find optimal solutions in a

large search space. The fittest solutions can reproduce themselves and the optimum

evolves over several generations. Holland’s algorithm is widely defined as Simple

Genetic Algorithm (SGA) [57].

The basis for the SGA is a population of bit strings, each representing a solution of

the search problem. A generation evolves by selecting the fittest and let them create

o↵spring. O↵spring are copies of their parents that might with a certain probability

evolve to new candidates by crossover operations or mutation. The default crossover

operation selects a random pair of strings and parts of both strings are interchanged.

E.g., two strings have length l and a crossover point 1 < x < l � 1 is defined.

At the crossover point the strings are cut and the halves interchange and build two

new strings. A mutation is implemented by flipping one or more bits of a given string.

Each resulting string is evaluated according to an implementation dependent fitness

function. The goodness of the string is the result of the comparison of the average

fitness of the population and the fitness of the string. The fittest strings are selected

by applying the roulette wheel selection algorithm, where each string gets a sector of

the roulette wheel. The higher the fitness, the larger is the sector. Then a random

number is created, which matches one of the sectors. The selection is repeated until

the predefined size of the next generation is reached. The procedure of selection,

crossover and mutation are performed until a termination criterion is matched, e.g.,

maximum execution time, maximum number of generations.

The SGA has been adapted in numerous ways, however, a genetic algorithm typi-

cally consists of selection, mutation and crossover. Researchers exchanged the before

mentioned selection, crossover, and mutation mechanisms by other solutions. For

instance the selection mechanism requires a string to win tournaments against a se-

lected set of strings. The best k strings in a k-ary tournament are then taken for the

next generation. Furthermore, there are dynamic genetic algorithms that adaptively

manage the crossover and mutation probabilities. Finally, distributed and parallel

implementations ensure lower computing times.

CHAPTER 3. BACKGROUND 25

Firefly Synchronization

In di↵erent areas of the world summer nights are characterized by the flashes of

fireflies. Di↵erent species evolved di↵erent patterns of their flashes that guide the

flying male fireflies to the right species of females. One type of fireflies in Southeast

Asia is specifically interesting for researchers, because these fireflies seem to perfectly

synchronize their flashes without global control [42].

Since synchronization in distributed systems is an important topic, models of firefly

synchronization were developed. One example is described by Babaoglu et al. in

[58]. The authors investigate heartbeat synchronization in peer-to-peer networks

by implementing firefly synchronization. Each node is seen as oscillator, which is

characterized by a phase and a cycle length variable. The phase increases linearly

from 0 to 1 in a number of time units (the cycle length) and fires a flash to its

neighbor nodes if 1 is reached. Then the value of the phase is reset to 0 and the

cycle starts again. In peer-to-peer systems transmission delays vary and failures

have to be considered. Therefore, the proposed synchronization protocol divides the

synchronization into submission and reception of flashes. The sender waits until the

phase reaches its threshold and then fires. Then, the most important task is done at

the receiver. On reception of a flash the threshold of its own phase and/or its own

cycle length has to be updated. The authors propose di↵erent models for that update.

The simplest model only updates the phase according to the received flash, i.e., fires

earlier or later. Without failure, this model leads to pairwise synchronization if the

cycle lengths of all nodes are identical.

Artificial Immune System

As other self-organizing systems the artificial immune system (AIS) consists of a

number of interacting entities. Most AISs are a simplified model of biological im-

mune systems. The human immune system consists of two parts, the innate immune

system and the adaptive immune system, which are tightly linked. However, most

computer models concentrate only on the adaptive immune system.

The immune system is able to di↵er between the body and external pathogens (e.g.,

bacteria, viruses, etc.). With sophisticated pattern matching the response of the im-

mune system to a detected pathogen is created. The response consists of antibodies

that connect to invading antigens [59].

CHAPTER 3. BACKGROUND 26

The immune system consists of a number of di↵erent cells that detect and respond to

pathogens. The most important cells are B and T cells. B cells are lymphocytes that

are programmed to create specific antibodies, thus are important to detect pathogens.

T cells are also lymphocytes, but act as regulators for other cells and can directly

attack infected cells [60].

According to Dasgupta et al. in [59] the most discussed models of AIS are immune

network models, clonal selection and negative selection. The immune network model

assumes a number of connected B cells to detect antigens. Initially, a B cell network

is taken out of a training set. This network is then exposed to antigens. B cells

that successfully bind to the antigens are cloned and eventually mutate for further

classification. If the binding was not successful, a new B cell is created with the

antigen as a template and integrated into the network. The negative selection algo-

rithm concentrates on the detection of self-cells, i.e., the body. T cells are tested by

self-proteins before brought to the body. If the proteins bind, the cell is destroyed,

otherwise the T cells are allowed to escape the thymus and enter the body.

3.2.2. Specific Applications for Content Delivery

The examples described before are copied from the behavior found in nature. In this

section the focus is set on more specific examples towards self-organizing algorithms

for content delivery, such as ants for resource management in grids, ants for content

search and routing and artificial immune systems for content delivery.

Service and Resource Management in Grids

In dynamic grid networks a major task is to discover services and resources. For

faster lookup, descriptors are disseminated over the grid, i.e., a distributed index is

created. This can also be compared to content discovery in peer-to-peer networks.

Forestiero et al. proposed a descriptor sorting and replication algorithm for grids

called Antares in [61]. This approach is not only ant inspired, but can also be

categorized as brood sorting such as described in [46].

The descriptors are bit strings encoded by locality sensitive hash algorithms (see

[62]). In contrast to standard hash algorithms, similar content results in similar hash

values. This helps to sort similar content based on its hash value. The sorting is done

by ant-inspired agents that travel the grid and pick and drop descriptors. According

CHAPTER 3. BACKGROUND 27

to a given probability an agent picks one or more descriptors. Descriptors that are

most di↵erent from the rest of the descriptors on the current host are more likely

picked. Agents operate in two modes, copy and move. In the copy mode the agent

creates a replica of the descriptor, whereas in the move mode not. The transition

between these states is pheromone based. In the beginning, each agent starts in the

copy mode. At some point, when the resources are better sorted, the activity of the

agent decreases. Then, the agent starts to increase its pheromone level until a given

threshold, then it switches to the move mode.

An agent decides to drop a descriptor based on the node’s centroid. The centroid

is a measure that aggregates the description of the node’s content. If the descriptor

carried by the agent matches the centroid of the node, a drop is likely.

It is interesting that Antares has also been adapted to support QoS-based picks and

drops [63]. Descriptors with better QoS are more likely to be replicated. The QoS

is described as a non-negative real value, where higher values describe higher QoS.

Analogous to the pick probability the drop probability increases if a descriptor with

high QoS is carried by an agent.

Ant-based Content Search in Peer-to-Peer Networks

Michlmayr proposed in [64] a search algorithm for unstructured peer-to-peer net-

works. The so called SemAnt algorithm extends AntNet for query routing. A query

is represented by a number of ants. Since in a peer-to-peer system the target node

is typically unknown, Michlmayr introduces a TTL parameter for forward ants. A

search procedure terminates, if a resource is found or if the TTL is reached.

Michlmayr investigated two implementations of the algorithm. In the first case a

search is successful if one instance of the desired content is found. A backward ant is

created to tell the requester the location of the content. In the second case the goal

of the search is to find as many results as possible. So, after creation of a backward

ant, the forward ant travels further. The search is successful if the predefined number

of results is returned.

At startup SemAnt can be compared to k-random search, however, backward ants

spread pheromones and therefore the next forward ants can be guided to the re-

sources. The limitation of this algorithm is that the content location is assumed to

CHAPTER 3. BACKGROUND 28

be static. If the peer with the resource leaves the system, the pheromones guide the

forward ants into the wrong direction until they evaporate.

Another example for search in peer-to-peer networks is called AntSearch [65]. This

approach is specialized in identifying free-riders. The pheromones are not mapped

to content as done by SemAnt, but they are used for indicating the reliability of a

peer. If a peer has a low pheromone value, it is avoided to forward messages to it.

Thus, the number of unnecessary messages is reduced. The local pheromone value is

stored in every peer of the system and consists of two parts. The first part represents

the number of hit queries and the second part the number of processed queries. The

evaluation of the goodness of a peer is based on the local pheromone value, but

depends also on the average pheromone value of the neighboring peers.

The search algorithm consists of two phases, a probe phase and a flooding phase.

The probe phase is a short range flooding to estimate the popularity of the requested

content. The popularity of the requested content allows for adaptive picking of the

flooding parameters. For example, popular content is very likely to be found in the

near neighborhood, therefore the TTL parameter can be small. Furthermore, peers

only forward to those neighbors having a high pheromone level.

Artificial Immune System Inspired Replication

Ganguly et al. proposed in [66] a search algorithm that implements an artificial

immune system. A node initiating a query generates an antibody for it. Files are

replicated over the network and represent the corresponding antigens. The antibody

can be seen as message traveling around the network finding corresponding antigens.

The matching is done by calculating the Hamming distance between the antigens

stored on a node and the traveling antibody. If a match was found the query origin

is contacted, otherwise the antibody proliferates. The proliferation can be done in

two di↵erent ways, the simplest proliferation mechanism creates a number of replicas

and spreads them to randomly chosen neighbors. The random neighbor selection does

not consider nodes that are already visited. Therefore, the proliferation mechanism

is extended to forward the replicas only to not yet visited nodes, but at least one

replica is spread. In comparison to the traditional k-random search mechanism the

proliferation is more e�cient regarding produced messages.

4. Describing and Calculating the

Multimedia Lifecycle

In this chapter a Video Notation (ViNo) is introduced that allows for the description

of the whole video life cycle from request to delivery until presentation [1]. We

concentrate on new usage patterns, where the videos are not accessed sequentially.

As an example, doctors that record videos of their surgeries want to browse to specific

scenes (see [67]). They might be interested in comparing similar scenes, play them

in parallel and create sub-sequences or extract single images.

We therefore introduce the notion of non-sequential media access, where we consider

that a video consists of a set of elementary video units. The size of such a unit is

application dependent. If a system manages large videos, a unit might consist of a

scene. If a system has to handle mainly short videos, it is not necessary to further

split them up. The unit model, however, does not only cover videos. A unit might

consist of arbitrary continuous media in combination with metadata, text, URLs,

etc. Thus, we actually speak of multimedia units. The advantage of such a model

is that users can compose their own multimedia presentation consisting of a number

of arbitrary units. ViNo is the tool that helps the user by o↵ering sequential and

parallel operators.

The goal of ViNo is, however, not only to provide a tool for the formulation of pre-

sentations, the usage of ViNo for other purposes can be motivated by the following

two reasons:

ViNo is flexible. By breaking with the traditional sequential pattern of continuous

media, innovative possibilities in handling video systems appear. E.g., the usage of

ViNo allows for a certain programmability of a multimedia delivery system.

29

CHAPTER 4. VIDEO NOTATION (VINO) 30

Figure 4.1.: Sequential and parallel time line of a SMIL presentation

ViNo allows for simplification. With the usage of ViNo whole systems can be de-

scribed and explained with a short and simple notation. ViNo includes the specifi-

cation of required and provided QoS.

4.1. Related Work

Several languages target either the description of transport (including QoS negotia-

tion) or the description of video presentation. In the following an overview of both

categories is given.

4.1.1. Presentation

The Synchronized Multimedia Integration Language (SMIL)[68] is one of the most

popular XML-based languages to express multimedia presentations. Specific players

are needed to convert the SMIL expressions to actual presentations.

A SMIL presentation consists of a smil element, a head and a body element. The head

element contains meta information, layout information and author defined content

control. In other words, everything not related to the temporal behavior of the

presentation. The body element contains all information of the temporal behavior.

SMIL allows for sequential timing, parallel timing and exclusive timing. The exclusive

time container is similar to the parallel time container, it allows for defining several

objects in parallel. But only one of the objects is selected for presentation. This

pattern might be used for video sub-titles, where a number of sub-titles are defined,

but only one is shown to the user. Within these time containers sub-elements can

be placed with further attributes, such as duration and repetition. In Figure 4.1 we

show example time lines for sequential and parallel presentations. In the first time

line three videos are played sequentially. The second time line shows the parallel

presentation of the videos and the corresponding audio files. The corresponding

SMIL descriptions are shown Listings 4.1 and 4.2.

CHAPTER 4. VIDEO NOTATION (VINO) 31

1 <smi l xmlns=” ht tp : //www.w3 . org /ns/SMIL”>
2 <head> </head>
3 <body>
4 <seq>
5 <video dur=”10 s ” s r c=”movie1 .mpg” />
6 <video dur=”10 s ” s r c=”movie2 .mpg” />
7 <video dur=”5 s ” s r c=”movie3 .mpg” />
8 </ seq>
9 </body>

10 </ smi l>

Listing 4.1: Sequential presentation of 3 videos

1 <smi l xmlns=” ht tp : //www.w3 . org /ns/SMIL” >
2 <head> </head>
3 <body>
4 <par>
5 <video begin=”0 s ” dur=”10 s ” s r c=”movie1 .mpg” />
6 <audio begin=”0 s ” dur=”10 s ” s r c=”sound1 . au” />
7 <video begin=”10 s ” dur=”10 s ” s r c=”movie2 .mpg” />
8 <audio begin=”10 s ” dur=”10 s ” s r c=”sound2 . au” />
9 <video begin=”20 s ” dur=”5 s ” s r c=”movie3 .mpg” />

10 <audio begin=”20 s ” dur=”5 s ” s r c=”sound3 . au” />
11 </par>
12 </body>
13 </ smi l>

Listing 4.2: Parallel presentation of 3 videos and 3 audio files

CHAPTER 4. VIDEO NOTATION (VINO) 32

4.1.2. Transport

QoS languages have been defined to help a user or application to specify requirements

and to formally define actions for recovery if the given requirements are not met. In

[69] Jin and Nahrstedt give an overview and classification of QoS languages, which

are categorized into user-layer QoS, application-layer QoS and resource-layer QoS.

User-layer QoS is an abstract specification of quality expectations by a user. Later,

the application translates these QoS requirements to quantitative parameters. These

parameters are resource dependent, and therefore have to be specified by the resource

layer.

A user-layer QoS example is INDEX [70], an architecture that helps translating the

user’s preferences to more specific network-related QoS. A user can define the service

quality and with that the price of the service. The task of the INDEX architecture

is to optimize the cost-performance relation for the users. The user-layer parameters

are translated in the lower layers to quantitative QoS parameters based on which the

appropriate service provider is selected.

HQML [71] is an example for application-layer QoS, which is based on XML. Thus,

it follows the mark-up based paradigm as defined by Jin and Nahrstedt in [69].

Developers can define their own QoS related tags and their own adaptation rules

to switch between tags. Another example is QML [72], which follows the object-

oriented paradigm, allows for QoS refinement by inheritance. At the lowest level one

can define contracts with di↵erent dimensions at design time. The contracts can be

grouped to contract types, which can be further combined to profiles. E.g., a server

has to have high reliability and availability. To describe this, the profile is called

server, and two contract types reliability and availability are defined. The contract

types can be further refined to contracts with any specification needed.

RSL is a resource-layer QoS language [73], which allows for meta-level specification

of resources. RSL is part of the Globus project that uses this language through all

layers. At the application level a QoS requirement is formulated in RSL, then it is

translated to a lower-level expression, which even defines which resource manager

will handle the particular request.

Fine grained resource-layer QoS specification allows for specifying in detail, which

resources are required. Examples are IntServ [74] and Di↵Serv[75]. IntServ uses the

CHAPTER 4. VIDEO NOTATION (VINO) 33

Resource Reservation Protocol (RSVP)[76]. For each data stream resources are re-

served along the transport path. However, the receiver is responsible for the initiation

of the resource reservation. Di↵Sev simplifies the process of QoS aware distribution

by concentrating on packets instead of streams. At the network edges the IP service

header field is set, which can be used for routing decisions in the network core.

Another language, not discussed by Jin and Nahrstedt is QL designed by Blair et

al., which is used in [77]. It is a raw language for time-based QoS specification,

which includes the semantics of the basic QoS types delay, jitter, bandwidth, etc. Its

simplicity allows for short descriptions of QoS requirements.

A QoS integration into a modern programming language is MMC# (see [78],[79]).

MMC# is a QL based QoS extension of C#, which provides automatic QoS require-

ment checking. However, it requires the setup of the MMC# specific compiler.

The network calculus goes beyond QoS specification, by allowing the calculation of

QoS in a network [80], [81]. The network calculus follows an input/output system of

networks, sub-networks or nodes. The input is the data put into the network and the

output the data to be consumed. The task of the network calculus is to indentify the

worst case tra�c described by the deterministic arrival curve concept. The arrival

curve denotes the worst case tra�c. Le Boudec further defines in [80] service curves,

which denote what services a system o↵ers. Both curves are used to determine upper

bounds of QoS metrics, such as delay, output bounds, etc.

4.2. The Video Notation (ViNo)

In the following the Video Notation (ViNo) is defined and described1. Note that the

full EBNF specification can be found in Appendix A.

Definition 1 A composition is an expression defined inductively by these rules:

1. A single video unit is a composition.

2. Let c1, c2, ..., cn with n � 2 be compositions, which have already been defined.

Then, the following expressions are compositions, too:

a) [c1 || c2 || . . . || cn] is called a parallel composition.

1This section is adapted from [1]

CHAPTER 4. VIDEO NOTATION (VINO) 34

b) (c1 Q1 c2 Q2 · · · Qn�1 cn) is called a sequential composition. A

symbol Qi, where i = 1, . . . , n � 1, represents an optional QoS parameter

and may be omitted.

ui (i � 1) always denotes a single video unit. The brackets or parentheses of a

parallel or a sequential composition c, respectively, may be omitted if c does not

appear as proper subexpression of a composition. So both [u1 || u2] and u1 || u2 are

valid compositions on their own, but u1 || u2 u3 is not.

In the following the semantics of ViNo are described. Here, the context is defined to

be video transport. However, it is also possible to define semantics of ViNo for other

purposes (e.g. video playback or video queries).

Definition 2 Semantics.

1. If c = c1 || c2 for some compositions c1 and c2, then the transport of c starts as

soon as c1 or c2 starts, whatever is earlier; and it is finished when the transport

of both c1 and c2 is completed.

2. If c = c1 Q c2 then the transmission of c2 must not start before the completion

of c1; the QoS predicate Q applies to the time period between completion of c1
and completion of c2.

3. The semantics of c = c1 Q1 c2 Q2 c3 is defined as that of (c1 Q1 c2) Q2

c3.

We consider two compositions c1 and c2 as equivalent if they lead to the same se-

mantics according to Definition 2. We then write c1 = c2. It is easy to check that

the following equations hold:

[c1 || c2] || c3 = c1 || [c2 || c3] (4.1)

[c1 || c2] = [c2 || c1] (4.2)

(c1 c2) c3 = c1 (c2 c3) (4.3)

(c1 Q1 c2) Q2 c3 = c1 Q1�Q2 (c2 c3) (4.4)

where c1, c2, c3 are arbitrary compositions and Q1 �Q2 means a suitable combination

of both QoS predicates Q1 and Q2, e.g. the sum if Q1 and Q2 refers to maximal delay.

CHAPTER 4. VIDEO NOTATION (VINO) 35

Note that according to Equation 4.1 a parallel composition c is an associative binary

operation, so the semantics of c are well defined. The same applies to sequential

compositions without QoS predicate.

Definition 3 The null unit u0 is a video unit of length 0 (empty).

The null unit u0 serves as a dummy composition (in a similar way as dummy targets

are used to express side-e↵ects in functional languages). The following properties

apply:

• u0 || c1 = c1

• u0 c1 = c1

• c1 u0 = c1

4.2.1. Simple examples

In the following two di↵erent examples are discussed for showing the application

of ViNo. In both cases the units are located at the origin server and have to be

transported through the network. The basis is a video architecture consisting of an

origin server and five proxies. We do not consider QoS yet.

ViNo can be used to express a user request. The request can represent the required

presentation of the units. In our example the restriction is set to a sequential order

of the three units and can be expressed as follows.

r = u1 u2 u3

The request is part of the delivery, which is divided into a number of stages. After

the request, stages describe the hops traveled by the units. The final stage is the

presentation.

For sake of simplicity we assume for the current examples that the presentation starts

after full download of all units.

CHAPTER 4. VIDEO NOTATION (VINO) 36

Figure 4.2.: Sample video delivery system with one origin server S, five proxies P1�
P5, and one client C, where the client wants to get u1, u2, u3 sequentially

Sequential Download from Origin Server

In this example the proxies act as caches. The units are located at the origin server

and may be replicated at the proxy servers. Figure 4.2 depicts the situation. On the

shortest path the transport would take two hops, from S to P1 and from P1 to the

client C.

The timely characteristics can be described as shown in Table 4.1. The columns

represent time slots and the lines are stages. For sake of simplicity it is assumed

that one unit takes one time slot for the transport over one hop. In the first stage

everything is downloaded to P1, which takes three time slots. After finishing the

download P1 forwards the units in stage s2 to the client, which starts to present

the units after all units are downloaded. The completion of the transport including

presentation takes nine time slots.

In the corresponding ViNo notation it can be seen that it is a short hand for the

tabular representation of the time line. For better readability optional round brackets

are used to di↵er between the stages (see Definition 2).

c = (u1 u2 u3) (u1 u2 u3) (u1 u2 u3)

CHAPTER 4. VIDEO NOTATION (VINO) 37

t 1 2 3 4 5 6 7 8 9
s1 u1 u2 u3

s2 u1 u2 u3

p u1 u2 u3

Table 4.1.: Temporal evolution of the video delivery including presentation

Figure 4.3.: Sample video delivery system with one origin server S, five proxies P1�
P5, and one client C, where the download is done over a number of
proxies

We can even simplify the ViNo expression before. Since the single stages are equal

(according to Definition 2), the resulting ViNo expression is denoted as follows:

c = s1 s2 p

where s1 = s2 = p = u1 u2 u3

Mixed Download from Origin Server

In this example shown in Figure 4.3 the server spreads the units over the network.

The three units travel in parallel from the server towards the client. Unit u2 has the

longest path over proxies P5, P4 and P2. The number of stages increases remarkably,

because the number of proxies involved increases. Stage s1 therefore describes the

transport of unit u3 from the server to proxy P1. In parallel to that units u1 and u2 are

CHAPTER 4. VIDEO NOTATION (VINO) 38

t 1 2 3 4 5 6 7
s1 u3

s2 u2

s3 u1

s4 u3

s5 u2

s6 u1

s7 u2

s8 u1 u2

p u1 u2 u3

Table 4.2.: Temporal evolution of the video delivery including presentation

transported to P3 and P5. One can say for each link traveled one stage exists plus the

presentation. In this example we need 8 stages plus 1 presentation stage. The tabular

representation is shown in Table 4.2. One can see immediately that the download

takes less time as for Example 1, because of the parallel delivery. Additionally, more

nodes can cache the content than before. Stage s8 subsumes the fact that during

the forwarding of u1 to the client unit u2 is not available yet, but immediately after

download it is forwarded to the client. Note that this works because it is assumed

that the transport of u1 takes the same time as the transport of u2. Otherwise, stage

s8 has to be split up into two stages.

The corresponding ViNo expression is shown in the following expression 4.5. Step-

wise we simplify the ViNo expressions, from units to stages, to compositions. If a

system designer would have to decide about a unit forwarding strategy a short ViNo

description helps for comparison.

c = [u3||u2||u1] [u3||u2||u1] [u2||(u1 u2)] (u1 u2 u3)

= [s1||s2||s3] [s4||s5||s6] [s7||s8] p

= c1 c2 c3 p (4.5)

4.2.2. Introducing QoS

To specify a request a client has only to provide information about the required

video units and whether these units have to arrive in order (e.g., at the player). For

example, a user may express ”I want to download units x and y, the order does not

matter” as ux || uy. Note that this does not mean that the units have to be delivered

CHAPTER 4. VIDEO NOTATION (VINO) 39

in parallel. A user who wants to watch the units using a video player would be more

specific: ”I want to watch unit x and then unit y, and unit x has to arrive within

the next 30 seconds”. This request can be expressed as u0 D=30sec ux uy, where

u0 is the null unit needed only to express the required delay for unit ux.

In the following the usage of QoS parameters is demonstrated for expressing video

unit transport, i.e., the provided QoS. If ViNo is used in a di↵erent context, the

semantics of QoS annotations may di↵er and need to be clarified prior to any calcu-

lations based on ViNo expressions. In this section examples are given for bandwidth,

delay and jitter as QoS parameters. These QoS parameters are further used as input

for a delay calculation of a composition.

The notation and semantics of the QoS parameters are derived from the QoS language

QL [77]. QL is based on events like the reception and the sending of messages. It

uses a function ⌧ for mapping events to points in time. ViNo concentrates on the

event of receiving a composition c at a given network node or video display. This

event occurs as soon as all video units referenced by c have been received completely.

The corresponding point in time can be denoted as ⌧(c).

Definition 4 We define a recursive function delay to calculate a delay bound for a

QoS-annotated ViNo transport description c:

1. The null unit causes no delay: delay(u0) = 0.

2. If c = c1 Q u for some composition c1 and a video unit u, then

delay(c) = delay(c1) + delay(u,Q)

where delay(u,Q) is defined to be the delay ⌧(u)� ⌧(c1) assuming a given QoS

parameter Q (trivial case of recursion).

3. If c = c1 c2 for compositions c1 and c2, then the delay bound is computed

recursively as:

delay(c) = delay(c1) + delay(c2)

For delay calculations, we assume that the transmission of c2 occurs as soon

as possible after the transmission of c1, which is expressed by omitting the QoS

parameter.

CHAPTER 4. VIDEO NOTATION (VINO) 40

4. If c = c1 || c2 for compositions c1 and c2, then the delay bound is computed

recursively as:

delay(c) = max(delay(c1), delay(c2))

Note that the delay function is defined only on a subset of all possible ViNo expres-

sions.

The following two expression types will occur frequently in the subsequent examples,

so a separate notation for the corresponding delay bounds is defined:

• If c = u0 Q1 u1 Q2 · · · Qn un for video units ui (u0 is the null unit), then

delay(c) =
nX

i=0

delay(ui, Qi) = delay(u1, . . . , un, Q1, . . . , Qn, seq) (4.6)

where the last term introduces a new notation for indicating sequential calcu-

lations.

• If c = (u0 Q1 u1) || . . . || (un Qn un) for video units ui (u0 is the null unit),

then

delay(c) = max
1in

(delay(ui, Qi)) = delay(u1, . . . , un, Q1, . . . , Qn, par) (4.7)

where the last term introduces a new notation for indicating parallel calcula-

tions.

Whether the delay function represents a lower or upper delay bound depends on the

definition of the delay(u,Q) values. In the following it is demonstrated how to define

these values if the QoS parameters are given in terms of bandwidth, delay, or jitter,

respectively.

Bandwidth

By Q = BW it is expressed that a given bandwidth BW is available for transmission.

The delay of transmitting a video unit u is then defined as:

delay(u,BW) =
size(u)

BW
The delay function therefore computes a lower bound of the end-to-end delay cor-

responding to a given ViNo expression. We assume that video units transmitted in

parallel according to some parallel ViNo composition use separate links, so that the

CHAPTER 4. VIDEO NOTATION (VINO) 41

available bandwidth is not reduced by parallel transmissions.

The lower delay bound of sequential and parallel compositions calculate as shown in

equation 4.6 and equation 4.7.

delay(u1, . . . , un, BW1, . . . , BWn, seq) =
nX

i=1

size(ui)

BWi

(4.8)

delay(u1, . . . , un, BW1, . . . , BWn, par) = max
1in

✓
size(ui)

BWi

◆
(4.9)

Delay

By Q = D it is expressed that transmission yields a given delay D. The delay of

transmitting a video unit u is defined as:

delay(u,D) = D

If all delays occurring in a video delivery system are expressed as provided QoS

parameters of a corresponding ViNo composition and if the composition is an appro-

priate model of the system, the calculated end-to-end delay value should be accurate.

However, for practical purposes, the ViNo composition is constructed to provide an

upper delay bound only.

Jitter

According to the QoS language QL, jitter can be defined by specifying lower and

upper delay bounds (Dmin, Dmax). To calculate the jitter of a given video transport

system described by an appropriate ViNo expression, we therefore just need to apply

the delay function to both bounds separately. We obtain two functions delaymin and

delaymax with appropriate definitions of delay bounds for transmitting a video unit u:

delaymin(u,Dmin) = Dmin

delaymax(u,Dmax) = Dmax

The jitter of a ViNo composition c is then computed as (delaymin(c), delaymax(c)).

CHAPTER 4. VIDEO NOTATION (VINO) 42

Figure 4.4.: Sample network with delay (D) as QoS parameter

4.2.3. Simple Examples with QoS

In the following it is demonstrated how the delay calculations can be applied. For

this purpose we extend example 2 from Section 4.2.1. The adapted QoS parameters

are shown in Figure 4.4. The ViNo expression of this example has to be extended

to include the given QoS parameters such as shown in Expression 4.10. We want

to calculate the pure transport, therefore we omit the presentation stage. The first

null unit u0 is needed to express that the delay applies for each unit of the parallel

group. The second parallel group needs the longer version of the notation, since for

each unit a di↵erent delay applies. Note that the parallel transmission is terminated

if all units of its group are delivered. Additionally, since delay D3 and D4 di↵ers one

has to ensure that unit u2 can only be transported to the client, if it is already at P2.

Therefore, the composition has to be changed, such that u2 is delivered sequentially

after the parallel transport of u2 to P2 and u1 to C.

c = u0 D1 [u1 || u2 || u3] [(u0 D3 u1) || (u0 D2 u2) || (u0 D4 u3)]

 [(u0 D3 u2) || (u0 D4 u1)] D4 u2 (4.10)

In shorter form, each parallel group can be seen as composition, thus we get the form

CHAPTER 4. VIDEO NOTATION (VINO) 43

c = c1 c2 c3 u2. This notation further simplifies the delay calculation of

composition c. If we apply Equation 4.7 and case 3 of Definition 4, the calculation

can be described as follows:

delay(c1) = delay(u1, u2, u3, D1, par) = D1

delay(c2) = delay(u1, u2, u3, D3, D2, D4, par) = max(D3, D2, D4) = D4

delay(c3) = delay(u1, u2, D4, D3, par) = max(D3, D4) = D4

delay(c) = delay(c1) + delay(c2) + delay(c3) + delay(u2, D4) = D1 +D4 +D4 +D4

= 100 + 200 + 200 + 200 = 700ms

For each composition we calculate the delay to finally sum up the single results to

the overall delay of 700 ms.

4.2.4. Introducing Wildcards

In dynamic systems, such as in wireless multi-hop networks and unstructured peer-

to-peer systems, it is hard to manage a global index. ViNo allows the formulation

of search queries, where it is not necessary to know the ID of a unit. The symbol ?

can be used to denote a wildcard for such a not fully specified request. A request

could look like ?||?, where a user wants to see two units (any units) in parallel. If

the units should have specific characteristics the client can specify the request with

the help of the QoS parameter preceded by the sequential operator (see Definition

1 and Definition 2). For example, a user wants to have two units in parallel, the

first unit should be described by sun and summer and the second unit should be

described by winter and should have a playback time of 5 s. This can be expressed

by: (u0 tag=sun,tag=summer?)||(u0 tag=winter,playbacktime=5s?). The syntax rules are

specified in Definition 5.

Definition 5 We define the usage of wildcards for formulating requests:

• The wildcard unit ? is a placeholder for a real unit.

• Characteristics of the wildcard unit can be specified as a list of key = value

pairs.

• Characteristics are linked to a ? unit by using a preceding operator.

Depending on the context in which ViNo is used, the characteristics of a wildcard

may vary. The application has to define, which metadata are available and how the

system manages the metadata. We leave the definition of the matching policy of

wildcards and content, to allow for flexible usage of ViNo.

CHAPTER 4. VIDEO NOTATION (VINO) 44

Figure 4.5.: Sample architecture using CDNsim [1]

4.3. Applicability of ViNo for Describing Content

Delivery Networks

In this section2 the potential of ViNo is shown as a tool for a quantitative analysis

of existing delivery systems, such as Content Delivery Networks (CDN).

CDNs consist of origin servers supported by strategically placed surrogate servers

to which the content is replicated and/or cached (see [82] [83]). In most of the

commercially available CDNs, the content is passively pulled by surrogate servers.

Usually, commercial CDNs are not available for research purposes. Even academic

CDNs, which are available on PlanetLab, are treated as black boxes. For this reason,

Stamos et al. [84] developed a simulation environment, called CDNsim, for large

scale CDN simulations.

A GUI for configuring simulations is also part of CDNSim. CDNSim is an Omnet++

simulation and uses the INET Framework Library extension [85]. It covers all typical

CDN functionality, such as DNS request redirection and LRU replacement. CDNSim

supports di↵erent cooperation policies such as closest surrogate or random surrogate

cooperation, but also simple non-cooperative behavior can be configured.

We use CDNSim to compare its results with the calculations made with ViNo. We

perform two experiments. In the first experiment we simulate a CDN and measure

the client end-to-end delay. At the same time we perform ViNo calculations and

evaluate the di↵erences between simulation and calculation. The second experiment

2This section is adapted from [1]

CHAPTER 4. VIDEO NOTATION (VINO) 45

Parameter Value

Router Topology Waxman for 1,000 Routers
Link speed 200 Mbit/sec
Number of clients 100
Number of surrogate servers 100
Number of origin servers 1
Number of outgoing connections 1,000
Tra�c 1,000,000 requests

popularity’s zipf = 1.0
expo mean interarrival time = 1

Resources 50,000 files
max. size=100MB
Zipf skew = 1.0
correlation between file size and popularity=0

Cache size 10 % - 109MB
Strategy on miss download from origin

Table 4.3.: CDNsim configuration parameters [1]

shows a similar scenario, but we concentrate on file size di↵erences, i.e., we want to

show that di↵erent file sizes do not have an impact on the ViNo calculation.

We configured the CDN simulation as shown in Table 4.3. CDNSim includes sample

traces and router topologies, which we also took for our simulation. For sake of

simplicity we decided to use the non-cooperative policy for our experiments, i.e,

if a requested object is not available at the client’s surrogate server the request is

forwarded to the origin server. However, all delay calculations can also be applied to

the cooperative policies.

In this scenario a unit is defined as a part of a web page, with a fixed size of 1,500

bytes. This means that a web page of 4,500 bytes is divided into 3 units and is

described as u1 u2 u3. The link speed is 200 Mbits/sec, which results in a

bandwidth BW of 16,666 units/sec.

We performed two types of ViNo calculations. The first type called ViNo generic

assumes that a hit requires one hop for downloading a unit and a miss requires two

hops, when the content has to be brought from the origin server. The second type

called ViNo routers knows the network structure and has information about the

number of routers between client and surrogate and between surrogate and origin

CHAPTER 4. VIDEO NOTATION (VINO) 46

server. If we assume that the routes do not change, the calculations can be done

precisely. The calculations represent the time a transport takes at minimum, i.e., it

is the lower-bound transport delay.

Experiment 1

In this setting we take for each client one random web site, where the web sites are

of similar size (in average 3,9 KB). Furthermore, each web site is not available at the

connected surrogate server, i.e., is a miss. Thus, we can see the di↵erences between

ViNo routers and ViNo generic. We further measure the delay in the simulation and

compare it with the ViNo calculations.

To show an example calculation for ViNo routers we choose a random client with

the ID c1009. The client connects to the surrogate server with ID s1199 in 4 hops,

and the surrogate is connected to the origin within 5 hops. Thus, a miss means a

transport over 9 hops from the origin server. This client downloads the object with

ID 13, which has a size of 5 units. In ViNo one stage consisting of these 5 units

can be described as ci = u0 BW u1 BW u2 BW u3 BW u4 BW u5. The

composition c for ViNo routers is a sequential composition of stages 1-9 (one stage

per hop).

h = 9,BW = 16, 666u/sec

delay(c) =
hX

i=1

delay(ci) = h ⇤ delay(u1, ..., u5, BW, ..., BW, seq) = 2.7 ms

The ViNo generic calculation has no detailed knowledge of the routers and the same

situation would be calculated as:

h = 2,BW = 16, 666u/sec

delay(c) =
hX

i=1

delay(ci) = h ⇤ delay(u1, ..., u5, BW, ..., BW, seq) = 0.6 ms

The di↵erence between ViNo generic and ViNo routers is the detail of information,

which is often not available.

In Figure 4.6 we subsume the simulated and calculated delay for one unit by client.

One can see that both ViNo routers and ViNo generic estimate the delay pattern of

the measured values well. However, we see clearly that the additional information of

CHAPTER 4. VIDEO NOTATION (VINO) 47

 0.1

 1

 10

c1000
c1005

c1010
c1015

c1020
c1025

c1030
c1035

c1040
c1045

c1050
c1055

c1060
c1065

c1070
c1075

c1080
c1085

c1090
c1095

de
la

y
in

 m
s

ViNo routers
ViNo generic

CDNSim

Figure 4.6.: Delay comparison between ViNo and CDNSim of one miss web site cho-
sen per client[1]

ViNo routers improves the result. Since the size of the units is very similar, the delay

is stable. In a real environment the hit rate and miss rate have to be estimated, to

draw conclusions on the performance of the overall system.

Experiment 2

In this experiment we consider all file sizes of one client. The file sizes are Zipf-

distributed, which means that 80 % of the overall objects’ size is represented by 20 %

of the objects. This fact has a huge impact on the surrogates’ cache size. In CDNSim

one cache was able to store 109 MBs, which lead to hit rates of around 80 %. The

reason is that most surrogates handle small files and the cache misses only occurred

in the beginning of the simulation until all objects were loaded from the origin server

(i.e., the actual cache size was around 100 %).

We picked client c1020 randomly, and investigate the delay di↵erences of the first

200 requested units. The ViNo router calculated delay is shown in Figure 4.7 (log

scale). One can see that the calculations do not always represent the lower bound of

the simulated duration. One extreme case is shown for the object with ID 637 (the

peak in Figure 4.7), which has a size of 24 MB (16,666 units). At this point of the

CHAPTER 4. VIDEO NOTATION (VINO) 48

simulation the object was not present at the surrogate, thus it had to be downloaded

from the origin with a distance of 8 hops. The measured value was 3,000 ms. The

calculations with ViNo routers are provided below:

delay(c) =
8X

i=1

delay(ci) = 8 ⇤ delay(u1, ..., u16666, BW, ..., BW, seq) = 8, 000ms

This e↵ect appears for files that exceed the size of 10 KB, which are routed in a

di↵erent way than smaller files (as in experiment 1). Larger files are split up and are

routed in parallel over several paths. Therefore, the transport is a mixture of parallel

and sequential compositions and not purely sequential as assumed before. Since the

routing algorithm is part of the INET Framework and the paths are not predictable

with reasonable e↵ort, we cannot provide a more detailed calculation. However, the

router based calculations might represent the worst case delay well, if the routing

path is always the same.

The generic calculations are always representing the lower bound of the duration

as shown in Figure 4.8, since the surrogate downloads the complete web site before

forwarding it to the client. In comparison to ViNo routers the ViNo generic result is

2,000 ms for the object with ID 637.

Thus, the generic case represents the larger file downloads better and the router

based calculations represent smaller file downloads better. Which type of calculation

is finally taken depends on the knowledge of the architecture and on the purpose of

the analysis.

Using ViNo to Investigate Performance Improvements

The e�ciency of CDNs and caches is usually compared by measuring the hit rate.

ViNo can also be used to analyze the impact of new strategies on the hit rate. One

question could be how much delay improvement by the pipelining of units could be

reached.

For this investigation we took ten random surrogate servers out of the simulation and

calculated the delay reduction as shown in Table 4.4. It can be seen that the number

of units (i.e., the size of the original objects) to serve vary a lot. E.g., surrogate s1191

only serves 19 objects. Surrogates s1158 and s1164 serve almost the same amount of

units, but the number of objects di↵ers by a factor of 10.

CHAPTER 4. VIDEO NOTATION (VINO) 49

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200

de
la

y
in

 m
s

website

ViNo routers
CDNSim

Figure 4.7.: Comparing ViNo routers and CDNSim - delay of the first 200 web sites
of client c1020 [1]

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200

de
la

y
in

 m
s

website

ViNo generic
CDNSim

Figure 4.8.: Comparing ViNo generic and CDNSim - delay of the first 200 web sites
of client c1020 [1]

CHAPTER 4. VIDEO NOTATION (VINO) 50

SID no. clients no. objects no. units delay sequential delay pipeline
s1110 2 2158 26290 3.155 1.577
s1132 1 475 4033 0.484 0.242
s1140 3 46 210 0.025 0.013
s1158 1 214 18352 2.203 1.101
s1164 3 2632 18597 2.232 1.116
s1188 4 3007 49100 5.892 2.946
s1191 2 19 69 0.008 0.004
s1194 2 6658 77183 9.262 4.631
s1196 4 3355 56281 6.754 3.377
s1198 6 3291 39795 4.775 2.388

Table 4.4.: Surrogates service during simulation, the average sequential delay and the
delay improvement if pipelining is used [1]

A strategy for the CDN provider could be to apply pipelined transport on a miss,

i.e., a surrogate forwards a unit immediately after download from the origin. For a

web site that consists of three units this is described as:

c = (u0 BW u1) [(u0 BW u2)||(u0 BW u1)]

 [(u0 BW u3)||(u0 BW u2)] (u0 BW u3)

In comparison to c1 c2 = (u0 BW u1 BW u2 BW u3) (u0 BW u1 BW

u2 BW u3) for the pure sequential transport. The delay for the pipelined composi-

tion is calculated as the sum of all sub-compositions (i.e., c = c1 c2 c3 c4).

delay(c)

=
4X

i=1

delay(ci)

= delay(u1, BW)

+max(delay(u2, BW), delay(u1, BW))

+max(delay(u3, BW), delay(u2, BW))

+delay(u3, BW)

=
1

BW
+

1

BW
+

1

BW
+

1

BW
= 0.24ms

If the units would be transported sequentially as in c1 c2 the delay would be

CHAPTER 4. VIDEO NOTATION (VINO) 51

Figure 4.9.: Video Browser with 3x3 aligned units [4]

calculated as the sum of the sub delays, i.e:

delay(c)

= delay(u1, u2, u3, BW, ..., BW, seq)

+delay(u1, u2, u3, BW, ..., BW, seq)

=
1

BW
+

1

BW
+

1

BW
+

1

BW
+

1

BW
+

1

BW
= 0.36ms

The transport would need 3+3=6 time slots. The pipelined transport reduces the

number of time slots to 4.

If the surrogates analyzed before used pipelined transport on a miss the delay would

reduce in comparison to a sequential transport as shown in Table 4.4. The larger the

number of objects to serve, the better pipelining supports the surrogates. Popularity-

based handling of content could further increase the performance of the single surro-

gates.

CHAPTER 4. VIDEO NOTATION (VINO) 52

Figure 4.10.: Video Browser with tree-like presentation of units [4]

CHAPTER 4. VIDEO NOTATION (VINO) 53

Figure 4.11.: Video Browser request interface using ViNo [5]

4.4. Applicability of ViNo for Requests and Video

Presentation

Within SOMA, ViNo is used as the interface between user and delivery layer. A

client can specify its queries by using ViNo, which can be at the same time be

used as presentation description. In [4] a ViNo driven video browser is introduced.

This video browser divides videos into video units and can present these units in

parallel. In Figure 4.9 this player is shown, which o↵ers a tabular presentation of

nine units. The tabular presentation consists of three rows with three videos each.

This presentation helps the user to navigate through the video, because each unit

represents one ninth of the time span of the whole video. The shown example can be

expressed by using ViNo. If we assume that ui represents the corresponding unit IDs

the expression [u1||u2||u3]||[u4||u5||u6]||[u7||u8||u9] defines the current presentation.
Each parallel group [] represents one row, the whole expression tells the player that

the playback for all units starts immediately. During this presentation the user can

interact with the video browser. If a user clicks on one of the video units, the time

CHAPTER 4. VIDEO NOTATION (VINO) 54

span of the video is split again and a row of parallel units is presented, the user

might navigate further and gets the next parallel rows (see Figure 4.10). The new

presentation can be seen as a tree that can be navigated until the smallest time span is

reached that still contains units. A new level of the tree terminates the presentation

of the higher level presentation. Thus, each row has its own corresponding ViNo

expression, which is [uw||ux||uy||uz]. The parallel and tree-based presentation modes

are more complicated than the typical sequential presentation of videos and ViNo

supports the player in solving this task.

Further extensions target smart summaries of social events [5]. In this work Flickr and

YouTube are the source platform for videos and photos. Search queries are mapped

to HTTP requests and sent to the platforms. Then, the content is downloaded

and categorized before the presentation. If this event summarization is integrated

into the SOMA architecture, the requests can be formulated by using ViNo. A

scenario could be that a user searches for keywords (e.g., soma) and gets locally

stored preview images presented. In ViNo such a request is declared as u0 tag=soma

[[?||?||?||?||?]||[?||?||?||?||?]||[?||?||?||?||?]||[?||?||?||?||?]], which means that a user wants

to see four rows of five units each. The application translates the wild cards to preview

units with the tag soma. The search result is shown in the upper part (preview) of

the video browser interface as shown in Figure 4.11. The user can manually compose

a presentation of the resulting preview units as shown in the lower part of the same

figure. The user can compose sequential presentations as columns in one row, each

parallel presentation starts with a new row. If assuming that the user chose the

previews that match to real units u1 to u6 the corresponding ViNo expression for the

example shown in Figure 4.11 is (u1 u2 u3 u4)||(u5 u6). The delivery

layer collects the required units with the given parameters.

4.5. Summary and Discussion

In this chapter we introduced the Video Notation (ViNo), which can be seen as a

language framework for specifying the timely behavior of all phases of the life cycle

of a video. It can be used as an interface between user and delivery, as a decision

support for system designers and as short description language for the delivery of

content. Two extensions allow for defining required QoS, calculate provided end-to-

end QoS, and support keyword search.

CHAPTER 4. VIDEO NOTATION (VINO) 55

Two case studies were made to show the applicability of ViNo. In the first scenario we

compared ViNo calculations of di↵erent granularity with a simulation of a CDN. The

results show that ViNo cannot fully substitute a simulation, because specific steps of

a simulation can hardly be predicted (e.g. dynamic routing paths), but ViNo can be

used to approximate the general behavior of a multimedia system. Its strength is the

short and flexible expression of transport techniques, which allow simple comparisons

on the first sight. E.g., a typical simulation consists of thousands of lines of code. A

corresponding ViNo expression consists of one page or less.

The second case study shows the usability of ViNo for complex presentation defi-

nitions and for the formulation of search queries. If ViNo is only used for the pre-

sentation description, one might argue that existing presentation languages such as

SMIL [68] are already integrated in existing players. However, the description length

of ViNo is in several orders of magnitude shorter than the same representation in

SMIL, which is advantageous for complex presentations such as the tree-like presen-

tation. This can be shown by the following example, where we assume that a user

wants to see four video clips (u1, u2, u3, u4) in parallel. In Listing 4.3 we define the

presentation in SMIL. In SMIL one has first to define regions of the window, where

the clips will be placed. After that the playback has to be defined and assigned

to the regions. If we only concentrate on the playback definition, the code e↵ort

is still larger than with ViNo. The ViNo expression for the same representation is

c = [u1||u2]||[u3||u4], where the groups define, which units are represented in one row.

We showed that ViNo is a multipurpose language for short multimedia descriptions

by two practical examples. It can be seen that ViNo is a good tool for comprehensive

descriptions in research papers and presentations. The definition of the semantics

is broad on purpose and we showed that therefore ViNo’s usage possibilities are

wide spread. However, this broad usage comes with the cost that the application

has to specify the semantics itself, e.g., an application has to take care of the QoS

negotiation and the wildcard matching.

CHAPTER 4. VIDEO NOTATION (VINO) 56

1 <smi l xmlns=” ht tp : //www.w3 . org /ns/SMIL”>
2 <head>
3 <l ayout>
4 <root�l ayout width=”640” he ight=”480”/>
5 <r eg i on id=”ID1” r i gh t=”55%” bottom=”55%”/>
6 <r eg i on id=”ID2” l e f t=”55%” bottom=”55%”/>
7 <r eg i on id=”ID3” r i gh t=”55%” top=55%”/>
8 <r eg i on id=”ID4” l e f t=”55%” top=”55%”/>
9 </layout>
10 </head>
11 <body>
12 <par>
13 <video s r c=”u1 .mp4” reg i on = ”ID1”/>
14 <video s r c=”u2 .mp4” reg i on = ”ID2”/>
15 <video s r c=”u3 .mp4” reg i on = ”ID3”/>
16 <video s r c=”u4 .mp4” reg i on = ”ID4”/>
17 </par>
18 </body>
19 </smil>

Listing 4.3: The presentation of 4 parallel video clips using SMIL

5. Non-sequential Multimedia

Caching

In this section the topic caching and replacement is discussed with the focus on videos

that are consumed in a di↵erent order than it was produced, i.e., non-sequential media

access. This brings new challenges for multimedia delivery. Caches cannot rely on

the sequential pattern of videos anymore, new patterns have to be detected and used

for prefetching and replacement. Evaluations on this topic were made in [1] and [6]

and are adapted for this chapter. The results are the basics for future self-organizing

delivery patterns.

5.1. Related Work

Non-sequential media access is not yet a topic on its own. However, there are similar

topics such as branching, prefix caching, segment based caching and jump prediction

in video streams that can be related to non-sequential media caching. In the following

an overview of these topics is given (see [1], [6]) .

Traditionally, video caching techniques have to be capable of handling large video

files. To simplify this task, a lot of research has been done on partial caching [86].

In general the partial caching idea can be mapped to non-sequential media access.

Researchers analyzing segment based caching found out that the segments in the

beginning are the best to cache. This is shown in [87], where the authors measure

the popularity between segments, resulting in an internal popularity distribution.

Based on this the authors introduce a caching algorithm for streaming media. Con-

sidering fixed sized segments of one second, they observed that the popularity within

a video follows a k-transformed Zipf-like distribution (for kx = 10 and ky > 200).

Since the internal popularity shows that the beginning of the video is most popular,

the caching policy prioritizes prefix caching. Non-sequential media, however, does

not have a notion of order. E.g., there is no beginning of a collection of units and

57

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 58

therefore prefix caching is not applicable. Non-sequential video caching can be rather

regarded as a generalization of prefix caching.

Chen et al. in [88] proposed a more dynamic approach. This caching policy applies

each time an object is accessed. If the object is accessed the first time it is fully

cached. If the object is not accessed the first time, but fully cached, nothing is done.

If an object is not accessed the first time and it is partially cached, then the cache

tries to get more segments. The cache admission policies are supported by adaptive

replacement strategy that calculates the utility of each object. Then the object with

the lowest utility is selected and on this object the segmentation is done. If the

object is fully cached, only the first segments are kept and the rest is removed from

the cache. If the object is partially cached, the last segment is removed from the

cache and the rest is kept.

Another caching mechanism is introduced by Guo et al. in [89]. The authors ob-

served that no caching technology supports interactivity like jumps in a video stream.

Therefore, two segment caching techniques are introduced: (1) basic interleaved seg-

ment caching (BISC) and (2) dynamic interleaved segment caching (DISC). BISC

prefetches every second segment. This guarantees a higher hit rate if interactive

jumps are common. On a miss, the cache delivers the closest cached segment, because

it is more likely that after a jump segments are accessed sequentially. DISC is the

extended version of BISC and initially caches a whole object for observation. Later,

it will be decided if segments are replaced or several segments are stored sequentially.

Both caching policies expect sequential consumption of the videos and therefore only

support forward jumps.

Zhao et al. in [90] define non-linear media as a video that consists of several parallel

branches. The user decides at certain points which branch to follow, leading to

di↵erent story paths for the same video. The streaming system holds one channel

per branch; the content is transmitted using multicast. In contrast to traditional

movies, there is a need to predict the paths that will be chosen by the user. This can

lead to high startup delays at each decision point. Nevertheless, the authors showed

that some hints regarding the client branch selection are enough for server bandwidth

and client data overhead reduction. The idea is to collect information about paths

chosen by other clients and then prefetch popular segments.

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 59

Figure 5.1.: Two semantic groups with distinct users and partly shared content

5.2. Flexible Caching

In the context of the SOMA project (see Chapter 2) flexible caching is of specific

interest. Ideally, a caching technique has to map the flexibility of the unit model -

i.e., non-sequential media access. Since a user has the possibility to request whatever

unit he/she likes, a proactive cache for non-sequential media needs information about

the content and the users to be able to identify consumption patterns.

It is assumed that a smart user application exists (see Section 4.4) that allows for

request formulation and provides information about user intentions (see [91]). User

intentions are described by metadata about semantic roles a user can be categorized

to. Such a role could be, e.g., informational denoting users looking for many but

unspecific data and transactional denoting users wishing to buy a specific content.

Another role could be the interest in a specific genre. As an example, one group is

interested in sports, the next into news or art.

To bring users and content together, the content has to be described by metadata.

In this context we define that a unit consists of a video (or a part of a video) and its

corresponding metadata. This metadata can be matched to the user’s intentions (e.g.,

by equality). For the sake of simplicity we assume that one user can be described by a

single semantic role and only requests units that match this role. However, one unit

can be matched to di↵erent user roles. User roles form therefore semantic groups

which contain users and units. In each group some units are more popular than

others, therefore units in a group can be sorted by their popularity ranks (where 0

is the best). An example for two user groups, Sports and News, is shown in Figure 5.1.

The task of a cache is to organize units of di↵erent user roles and to identify the

most promising units for future use. So, units of di↵erent groups compete for the

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 60

space available in the cache. It is assumed that a flexible cache knows about existing

groups and about the current popularity rank of a unit in each group.

Based on this prerequisites two admission policies are discussed. Both admission

policies assume that prefetching of a unit improves the hit rate of the own user group

and also supports other user groups, if the taste is overlapping. The first admission

policy is based on the idea that units with similar popularity ranks are most likely

to be requested within a short period of time. Initially, the cache is filled with the

most popular units of each group.

Subsequently, a user with role r1 requests a matching unit with popularity rank p

within r1. The cache expects the user to request further units with similar popu-

larity and therefore prefetches the unit with the next popularity rank p + 1 within

r1 (ucurrent unext if using ViNo). If both units are already in the cache, nothing

has to be done. Otherwise, one or both units have to be loaded from the origin server.

This policy is called simple cache admission policy formally defined as follows:

prefetch=

8
>>><

>>>:

unext if hit ucurrent

0 if hit ucurrent AND hit unext

ucurrent unext else

This policy does not di↵er between popular and unpopular units. Thus, if a user

requests an unpopular unit the next even more unpopular unit is prefetched as well.

Therefore, the idea is to improve the admission policy, by evaluating the goodness of

a unit. If the requested unit is popular enough among all groups, the next popular

unit is worth to be loaded as well. This is done by a rank aggregation of the unit

over all groups. If the calculated global rank rall is among the best x units, the next

unit is considered for prefetching. The threshold x has to be predefined.

We want further prioritize units with a high popularity in at least one group to units

having average popularity in all groups. To ensure this precondition, the logarithm

is used. The overall calculation is defined as follows, where ri defines the rank within

group i:

rall =
1

n

nX

i=1

ln ri

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 61

The prefetching of a unit works as follows. If the current unit’s rall is smaller than the

logarithm of a predefined threshold rank x it is popular enough and the next popular

unit can be prefetched. Otherwise only the current unit is loaded. The rank-based

prefetching algorithm is defined formally:

prefetch=

8
>>>>><

>>>>>:

unext if rallcurrent < ln(x) AND hit ucurrent

0 if hit ucurrent

ucurrent unext if rallcurrent < ln(x) AND miss ucurrent

ucurrent else

Usually, the cache size is limited and content has to be replaced intelligently. Simple

replacement strategies such as least recently used (LRU) proved to be e�cient and

easy to implement. In the next section the combination of prefetching and replace-

ment are evaluated and discussed.

5.3. Evaluation

We evaluated the proposed algorithms by a simulation, which is based on Omnet++

[85]. The architecture of the simulation consists of a cache, an origin server and a

number of user groups connected to the cache. The user requests are generated with

Medisyn [92], which models the relationship of popularity and content by using a

Zipf-like distribution. We create 100 units with di↵erent popularity for each user

group. The performance of the policies is compared for di↵erent cache sizes; 5, 10,

20 and 40 %, where the cache size of 100 % means that all 100 units can be stored.

In the following the proposed admission policies are evaluated in three scenarios. The

first scenario investigates the behavior of a cache if two user groups are connected,

which do not share the same interests. The simple admission policy is compared to the

rank-based policy. Both are combined with least recently used (LRU) replacement.

The second scenario randomly assigns the popularity of a unit for two user groups,

which leads to a higher number of units that are popular in both groups. Addition-

ally, the replacement strategy is extended from LRU to rank-based replacement. The

third scenario investigates the di↵erences of the admission and replacement policies

if more than 2 user groups have to be managed.

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 62

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

simple
rank_20
rank_30
rank_40

Figure 5.2.: Hit rate comparison of two competing user groups using simple and rank-
based admission with LRU [6]

The admission policies are compared by measuring the impact on the user’s satis-

faction, which can be done by comparing the hit rates. Since the user satisfaction

does not come without cost we further evaluate the e�ciency of the prefetching

mechanisms by measuring the load on the server. The load on the server consists of

the forwarded requests on a miss and the prefetching requests.

5.3.1. Scenario 1: Two Competing User Groups

In this worst case scenario the cache has to handle two user groups with contrary

interests, because then units interesting for both groups are rare1. E.g., one group is

interested in sports and the second group in movies.

The rank-based algorithm has to be configured at startup by defining the rank thresh-

old x (see formal definition above). In this scenario, three di↵erent thresholds are

chosen: ranks 20, 30 and 40.

In Figure 5.2 the hit rates of the di↵erent policies are depicted, which are aggregated

for all user groups. One can see that both the simple and the rank-based policies are

1This section is adapted from [6]

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 63

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40

Pr
ef

et
ch

 re
qu

es
ts

Cache size in %

simple
rank_20
rank_30
rank_40

Figure 5.3.: Comparison of prefetching requests of two competing user groups using
simple and rank-based admission [6]

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30 35 40

Se
rv

er
 re

qu
es

t l
oa

d
fa

ct
or

Cache size in %

simple
rank_20
rank_30
rank_40

Figure 5.4.: Requests forwarded to the server using simple and rank-based admission
with di↵erent cache sizes [6]

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 64

capable of fulfilling non-sequential requests. However, the simple admission policy

leads to a higher number of replacements because of the less restrictive prefetching.

The rank-based algorithm has in average a 5 % higher hit rate than the simple ad-

mission policy for all cache sizes. Since the rank-based algorithm is stricter regarding

prefetching requests, the units remain longer in the cache.

Although the hit rates are similar, the di↵erence in performance can be seen in Fig-

ure 5.3, where the number of prefetches is depicted. The rank-based admission policy

is more e�cient by reducing the prefetches remarkably. Thus, for such scenarios a

threshold of 20 is recommended. Furthermore, the cache size should be larger than

5 % to reduce the number of replacements.

This is also seen at the request fulfillment e↵orts of the origin server, which are

depicted in Figure 5.4. The rate is 1 if each client request is directly fulfilled by the

server (i.e., in this scenario 20,000 requests go to the server). If the rate is higher than

1, the prefetching increases the server load. Thus, prefetching is of no use. So, the

admission policies start to be e�cient if the rate of requests to the server is below 1.

The simple admission policy reaches this point at a cache size of 30 %, whereas the

rank-based policy reaches this point already at a cache size of 10-15 %. The main

reason for additional requests to the origin server is the replacement of the wrong

units. Although LRU replacement supports popular units, a smarter replacement

strategy is needed.

5.3.2. Scenario 2: Two Groups, Two Replacement Strategies

In this scenario each user group selects a number of random units of their interest,

which led to a higher number of units that are popular in both groups2. As a con-

sequence we configured other thresholds (x) for the rank-based algorithm, i.e., ranks

10, 15 and 20.

We further compare the admission policies to pure LRU replacement without prefetch-

ing to show the di↵erences to a traditional cache.

The results of the hit rate comparison are depicted in Figure 5.5. It is shown that the

2This section is adapted from [1]

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 65

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

simple
rank_10
rank_15
rank_20

pure LRU

Figure 5.5.: Hit rate comparison of pure, simple and rank-based admission using LRU
for two user groups with overlapping interests [1]

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30 35 40

S
er

ve
r r

eq
ue

st
 lo

ad
 fa

ct
or

Cache size in %

rank_10_lru
simple_lru

rank_10_pop
simple_pop

Figure 5.6.: Factor of server requests compared to user requests (LRU vs. popularity
replacement) [1]

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 66

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

rank_10_lru
simple_lru

rank_10_pop
simple_pop

pure_lru

Figure 5.7.: Hit rate comparison of the admission policies using LRU and popularity
replacement [1]

rank-based algorithm behaves similar to the competitive user groups before. How-

ever, since the interests of the users overlap, the rank-based algorithm works more

e�cient. Additionally, in comparison to pure LRU the improvement is up to 20 %.

It can be seen that also in this scenario the thresholds of the rank-based policy show

small di↵erences in hit rate, but the server load di↵erences are large. Therefore,

further experiments are limited to a threshold of 10.

As discussed in scenario 1, a high number of unnecessary replacements are done if

using LRU. The idea is to apply a popularity based replacement. Therefore, the

application of the rank-based policy for replacement is discussed in the following.

Figure 5.6 depicts that the popularity based replacement outperforms LRU for both

the simple and rank-based admission. The cache size for the simple admission can

be smaller by two thirds. The rank-based admission seems to perfectly profit from

the popularity based replacement and needs only a basis cache size of 7 %. However,

one might argue that the rank-based admission in combination with rank-based re-

placement might be too complex for caches with limited computing resources. For

these cases the simple admission policy in combination with rank-based replacement

is preferable.

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 67

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

rank_20
rank_20_nr

rank_30
rank_30_nr

Figure 5.8.: Hit rate di↵erences with restrictive and non-restrictive cache for 4 user
groups

Figure 5.7 compares the hit rate evolution for both replacement policies. The com-

parison to pure LRU shows that the hit rate increases remarkably if applying a

combination of rank-based admission and rank-based replacement. For a cache size

of 20 % the hit rate di↵ers by 40 %.

5.3.3. Scenario 3: Four Groups

In this scenario the di↵erences in the caching behavior are investigated if 4 user groups

are connected. Each of the user groups sends 10,000 requests. We concentrate on

the behavior of the rank-based admission with rank-based replacement, whereas the

rank-based replacement is restrictive against units to be cached. This means that a

unit that is not popular enough can never be cached.

In this context we observed interesting behavior of the rank-based policy as shown

in the hit rate comparison in Figure 5.8. If we use a threshold of rank 20, the

performance remains steady although the cache size is increased. It shows that the

caching policy leads to unused cache space. The same can be seen in the case of the

threshold of 30, but later. Therefore, an extension of the caching policy is needed,

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 68

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

simple_rank_20
rank_20

simple_rank_30
rank_30

Figure 5.9.: Hit rate comparison for 4 user groups

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30 35 40

Se
rv

er
 re

qu
es

t l
oa

d

Cache size in %

simple_rank_20
simple_rank_30

rank_30
rank_20

Figure 5.10.: Server request load comparison for 4 user groups

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 69

which allows every unit to be cached if there is enough space. If the cache is full

and a unit arrives with a good rank, replacement is done. The di↵erences regarding

the hit rate are remarkable. In all future graphs we reduce our evaluations to the

non-restrictive cache.

In the following we further compare the rank-based algorithm to the simple algorithm,

both with rank-based replacement. Figure 5.9 shows stable results for the rank-based

algorithm even with more user groups. However, the simple algorithm shows better

hit rates if the cache is small, and similar if the cache size is about 10 %. Rank 30 is

outperformed by rank 20 at large cache sizes, which shows that rank20 has a better

tradeo↵ between restrictiveness and user satisfaction.

The rate of requests forwarded to the server in comparison to the rate of user requests

is depicted in Figure 5.10. It can be seen that simple rank 20 never brings the server

request rate below 1, thus is never e�cient. simple rank 30 needs at least a cache size

of 20 % for reducing the server load. In comparison to that the rank 20 algorithm is

e�cient from the start, and rank 30 needs a cache size of 10 %.

This last scenario shows that the rank-based algorithm is capable of several user

groups. However, it can be seen that the threshold has to be adaptive, because in

most cases the number of user groups is not known at system startup. Additionally,

users might change their interests over time.

5.4. Summary and Discussion

A proactive non-sequential cache has been introduced, which is based on the idea

that user intentions can be semantically categorized. This information is used to

predict user behavior by mapping the units to user groups. The prediction is an

aggregation of the popularity ranks for one unit within all groups. It evaluates the

goodness of a unit for being stored in the cache and for prefetching the next unit

regarding the popularity rank.

It is shown that a popularity based evaluation of a unit helps predicting the right

units for future requests. Thus, it is possible to predict request patterns of units

that are likely to be consumed together. It is noteworthy that this caching technique

does not need the notion of order, thus is applicable for non-sequential media access.

CHAPTER 5. NON-SEQUENTIAL MULTIMEDIA CACHING 70

However, if being too restrictive the e�ciency drops, thus, the storage of the cache

has to be open for less popular units.

Whereas the applicability for non-sequential media is shown in this chapter, the ap-

plicability of self-organizing systems has to be investigated in the next chapters. Since

self-organizing systems rely on local information rather than on global information

such as popularity, the intention categorization has to be changed.

6. Bio-inspired Self-Organizing

Multimedia Delivery

In this chapter the actual delivery of non-sequential media is discussed. A complex

environment at social events is expected and it will be shown that self-organizing

algorithms can cope with this complexity. Advantages and challenges are discussed

as well as the applicability of bio-inspired algorithms for multimedia transport in-

vestigated. In the context of this chapter a unit comprises continuous data and

metadata; e.g., video plus audio plus metadata, but also photos, because they are

presented for a specific duration (e.g. 3 seconds). The focus is set on multimedia

search and replication in unstructured dynamic networks. This chapter is adapted

from [2], [7] and [8].

6.1. Introduction and Related Work

As described in Chapter 3 many researchers design their technical self-organizing

algorithms by adapting principles found in nature. We propose a self-organizing al-

gorithm, which is inspired by the human endocrine system. In the endocrine system

glands such as the epiphysis create hormones. The hormones are released to the

blood system over which they travel to target cells, where they lead to specific ac-

tions. The actions depend on the type of the target cell and can be di↵erent although

the hormone is the same. The hormone level of the body is typically influenced by

positive and negative feedback. For example, the epiphysis creates melatonin that

regulates rhythmic behavior such as the sleep-wake cycle. During the night melatonin

is released and dock to specific cells in the brain. Additionally, during winter more

melatonin is released because of the number of dark hours. So, the positive feedback

(darkness) amplifies the creation of melatonin, whereas the negative feedback (day-

light) stops it [93].

71

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 72

These principles are already adopted by researchers, who build artificial hormone-

systems. For example, Brinkschulte et al. in [94] implemented an artificial hormone-

system for task allocation in grids. The nodes in the grid compete for the execution

of di↵erent tasks, where the best node has to be found. Each node, interested in

executing a task spreads artificial hormones to agree on the best node. The goodness

of a node is defined by its eager value, which is influenced by the nodes of the system

that spread accelerators and suppressors. Both values are added and subtracted from

the eager value, thus, represent positive and negative feedback. The communication

of the nodes is done by broadcast messages. The node with the highest eager value

can execute the task and sends suppressors to all other nodes to prevent duplicate

execution.

The described artificial hormone system is interesting because it supports several

types of hormones, each for a di↵erent task. A disadvantage, however, is the commu-

nication e↵ort caused by the usage of broadcast messages. The SemAnt algorithm [64]

as discussed by Michlmayr (see Chapter 3) is more e�cient. SemAnt is an ant based

algorithm, where only a limited number of ants travel around the network. The

proposed algorithms in this chapter strive to cover the advantages of both SemAnt

and artificial hormone system.

The underlying system of the proposed algorithm is an unstructured peer-to-peer

overlay. On the one hand we want to ensure content availability and on the other

hand we want to reduce the search space. For this reason the focus is set on smart

replica placement in the dynamic environment. The number of replicas and their

location has to be adaptive. For example, we could use the replication strategy

as proposed by Rong in [95]. The number of replicas depends on their utilization

rate. Temporarily popular videos are replicated more often and replicas are destroyed

when the number of requests for the videos decreases. Rong solves the management

of utilization rates by introducing a central entity. An example for distributed replica

placement is discussed by Herrmann in [96], where the cost of a request is measured in

number of message transmissions per time unit to serve client requests. The goal is to

minimize these costs without global coordination. Regarding the number of replicas

the author defines a parameter ⇢ that describes the coverage radius of clients. If

the number of requests for this service is below a given threshold, the service replica

removes itself from the system. The challenge is to define a global cost function for

the replication.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 73

To ensure e�cient replication we rely on cooperation. Cooperation is highly discussed

in the science of evolution [97]. In evolution the fittest individuals survive and can

generate more o↵spring. So, each individual will take care of (1) increasing its own

fitness (2) not to cooperate to increase other individuals’ fitness, thus being selfish.

The opposite of pure selfishness is ultrasocialism where examples are the human soci-

ety and specific species of ants, bees, etc. In these examples the individuals cooperate

and even sacrifice themselves for the others leading to an increased performance of

their environment. E.g., a group of wolves can hunt larger deer than a single one by

being cooperative.

Cooperative behavior is a research topic in peer-to-peer systems as well. Research

has been done to introduce incentive systems to increase the cooperation of peers and

to reduce the number of freeriders. CrossFlux [32](described in Chapter 3) is an ex-

ample for a peer-to-peer architecture for multimedia streaming, which concentrates

on the improvement of cooperative behavior. A node that provides much upload

bandwidth should get better quality videos in return. If nodes do not cooperate the

whole system performance can degrade. In our system a node that cooperates by

providing storage and bandwidth has a better chance to get better service quality in

the future. I.e., on the transport path a node has the chance to decide if the current

unit might be relevant for it in the future. In a real scenario such as the Ironman

privacy issues might cause people not to accept the application. This could be solved

by introducing the notion of friendship as used by social web networks when building

the overlay. Another possibility would be to introduce cloudlets as described by

Satyanarayanan (Satya) in [98]. Cloudlets are proxies that can be accessed at the

social event and be used by the visitors as storage facility. The interesting part of

these cloudlets is their mobility, i.e., they can be moved around the event to the most

needed places with reporters or organizers.

Beyond these discussions in the rest of the work it is assumed that the overlay con-

struction is already finished and that the peers provide shared storage for multimedia

transport. The proposed algorithm is, however, capable of managing peer churn.

6.2. Algorithm Description

The idea is that units place and replicate themselves where they are needed at the

moment or in the future (see [2], [3], [7] and [99]). Patterns of units often consumed

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 74

Figure 6.1.: Example for a hormone trail for a unit. Thick connections mean better
QoS [7]

together will emerge. A network of nodes and units is seen as an artificial hormone-

system where the nodes are the cells creating and consuming hormones and the

links between the nodes represent the blood stream. Hormones indicate interest in

a specific unit or in its content. Hormones are spread to the network in such a way

that a hormone trail evolves between the requester and the resource holding node,

where the highest hormone concentration is found at the requester. Thus, a unit

is transported by following the path with the highest hormone concentration until

the requester is reached. The hormone concentration is balanced by positive and

negative feedback. Positive feedback is reached by creating further hormones and

then to release them to the system. Negative feedback is reached by (1) evaporation

to remove alternative paths and (2) deletion of hormones if a corresponding unit is

stored on the node.

The following example shown in Figure 6.1 depicts the algorithm principles. The

physical units are spread over an unstructured network of nodes and the task is to

bring the units to the requester. Given that P1 requests a unit u, which is located at

P7. P1 creates hormones and di↵uses a part of them to its neighbors (HtoDiff), the

strength is dependent on the QoS provided by the corresponding link. The neighbors

forward also a part of their hormones, until a node with the requested unit is found

or no hormones are left for forwarding. In this example the unit is found on P7 and

it will be moved over the strongest path over P5 and P2 to P1. Note that in the

case of node failure the unit can take alternative paths.

The algorithm is cyclic and each peer in the network has to handle the tasks as

shown in Algorithm 1. The tasks are executed until a specified time stamp max,

which could be the end of a social event.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 75

Algorithm 1 Execution loop of each peer

1: repeat
2: handle incoming requests
3: di↵use hormones
4: move units
5: evaporate known hormones
6: timestamp timestamp+ 1
7: until timestamp = max

At the execution of the first task peers accept di↵erent request types: sequential,

parallel and mixed. Sequential requests contain a number of units with a given

order. The presentation starts if the first unit is available. Parallel requests contain

a number of units without any order, however, requires that all units are available

before the presentation, because all units start at the same time. Mixed requests

consist of arbitrarily nested sequential and parallel parts, and have to be parsed to

define the order of presentation and the requirements to the stored units.

The basic principles of handling incoming requests are shown by the example of paral-

lel requests (see Algorithm 2). If a unit is not present, the corresponding hormoneHui

is increased by ⌘0 in the case of a new request and by ⌘ otherwise (all parameters are

explained in Section 6.3). If all units are found locally, the presentation starts. The

incoming sequential request is handled similarly, but it also takes playback time and

the order of the units into consideration. Units closer to the playback time get more

hormones than the later units, for implicitly increasing the importance of those units.

The di↵usion of hormones is performed as shown in Algorithm 3. If a unit for the

corresponding hormone is stored on the current node, the demand for this unit is

obviously fulfilled and the hormones can be deleted. This avoids the attraction of

further replicas of this unit. If the required unit is not stored on the node a part of

the corresponding hormone is subtracted. We call the subtracted part HiDiff
, which

is further distributed among the neighbors according to their QoS weight w. To

reduce the number of messages, the hormones to forward can be collected in a queue

before sending.

The next step is to take care of the guidance of units, which is shown in Algorithm 4.

A unit will be moved to the neighbor with the highest hormone value maxHi for

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 76

Algorithm 2 Handle incoming parallel request

Require: generated request
1: for all ui in request do
2: if ui is stored locally then
3: count count + 1
4: else
5: if request = new then
6: Hui Hui + ⌘0
7: else
8: Hui Hui + ⌘
9: end if
10: end if
11: end for
12: if count = size of request then
13: present all units
14: end if

Algorithm 3 Di↵use hormones to neighbors

1: for all Hi in stored hormones do
2: if ui for Hi is stored locally then
3: Hi 0
4: else
5: HiDiff

 Hi ⇤ ↵
6: Hi Hi �HiDiff

7: for all Nj in neighbors do
8: HiNj

 HiDiff
⇤ w

9: forward HiNj

10: end for
11: end if
12: end for

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 77

the unit. To migrate a unit to this neighbor, maxHi has to be larger than the local

hormone plus a migration thresholdm. In the initial version of our algorithm a simple

replication mechanism is introduced. If a unit is currently in presentation it will be

copied, otherwise moved. In the later chapters di↵erent replication mechanisms are

evaluated. Before transport, units are collected in output queues. Each node has one

output queue per neighbor. These output queues are sorted, i.e., a unit with higher

hormone concentration is delivered first.

Algorithm 4 Move units

1: for all ui in storage do
2: if ui in presentation then
3: copy true
4: end if
5: get maximum maxHi hormone from neighbors
6: if maxHi > Hi +m then
7: if copy then
8: copy ui to output queue towards this neighbor
9: else
10: move ui to output queue towards this neighbor
11: end if
12: end if
13: end for

The final step is the evaporation of hormones, which is described in Algorithm 5.

The evaporation has two tasks, first reducing all known hormones by ✏ and second

to delete all hormones with a value below the threshold t.

Algorithm 5 Evaporate known hormones

1: for all Hi in stored hormones do
2: Hi Hi � ✏
3: if Hi  t then
4: delete Hi

5: end if
6: end for

At the beginning the location of the units may be random, but at some point the

location of the unit converges to the right places. Another important fact is that

only requested units move around and replicate themselves, the unpopular units stay

where they are. The overall placement and delivery is done without global control,

just by simple tasks performed by each node.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 78

Table 6.1.: Parameters to configure at system startup
ID Explanation
⌘0 Hormone strength for a unit at new request
⌘ Increase of hormone after each time step by the requester
↵ Percentage of hormones to be forwarded to the neighbors
✏ Hormone evaporation value
t Minimum hormone strength
m Minimum hormone di↵erence to move unit (migration threshold)

6.3. Parameter Settings

The proposed algorithm is self-organizing, however, needs some configuration. In

Table 6.1 the necessary parameters are shown. These parameters are dependent on

each other; e.g., if the created hormone concentration, represented by ⌘0 and ⌘, is low

and the evaporation value ✏ is high, the movement of units can be limited. The more

hormones are created and forwarded, the more hops the hormones can travel and

therefore increase the search space. The migration threshold m controls the mobility

of units. If m is high, the units need a higher hormone concentration to move to a

neighbor, leading to a longer waiting time for the requester. This means that the

higher m, the less is the reachable mobility. The parameter settings are essential for

the algorithm to work. Therefore, we decided not to tweak the parameters manually,

but optimize them by using a genetic algorithm.

As already mentioned in Chapter 3 genetic algorithms are often customized regarding

the selection, mutation and crossover approach. In this work a genetic algorithm such

as described by Elmenreich in [100] is used, which adapts the selection process.

Initially, the algorithm creates a random population of parameters. Then, it uses

elite selection for building the next generations. The candidates are sorted according

to their fitness and the best x candidates are chosen. These candidates propagate to

the next generation. To reach the same population size as the last generation, the

rest of the slots are reserved for mutation, crossover and new randomly generated

candidates. For mutation and crossover random elite candidates are chosen.

The fitness function targets client satisfaction, therefore, it optimizes the number

of consumed units. The genetic algorithm is integrated into the simulator, which is

implemented for evaluating the hormone-based algorithm. For evaluating the fitness

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 79

of a parameter set, the simulation is started with this parameter set for a number

of runs and the results are averaged. The parameter sets of one population are

compared according to their fitness and the result of one generation is the parameter

set with the highest fitness. The higher the number of generations the higher is

the fitness of the resulting parameter set. The resulting parameter set can be used

for all simulations and real implementations of the algorithm for which the system’s

configuration (e.g., number of nodes, replication type, etc.) is similar to the input of

the genetic algorithm.

6.4. Application in a Proxy Network

In this section we evaluate the applicability of the hormone-based delivery algorithm

in a proxy network 1. For this evaluation we implemented a cyclic simulator that

allows for di↵erent client request models, network models and provides statistical

support 2. In the following the settings for this scenario are described.

Each proxy performs the tasks described in Algorithm 1. Additionally, it controls

its storage by a clean-up mechanism called smart clean-up. If the storage space at a

proxy reaches a certain limit, it tries to get rid of some units by deleting them or by

moving them to other nodes. A unit can be deleted only if there is a copy of it in

the neighborhood. This restriction is based on the requirements of the first use case

described in Chapter 2, which avoids that units vanish from the system. If the unit

cannot be deleted, the proxy tries to move it to a neighbor; e.g., if a neighbor has a

higher hormone strength, or more storage space.

We assume that a unit consists of data and metadata. The metadata contains a

content description, which we model as a three dimensional array of integers (in

other settings the array might have any dimension). Each integer identifier describes

a predefined tag. E.g., a unit can be described by swim=1, people=5, loud=45, which

leads to a content array [1,5,45]. Assuming that similar identifiers describe similar

tags, one can compare two content arrays by applying the Euclidean Distance.

Each client starts with a random content array, which describes its taste. Based

on this taste the client requests units with similar content arrays. After watching

1This section is adapted from [2].
2The simulator used in this section is published under GNU GPL at
http://code.google.com/p/videonetwork/.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 80

⌘0 ⌘ ↵ ✏ m t c
0.40 2.48 0.26 0.08 0.09 0 31

Table 6.2.: Parameter settings of the proxy scenario [2]

a unit the taste of the client might change, e.g., ”I want to see more like this”. In

this scenario the clients are aware of unit IDs and therefore one request consists of a

sequence of unit IDs. A new request is generated only if the current one is fulfilled.

The hormone-based search and delivery will be compared to a reference algorithm.

The reference algorithm uses iterative deepening and then delivers a unit hop-by-hop

according the shortest path found. We further compare LRU with the smart clean-up

strategy.

6.4.1. Evaluation Settings

We generated the input parameters for the simulator by using the genetic algorithm

described in Section 6.3. The fitness function is chosen to maximize the number

of consumed units. In Table 6.2 it can be seen that the initial hormone creation

parameter ⌘0 is low in comparison to the periodical increment parameter ⌘. Thus, the

hormone concentration increases over time, leading to an increasing search space. The

value ✏ for the evaporation on the alternative paths is very low. The low migration

threshold m increases the probability of unit movement. The minimum value for a

hormone before deletion t is set to zero, which means that hormones remain long on

the nodes. The final parameter c describes the storage percentage from which the

clean-up procedures are triggered. Its low value further increases unit movement. So,

with this parameter set the support for the movement of distant units is the main

goal.

In this scenario we evaluate di↵erent network sizes with 5 , 10, 20 and 50 nodes.

Each node is a proxy that can handle 1 to 20 clients. We implemented the network

architecture as connected Erdős-Rényi random graph with a link speed of 10Mbit/s.

The size of a unit is between 50 KB and 5 MB, with an average of 500KB and a

standard deviation of 500 KB. Thus, the system allows photos and videos. A request

is defined as a sequence of 1-4 units.

At the start of the simulation units are generated until the storage of 10 % for each

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 81

node is reached, i.e., the number of units is proportional to the number of proxies.

We assume that after the bootstrapping only replicas of the existing units are added

to the system. We further limit the storage of one proxy to 50 MB for two reasons,

(1) we want to bring the system to its edges and (2) in future scenarios where mobile

phones should act as peers the storage will be limited as well. An acceptance study

of the application, which would also include such parameters, is part of future work.

We average the results for every experiment using 10 di↵erent runs. The simulation

runtime is set to 500 seconds.

6.4.2. Results

In this section the algorithm is compared to the reference algorithm in two scenarios:

(1) without node failure (2) with node failure. Since the reference algorithm routes

the units on the shortest path regarding hops, it is further referred to as routing

algorithm.

We evaluate the delay, which is measured as the di↵erence between the time of the

playback of the most recently unit and the time the current unit is available at the

proxy. The delay of the first unit (start-up delay) of the request is measured as the

di↵erence between the request time and the startup time. The hit rate is defined as

the rate of units, which are immediately available at the target proxy when playback

starts (i.e., delay is 0 seconds).

Without Node Failure

In this scenario we investigate if a hormone based system performs equally or better to

the routing algorithm regarding delay and hit rate without node failure. Additionally,

we compare LRU to smart clean-up.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 82

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250 300 350 400 450 500

de
la

y
in

 s

time in s

r.lru
r.cl
h.cl

Figure 6.2.: Delay comparison of hormone and routing system for 5 nodes with dif-
ferent clean-up functions [2]

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 50 100 150 200 250 300 350 400 450 500

hi
t

ra
te

time in s

r.cl
r.lru
h.cl

Figure 6.3.: Hit rate comparison of hormone and routing system for 5 nodes [2]

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 83

Network of 5 Nodes

Figure 6.2 shows the delay comparison of the hormone-based algorithm (h) and the

routing algorithm (r). The routing algorithm is combined with LRU and then with

the smart clean-up (r.lru and r.cl). In any case the hormone algorithm (h.cl) out-

performs the routing model in combination with smart clean-up and LRU. The main

reason for the delay di↵erence is that the hormone algorithm exploits the knowledge

about hormones and transports units with higher hormone values first. The delay

jitter of r.lru is remarkably high in comparison to r.cl. The reason is that with LRU

the replacement of units is more often applied than with the smart clean-up. The

restrictive clean-up threshold requires LRU to delete also units that are more popular,

because they are more likely to be also available on the neighbors. This results in

long travel paths for popular units and therefore high delays.

Lower delay values mean that more units can be consumed and therefore more units

are placed correctly. The quality of the placement is measured by the hit rate. Fig-

ure 6.3 gives an overview of the results. Although the delay of h.cl and r.cl is similar,

the hit rate shows the di↵erences. Hit rates up to 80 % are possible if applying the

hormone-based algorithm. It is further interesting to see that r.lru has a 5 % higher

hit rate than r.cl in the end of the simulation. Both clean-up mechanisms remove

the most recently used units, but the smart clean-up moves the other units to the

neighborhood. This storage load balancing leads on the one hand to fewer deletions,

but also increases the hop distance.

Network of 10, 20, 50 Nodes

We implemented the 5 nodes scenario to show that hormone-based delivery is pos-

sible. However, 5 proxies might not be capable of handling a high number of users.

Therefore, we further show the delay development for the hormone model (h.cl) if

increasing to 10, 20 and 50 nodes. The delay increases with the number of nodes,

since also the number of users and the number of units increase. In Figure 6.4, it is

shown that in all of the runs the delay stabilizes at around 150 simulated seconds.

Figure 6.5 depicts the delay development of the routing algorithm (r.cl). The delay

is always a bit higher than in the hormone case. E.g., the delay for 10 nodes of the

hormone model h.cl is the same as the delay for 5 nodes of the routing model. In all

of the runs the hormone system performs better than the routing system. However,

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 84

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400 450 500

de
la

y
in

 s

time in s

h.cl.10
h.cl.20
h.cl.50

Figure 6.4.: Delay comparison of hormone system for 10, 20, and 50 nodes [2]

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400 450 500

de
la

y
in

 s

time in s

r.cl.10
r.cl.20
r.cl.50

Figure 6.5.: Delay comparison of the routing algorithm with smart clean-up for a 10,
a 20, and a 50 nodes network

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 85

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500

no
. m

ov
e/

co
py

 o
pe

ra
tio

ns

time in s

h.cl.20.moves
h.lru.20.moves
h.lru.20.copies
h.cl.20.copies

Figure 6.6.: Copy and move comparison if LRU or the proposed clean-up function is
applied [2]

during the startup phase the routing algorithm has a lower delay, because it causes

fewer movements. In the 50 nodes scenario r.cl has a number of delay peaks, because

units near to the playback time are not prioritized such as the hormone algorithm

does and therefore some of the units are blocked during transport.

The increasing node number leads to decreasing hit rates, because users have di↵erent

tastes and compete for low storage capacities. In the 50 nodes scenario the hit rate

stabilizes at around 60 % if applying h.cl, but r.cl only reaches 12 %. In the 20

nodes scenario the hit rate of h.cl is 65 % and 16 % of r.cl. In comparison to the 5

nodes scenario the hit rate of r.cl reduces from 50 % to 20 % if the network consists

of 10 nodes. Thus, the routing algorithm is less scalable than the hormone algorithm.

Although the LRU clean-up has a bad impact on delay and hit rate, our proposed

clean-up function also has its flaws. This is shown in the following by the example

of a 20 nodes network. In Figure 6.6 we show that LRU balances the copy and move

operations to about the same amount. In the proposed clean-up scheme most of the

operations are movements and a very low number of copy operations are done. If we

sum up the number of copies and moves the proposed clean-up is more expensive.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 86

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200 250 300 350 400 450 500

de
la

y
in

 s

time in s

r.cl.50.m50
r.cl.50

Figure 6.7.: Delay distribution with and without 50 % node failure, routing algo-
rithm, 50 nodes [2]

With Node Failure

In the following we compare the robustness of the hormone model and the routing

model regarding the presence of node failures. Since the proxies might be mobile,

such as the cloudlets [98], they are also likely to fail. To see how many failed nodes

the algorithms can compensate, we periodically remove randomly chosen nodes from

the network.

We simulated for 10, 20 and 50 nodes node failure rates of 10 %, 20 % and 50 % (m10,

m20, m50). The first two failure modes showed marginal delay di↵erences of around

10 milliseconds for both the routing and the hormone algorithm. In Figure 6.7 the

delay di↵erences for the routing algorithm are shown if 50 % of the nodes fail. The

routing algorithm has to calculate a new shortest path if any intermediate node fails

and therefore causes the delay peaks as shown in Figure 6.7. In comparison to this

in Figure 6.8 one can see that when using the hormone algorithm, only slight delay

di↵erences are experienced in the end of the simulation. The hormone algorithm does

not need any further action on node failures, because alternative hormone trails exist

already at request time. Both algorithms can still handle 50 % of node failure, but

the performance starts to drop. A higher failure might lead to requests that cannot

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 87

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 50 100 150 200 250 300 350 400 450 500

de
la

y
in

 s

time in s

h.cl.50.m50
h.cl.50

Figure 6.8.: Delay distribution with and without 50 % node failure, hormone algo-
rithm, 50 nodes [2]

be fulfilled anymore, because it is more likely that units vanish from the system.

6.4.3. Discussion

In this section it has been shown that the hormone-based algorithm performs better

than the compared routing algorithm. The algorithm is robust against node failure,

even if the network size increases.

We considered a moderate number of clients, each connected to one of the proxies.

If situations force the appearance of flash-crowds, a peer-to-peer architecture can

be advantageous. A peer-to-peer network adapts the architecture of the network

to the architecture of the clients and the hormone algorithm has the potential of

being used in a network with a large number of nodes. However, the smart clean-up

mechanism causes a high number of movements, which is disadvantageous if only one

client has to be served per node. Additionally, the proxy network does not exploit

the transport path of a unit for replication. In this scenario a unit is only replicated

if it is currently in presentation. In the next sections more sophisticated replication

and clean-up mechanisms are discussed.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 88

6.5. Replication Strategies for Bio-inspired Delivery in

Peer-to-Peer Networks

The application of the hormone-based algorithm to peer-to-peer networks brings

new challenges for the placement of units. In this section we investigate di↵erent

replication strategies to reduce the search space and to increase the robustness for

a high number of peers. In an ideal situation the units are already at a peer before

they are requested 3.

6.5.1. Existing Replication Strategies

Since we are targeting replication in unstructured peer-to-peer networks we first

investigate existing replication strategies. The following categorization is based on

[16] and [101].

Owner Replication

The content is replicated at the requester’s node [22] and is also called passive repli-

cation. Typically, this replication technique is used in file sharing systems based on

BitTorrent [34]. BitTorrent supports direct download, if a resource is found it is

copied to the requester. Only nodes that are interested get the resource.

Path Replication

In a multi-hop network where content is not transported directly such as in Freenet [102],

it is possible to cache one replica of the content at each intermediate node. Since the

intermediate nodes are acting as caches, path replication is also called cache-based

replication. It is assumed that intermediate nodes provide storage space for replicas

even if they are not interested in the content. Path replication leads to a high number

of unused replicas.

Therefore, an improved approach replicates the content on an intermediate node

according to a fixed replication rate (path random replication [101]). The advantage

of this approach is a compromise between a higher replica usage and limited hop

distance to other replicas. The di�culty of this approach is to specify a suitable

replication rate for each file in advance, which is hard if the files are not known at

3This section is adapted from [7].

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 89

system startup.

An alternative is to specify a node specific replication probability, where nodes decide

ad-hoc if a file is replicated or not. The replication probability is dependent on the

peer’s resource status and optionally refers to the replication rate, too. The authors

in [101] refer this strategy to as path adaptive replication.

Active Replication

The goal is to place the right number of replicas at the right locations before they are

requested. Researchers investigated the optimal number of replicas in the context of

robustness. In [103] and [22] the authors investigate random, proportional, and square

root replication. When applying random replication a uniform number of replicas

for each object are created. Proportional replication creates replicas proportional

to their query rate. The authors showed that square root replication determines

the optimal replication rate ri for object i, which is calculated as ri = �
p
qi, with

� = R/(
P

i

p
qi), where q is the query rate and R is the number of object replicas

in the system. Square-root replication does not consider the location of replicas. All

strategies require global knowledge on the number of currently existing replicas and

the current query rate for each of the replicas.

To reach square-root replication with limited knowledge researchers proposed Pull-

then-Push Replication introduced in [104]. The first phase of this method regards

the search of the content, with any existing algorithm. The second phase regards

the replication of content to the neighbor nodes. To reach square root replication,

the authors suggest that for the pull and push phase the same algorithms are used,

because the number of replicas should be equal to the number of nodes visited during

search. The authors evaluated typical algorithms, such as flooding and random walks.

Their focus is set on robustness even on update situations. As multimedia content

is usually not updated after creation and this algorithm only considers the number

and not the location of content, this approach is out of scope of this work.

6.5.2. Proposed Replication Strategies

Although a unit is delivered hop-by-hop the basis for our proposed replication mecha-

nisms is owner replication, since the units are consumed for some time at the requester

and therefore need to be replicated to be further usable by other nodes. Units repli-

cated at the requester can only be supportive for the immediate neighborhood. To

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 90

serve future requests, replicas should also be created on the delivery path. If the

hormone concentration of a neighbor attracts a stored unit, the peer has to decide

whether to move or to copy the unit. The simplest solution would be to apply path

replication, but then the utilization of replicas would drop and the storage space

is not used e�ciently. Therefore, the goal is to find a replication mechanism that

balances replica utilization and delay without the need of global information.

Beyond owner replication, path replication, and path adaptive replication we evaluate

the following four replication mechanisms. These mechanisms exploit local knowledge

on popularity and hormone values collected from neighbors.

Simple Hormone

If a unit is requested by peers from opposite parts of the network, the unit has to

move first to one requester and afterwards to the other requester. This can lead

to long traveling paths, which can be avoided by replicating a unit if more than

one neighbor holds hormones for it. Note that it is not possible to di↵erentiate if

hormones on the neighbor are created by di↵erent peers. Thus, it is possible that

unnecessary replications are made.

Local Popularity

Each node uses the local request history of the corresponding content to decide if it

is likely to be requested again in the future. If the rank of the content is among the

best 30 % the corresponding unit is replicated. So popular units are more likely to be

replicated, but popularity information from neighbors is ignored. With this method

the communication e↵ort is minimized.

Neighbor Popularity Ranking

After collecting the popularity ranks for the content from the neighbors, the peer

decides if it is worth to replicate the corresponding unit. The ranks are aggregated

to a region rank (see Chapter 5), which is calculated as follows:

R =
1

n

nX

i=1

ln(ri)

n represents the number of neighbors and r is the rank of the specific unit at a

neighbor i, where 0 is the best rank. To reduce the impact of peak ranks (e.g., one

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 91

unit is best ranked at two nodes, but worst ranked on the third node) the logarithm

is used. If the region rank R is lower than a given threshold (e.g., the best 30 % at

all neighbors) the unit is replicated.

Neighbor Hormone Ranking

Analogue to the popularity ranking the units can also be ranked by their hormone

values at the neighbors. The higher the hormone value for a unit on a neighbor,

the better is the unit’s rank. The collected ranks can be aggregated as before and

if the region rank is lower than a given threshold (e.g., the best 30 %), the unit is

replicated.

6.5.3. Evaluation Settings

We extended our simulation by the replication strategies and added further evaluation

support for peer-to-peer networks.

Network Topology

We assume for small overlay networks of 50 nodes a connected Erdős-Rényi random

graph with a diameter of 6. For larger networks, e.g., with 1,000 nodes, we assume a

scale-free network topology. The bandwidth was set to 100 Mbit/s; other bandwidth

values are target of future work.

Initial Storage

Each node creates units until 30 % of each node’s storage is filled, where each node

provides 900 MB of storage size. At the beginning only one instance of each unit

exists. We expect that in a scenario with 50 motivated persons, each person is

contributing with equal probability. We generate 5,000 units for the scenario with

50 peers. We further assume that each person is represented by one peer.

The average size of a unit is 2.6 MB, whereas the maximum size is 16 MB and the

minimum size is 190 KB, with a playback bit rate of 1 Mbit/s. These unit sizes are

the result of the third SOMA use case ”The long night of research” (see Chapter 2).

Request Generation

We kept the unit content model as described in Section 6.4 also the taste model of the

clients did not change. However, a client can request a content array instead of a unit

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 92

⌘0 ⌘ ↵ ✏ m t maxhops
3.95 4.39 0.45 0.16 0.23 0.23 10

Table 6.3.: Parameter settings

id, which allows keyword search. Additionally, in this scenario we do not consider

any order of the requested units, thus, if a requested unit arrives, it is presented to

the user immediately.

We further introduce a deadline for each unit, until which it has to be delivered. The

deadline is dependent on the size, the link bandwidth and the maximum number of

hops a unit can travel maxhops. If a deadline is missed, no further hormones for

that unit are created to stop attracting content.

A request is considered as failed if none of the requested units could fulfill their

deadline. A user can only submit one request at a time. If this request is fulfilled or

failed, a new request will be generated.

Simulation Parameters

We used the genetic algorithm as described in Section 6.3. We change the fitness

function to maximize the number of successful requests (i.e., consumed units within

the deadline).

In Table 6.3 the resulting parameters are shown. The creation parameters ⌘0 and ⌘

are high, which leads to a wider travel range. The di↵usion of 45 % of the hormones

supports longer travel distances, too. The evaporation rate ✏ is in comparison to the

creation value rather low, which means that the hormones last for some time. The

migration threshold m describes the minimum hormone di↵erence between two nodes

to make a unit move. In this case the di↵erence is very low in comparison to the

values of ⌘0 and ⌘. This leads to a very dynamic behavior of the units. The minimum

hormone threshold t is the same as the evaporation value and causes hormones to

stay long on the nodes.

Metrics

We want to evaluate the request fulfillment on the one hand and the utilization of

replicas on the other hand. The fulfillment of requests is represented by the delay.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

CD
F

delay in s

hranking
path

path_adapt
pop

hormone
pranking

owner

Figure 6.9.: Delay distribution in the best e↵ort scenario [7]

The delay is measured from the request time of a unit until the arrival of that unit on

the node. A delay of 0 s means that the unit was already on the node at request time.

The delay is presented as cumulative distribution function (CDF) over the simulation

time. The deadline missed rate represents the rate of units (not requests), for which

the deadline is missed. If a unit missed its deadline, the delay is calculated as deadline

minus request time (max. delay). The request failed rate indicates requests of which

all units missed their deadline.

A unit is presented for some time, and we measure the rate of units that currently

started with presentation. The more unit presentations started in comparison to

the number of their replicas, the better the unit utilization. The utilization and the

request failed rate will be depicted as box plot with 1.5 interquartile range whiskers.

6.5.4. Results

We conducted extensive simulations for the random and the scale-free network topol-

ogy. We performed each simulation in 10 runs for 500 simulated seconds. Each run

started with a di↵erent seed for the random number generator. The random number

generator has an impact on the network topology and the request generation and

anything further that needs random input. The results of these runs are averaged.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 94

 0

 0.2

 0.4

 0.6

 0.8

 1

hormone

hranking

owner
path

path_adapt

pop
pranking

ut
iliz

at
io

n
ra

te

Figure 6.10.: Utilization comparison [7]

 0

 0.2

 0.4

 0.6

 0.8

 1

hormone

hranking

owner
path

path_adapt

pop
pranking

re
qu

es
t f

ai
le

d
ra

te

outlier

Figure 6.11.: Failed request rate [7]

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 95

The delay stabilizes after an initial simulation time of app. 100-200 seconds, a run

time of 500 seconds for the random network is therefore su�cient.

In this part we evaluate the impact of replication, which takes place in a best e↵ort

manner until no storage space is available anymore. A full storage space on a peer

prevents forwarding of further units. The goal is therefore to find an intelligent

replication mechanism.

In Figure 6.9 the delay development for all replica mechanisms is depicted. Neigh-

bor hormone ranking (hranking) outperforms path replication (path), although path

replication generates more replicas. The placement of hormone ranking is more e�-

cient, leading to less overloaded nodes and therefore more requests can be fulfilled.

Local popularity (pop) has a lower delay than popularity ranking (pranking), because

the best 30 % for popularity may contain more units than the best 30% of popularity

ranking, thus popularity ranking creates fewer replicas. An adaptive threshold for

popularity ranking might lead to better results. The path adaptive replication mech-

anism (path adapt) shows that random decisions can also lead to good results. The

hormone replication mechanism (hormone) tries to replicate if there are currently

further requests for that unit from somewhere else. This leads to a low number of

replicas if the hormones do not reach the current location of the unit. This graph

shows that the number of replicas has a high impact on the service quality. If too

many replicas are created, the storage used ine�ciently and if full, it blocks further

transport. If the number of replicas is too low, the delay is high, because of long

distance transport.

A more detailed view on the storage e�ciency is shown by the utilization rate. Note

that it is collected only once, at the playback start. Figure 6.10 shows interesting

results. Owner replication has the best utilization, which is explainable by the low

number of replicas. On the first sight one might say that the more replicas created

the lower the utilization. But the hormone ranking mechanism creates fewer replicas

than the path replication mechanism. The di↵erence in utilization can be explained

by comparing the delay of these replication mechanisms. The hormone ranking repli-

cation has a far lower delay than the path replication. Since a request is sent after

another is fulfilled or failed a lower delay means that more requests can be submitted

and therefore more replicas can be generated, which results in lower utilization. In

general the utilization is a metric that has to be evaluated in combination with delay

and request failed rate.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 96

The request failed rate is depicted as box plot in Figure 6.11. It shows that hormone

ranking and path replication perform 50% better in comparison to owner replication.

This indicates that the placement of units is well developed. The outliers (marked

with x in the figure) are experienced during the first few seconds of the simulation,

when the unit placement is random. After that the failed requests go fast down to

approximately 5-10 %.

6.5.5. Discussion

Uninformed replication such as path replication is resource-wasteful. Path adaptive

replication showed to be a good compromise. Thus, for networks without knowledge

about current demands, path adaptive replication can be recommended. The evalu-

ation of local popularity replication and popularity ranking showed that popularity

aging has to be considered since in dynamic environments the popularity can change

quickly. Therefore, we address the hormone as dynamic and latest information about

popularity of the content. By additionally including the neighborhood into the deci-

sion, the performance increases as well.

An ideal replication mechanism would be lowest in delay and best at utilization.

Until now, none of the described replication mechanisms matches this pattern. Thus,

there are further strategies necessary. As an example, clean-up mechanisms can

be used (such as least recently used) to increase the utilization, by taking care of

unneeded units. Additionally, storage load balancing would increase the reliability

of the system.

6.6. Storage Balancing by Introducing Clean-up

Mechanisms

We concluded before that e�cient replacement or clean-up has to be done in order

to avoid blocking the transport of units and to increase the utilization of replicas. A

clean-up is triggered if a certain storage level is reached, which leads to a balanced

storage load of the system4.

4This section is adapted from [8].

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 97

However, if we want to guarantee that always at least one instance of the unit is

available in the system, the decision of what unit to delete becomes more compli-

cated. Therefore, the goal is to find an e�cient strategy that does not influence the

delay, but on the other side increases the utilization of replicas. We apply the basic

principle that a unit can be deleted only if there is a copy of it at one of the neighbors.

We compare three mechanisms: least recently used (LRU), least frequently used

(LFU) and hormone-based clean-up. We do not evaluate smart clean-up (see Section

6.4) anymore, since the high number of movements has a bad impact on the delay.

LRU takes care of popularity aging. If a unit is not popular anymore its replicas

can be removed. LFU targets the cumulated popularity, which causes less e↵ort

than LRU. We introduce hormone clean-up, which exploits local knowledge about

hormone concentration. A unit is deleted if there are no hormones for it on the

neighbors, thus there is currently no demand for it. So, units currently in delivery

are not deleted.

We apply the clean-up to the before analyzed replication mechanisms in the following

two scenarios: (1) A 50 node random network and (2) a 1,000 node scale-free net-

work. We further analyze the impact of peer churn to the replication and clean-up

mechanisms.

The settings are the same as in the replication scenario, but we add the clean-

up threshold c=60%. If the storage usage of the node reaches c, the configured

clean-up method is triggered. To generate a scale-free network the Eppstein Power

Law Algorithm [105] is used. The algorithm gets as input a random graph and by

repetitively removing and adding edges a power law distribution is reached. The

network diameter of the scale-free graph is 13 and we extend the simulation time to

700s. The scale-free scenario starts with 15,000 units in comparison to 5,000 units

for the small network.

6.6.1. 50 Nodes Random Network

In comparison to the pure replication shown in Figure 6.9 in Figures 6.12(a), 6.12(b)

and 6.12(c) hormone clean-up, LRU and LFU are applied. One can see immedi-

ately that some combinations of clean-up and replication are advantageous, whereas

some combinations lead to performance drops. The most conspicuous example is the

combination of local popularity replication (pop) and hormone clean-up as shown in

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 98

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

CD
F

delay in s

path
hranking

path_adapt
pop

hormone
pranking

owner

(a) Delay distribution of hormone clean-up

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

CD
F

delay in s

path
hranking

path_adapt
pop

hormone
pranking

owner

(b) Delay distribution of LRU clean-up

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

CD
F

delay in s

path_adapt
hranking

path
pop

pranking
hormone

owner

(c) Delay distribution of LFU clean-up

Figure 6.12.: Delay comparison of the di↵erent clean-up mechanisms [8]

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY 99

 0

 0.2

 0.4

 0.6

 0.8

 1

hormone.horm

hormone.lru

hormone.lfu

hranking.horm

hranking.lru

hranking.lfu

owner.horm

owner.lru

owner.lfu

path.horm

path.lru

path.lfu

path_adapt.horm

path_adapt.lru

path_adapt.lfu

pop.horm

pop.lru

pop.lfu

pranking.horm

pranking.lru

pranking.lfu

ut
ili

za
tio

n
ra

te

Figure 6.13.: Hormone, LRU and LFU utilization comparison [8]

 0

 0.2

 0.4

 0.6

 0.8

 1

hormone.horm

hormone.lru

hormone.lfu

hranking.horm

hranking.lru

hranking.lfu

owner.horm

owner.lru

owner.lfu

path.horm

path.lru

path.lfu

path_adapt.horm

path_adapt.lru

path_adapt.lfu

pop.horm

pop.lru

pop.lfu

pranking.horm

pranking.lru

pranking.lfu

re
qu

es
t

fa
ile

d
ra

te

outlier

Figure 6.14.: Hormone, LRU and LFU request failed rate comparison [8]

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY100

Figure 6.12(a). The reason for this bad performance is that the hormone clean-up

only considers current demands for a unit and therefore does not fit the replication

mechanism.

It is further interesting to see that path replication in combination with hormone

clean-up results in a lower delay than hormone ranking. Hormone ranking initially

places units more e�cient, leading to fewer replicas than path replication would

create. The downside of hormone ranking is that popular nodes evolve, which are

filled first. This leads to blocked transport paths, which in turn increases the delay.

The LRU clean-up depicted in Figure 6.12(b) has the most positive impact on path-

adaptive replication since the delay is stable in comparison to the best e↵ort scenario,

while the other replication mechanisms experience higher delay. Path replication has

the lowest delay, but also results in a flatter curve than path-adaptive replication

and hormone ranking, indicating a higher delay jitter.

LFU (Figure 6.12(c)) leads to a high number of wrong clean-up decisions, because

the delay increases for all replication mechanisms. Especially the hormone replica-

tion mechanism and owner replication su↵er from wrong decisions; the delay jitter

increases. Path replication results in doubled delay. The local popularity mechanism

experiences positive impact, since LFU also prioritizes popular units.

The utilization measures the improvement in storage e�ciency of the single repli-

cation mechanisms (see Figure 6.13). All clean-up strategies lead to an increase

of utilization. Hormone replication does not take advantage of a clean-up, because

it already creates only a low number of replicas. Hormone ranking has the worst

utilization if combined with LRU, but has even in that case a higher utilization than

path replication. Local popularity replication results in a high variance, which also

shows that some improvement is needed.

A high utilization does not necessarily indicate that the replication mechanism is

best suited for the delivery. A high utilization can also be reached if deadlines are

missed and therefore the delivery did not take place, which leads to a lower number of

replicas. Therefore, it is important to aggregate the information of delay, utilization

and the requests failed statistics.

In Figure 6.14 one can see immediately the low performance of local popularity

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY101

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

CD
F

delay in s

hranking
hranking5

hranking10
hranking20

Figure 6.15.: Delay distribution of hormone ranking with hormone clean-up if 5,10,
20 nodes fail [8]

replication if combined with hormone clean-up. The lowest variance is reached by

combining it with LFU. The other replication strategies do not profit from the com-

bination with LFU, the request failed rate is the highest. Most replication strategies

work best if combined with LRU, except hormone ranking.

The decision of what clean-up strategy to choose should be made by combining

the results of delay, utilization and request failed rate. For example, path-adaptive

replication should be used with LRU, because of its steep delay curve and low failed

rates. Hormone ranking replication should be combined with hormone clean-up. Path

replication should not be combined with LFU, because of low delays. Path replica-

tion with hormone clean-up leads to a higher utilization, but also to a higher failed

request rate than if combined with LRU. Furthermore, it is important to evaluate

the robustness of the before mentioned replication and clean-up combinations.

6.6.2. Impact of Peer Churn

We simulate churn as randomly chosen nodes being removed periodically one-by-one.

We do not handle isolated nodes after peer deletion. Thus, there is a performance

gain potential if an overlay algorithm takes care of reconnecting such nodes. We chose

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY102

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

CD
F

delay in s

path_adapt
path_adapt5

path_adapt10
path_adapt20

Figure 6.16.: Delay distribution of path adaptive with LRU if 5, 10, 20 nodes fail [8]

 0

 0.2

 0.4

 0.6

 0.8

 1

hranking

hranking5

hranking10

hranking20

path_adapt

path_adapt5

path_adapt10

path_adapt20

re
qu

es
t

fa
ile

d
ra

te

outlier

Figure 6.17.: Failed request rate in case of peer churn [8]

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY103

5, 10 and 20 nodes to be removed. We compare hormone ranking with hormone clean-

up and path adaptive replication with LRU.

Figure 6.15 shows the delay distribution of the hormone ranking algorithm. One can

see that the replication algorithm and the delivery algorithm are capable of handling

loss. Overall the delay increased a bit, but interestingly the delay for 5, 10 and 20

removed nodes is very similar. However, the failed requests increase slightly in both

hormone ranking and path adaptive scenarios, as shown in Figure 6.17. In general

if a keyword is matched by a number of units, a system wide loss of a unit does not

have a major impact.

The path adaptive algorithm leads to interesting results as shown in Figure 6.16.

Here, the delay of the peer churn scenarios is lower than in the original case. This

anomaly can be explained by referencing the clean-up failures of the original scenario.

A clean-up fails if on the current node all units are currently in use or there is no

copy of the current unit on a neighbor. A disadvantageous replica distribution might

be that at every second hop a replica is placed, which means that a high number of

replicas exist in the system, but because the nodes only see their neighbors, the units

cannot be deleted. If a peer fails, a unit has to move an alternative way. Therefore,

the unit movement is increased and more requests can be fulfilled. Path adaptive

replication might need an alternative clean-up policy taking a larger neighborhood

into account.

6.6.3. 1,000 Nodes Scale-free Network

In this section we evaluate the applicability of our delivery algorithm for scale-free

networks. We evaluate hormone ranking with hormone clean-up and path adaptive

replication with LRU. It is shown that the parameters for the 50 node network also

work for the 1,000 peer network. Specific optimization using the genetic algorithm

could lead to even better results.

In Figure 6.18 it is depicted that the delay is increased by around 500 ms in compari-

son to the small network for the hormone ranking algorithm. Furthermore, if 100, 200

and even 500 nodes fail the delay does not increase considerably. Note that also high

degree nodes may fail, because the nodes leaving the network are chosen randomly.

Figure 6.19 shows that the problem with clean-up failures is not experienced as in the

50 nodes network, which can be explained by the network structure and its rather low

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY104

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

CD
F

delay in s

hranking
hranking100
hranking200
hranking500

Figure 6.18.: Delay distribution of hormone ranking with hormone clean-up if 100,
200, 500 nodes fail [8]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

CD
F

delay in s

path_adapt
path_adapt100
path_adapt200
path_adapt500

Figure 6.19.: Delay distribution of path adaptive with LRU if 100, 200, 500 nodes
fail [8]

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY105

 0

 0.2

 0.4

 0.6

 0.8

 1

hranking

hranking100

hranking200

hranking500

path_adapt

path_adapt100

path_adapt200

path_adapt500

re
qu

es
t

fa
ile

d
ra

te

outlier

Figure 6.20.: Failed request rate in case of peer churn [8]

diameter. Therefore, the delay of path adaptive replication is similar to the hormone

ranking algorithm. Both algorithms show slight increases of request failures also in

the presence of peer churn (see Figure 6.20).

6.6.4. Discussion

Although the results of the replication mechanisms are promising, the clean-up has a

negative impact on the delay, which means that the goals of the clean-up introduction

are not reached. Ideally, a combination of replication and clean-up should lead to

low delay, low failed rate and high utilization. If the settings are as strict as in

this section, path replication with hormone clean-up, although ine�cient, performs

best. Alternatives could be path adaptive replication with LRU and hormone ranking

replication with hormone clean-up. The node failure scenarios showed that there are

still nodes, which block the transport of units. To solve this issue the settings could

be less strict regarding the deletion policy. Instead of deleting a unit only if there

is a copy of it in the neighborhood, it could be weakened to delete a unit if another

unit covering the same keyword is in the neighborhood.

CHAPTER 6. BIO-INSPIRED SELF-ORGANIZING MULTIMEDIA DELIVERY106

6.7. Summary

This chapter described the development of an artificial hormone system that al-

lows for e�cient delivery of multimedia content. The algorithm allows for handling

di↵erent request types, i.e., sequential, parallel and mixed requests. It is further

QoS-aware by regarding link qualities. The algorithm can be considered as adap-

tive, robust and scalable, which has been shown in di↵erent scenarios. We further

investigated di↵erent replication mechanisms that create replicas on the travel path.

This measure does not only increase the robustness of the system, but also reduces

the experienced delay for the clients. In an ideal situation the content is placed on

the nodes before it is requested. Since we expect limited storage space, we further

extended the algorithms by clean-up mechanisms that on the first hand should not

increase the delay and on the other hand take care of storage balancing.

7. Artificial Hormone Systems as a

Middleware for Content Delivery

In the previous chapter units comprised videos with audio track or photos and meta-

data — multimedia units. However, more and more systems transfer their storage of

mixed content (web sites, documents, services, etc.) to the cloud. In the cloud the

resources are typically distributed in a network consisting of a high number of nodes.

The nodes and connections form a complex network, where the control of resource

placement and relocation is not feasible with a centralized algorithm. Beyond this,

we want to generalize the application of our algorithm and therefore we propose

a middleware that covers the transparent delivery and placement of content1. The

basis of the middleware forms the hormone-based algorithm introduced in Section 6.2.

We show the applicability of the middleware by conducting a case study. The case

study targets multimedia sharing, however, is also used to make recommendations

on unit sizes for other applications.

7.1. Related Work

Brinkschulte et al. adapted their artificial hormone system for task allocation [94]

to be used as a middleware for organic networks [106] and applied this middleware

to a real scenario for automated guided vehicles (AGV). The AGV carries a number

of sensors which have to be coordinated to guide the AGV through the environment

and help performing its assigned tasks.

Balasubramaniam et al. derived a communication resource management system

inspired by the blood glucose regulatory model of the human body [107]. Their

approach aims at IP networks and provides resource allocation strategies at short-

term, mid-term and long-term levels to support Internet Service Providers (ISP) and

1This chapter is adapted from [99]

107

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 108

the underlying carrier operators. The results indicate that a bio-inspired resource

management system can overcome traditional resource management strategies such

as static and weighted fair sharing approaches.

Tempesti et al. propose an architecture supporting the formation of large complex

networks [108]. The architecture defines simple computing units (ECells) that are

connected by a high-speed serial communication protocol (EStack). This work is

orthogonal to the work presented by Balasubramaniam, which is based on standard

communication networks.

Harsh, Chow and Newman argue that the network structures of the human brain can

be a reference model for bio-inspired networks. Their gray networking model [109]

refers to networks that implement a significant subset of features, among them mul-

tilevel and multiple feedback loops, multiple sensors and a filtered inter-component

communication. By this definition, our proposed approach can also be viewed as a

kind of gray networking.

7.2. Artificial Hormone System Middleware - MASH

The proposed MASH (Middleware using Artificial Systems of Hormones) is responsi-

ble for providing delivery and communication in a dynamic network without central

control, and is adaptive, robust and scalable. It manages seamless interaction be-

tween content of the nodes and guards the content through the network. The applica-

tion only has to provide the request in the correct form and the network has to provide

information about the direct neighbors of each node. The MASH can be applied on

mobile and wired devices. Figure 7.1 depicts an overview of a sample network with

the installed middleware. Each node that is part of the network can request content

and provide content. The idea is to self-organize the placement of the content in

such a way, that the traveling distance of content is reduced, ideally to zero hops.

For that reason, it is necessary that a node can express its demands, that content

can be distributed freely (although with space restrictions) and that the storage is

managed e�ciently. These tasks are brought together by multi-hop communication,

thus, a node only needs to know its neighbors. The artificial hormone-algorithm is

used to fulfill the before mentioned requirements.

As an interface language between application and delivery mechanism we propose to

use ViNo (see Section 4.2), even if the timely behavior is of secondary importance.

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 109

Application

Bio-Inspired Middleware

ReplicationContent Placement

Network

Neighbors

Requests Content

Replacement/Clean-upStorage Management

Hormone/Content DeliveryMessaging

Hormone ManagementContent Search

Application

Bio-Inspired Middleware

ReplicationContent Placement

Network

Neighbors

Requests Content

Replacement/Clean-upStorage Management

Hormone/Content DeliveryMessaging

Hormone ManagementContent Search

Application

Bio-Inspired Middleware

ReplicationContent Placement

Network

Neighbors

Requests Content

Replacement/Clean-upStorage Management

Hormone/Content DeliveryMessaging

Hormone ManagementContent Search

Application

Bio-Inspired Middleware

ReplicationContent Placement

Network

Neighbors

Requests Content

Replacement/Clean-upStorage Management

Hormone/Content DeliveryMessaging

Hormone ManagementContent Search

Application

Bio-Inspired Middleware

ReplicationContent Placement

Network

Neighbors

Requests Content

Replacement/Clean-upStorage Management
Hormone/Content

DeliveryMessaging

Hormone ManagementContent Search

Figure 7.1.: MASH Structure

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 110

The application can use the wildcards including metadata description for search.

The delivery returns the matching units. For sake of simplicity we define that a unit

substitutes a wildcard if all tags of the unit are equal to the required tags. If the

application requires other wildcard matching principles, this has to be configured

before system start up. For a real implementation the MASH can provide di↵erent

matching profiles that have to be selected by the application. The specific interfaces

to the application and the network are defined in Appendix B.

7.3. Case Study

In this section we apply the middleware to a real scenario. Our scenario is a multi-

media sharing system to be used at social events.

With the MASH the visitors are able to share their most interesting multimedia

content with other visitors during the event. The application provides a graphical

user interface that allows for the definition of requests and also to provide own con-

tent (composition and decomposition) [5]. A request is communicated to the MASH

by using ViNo. We assume an underlying ad-hoc wireless network, since users are

moving around the area of the event.

The case study has two goals. First, it shows the applicability of the MASH to a real

scenario. Second, we further use the scenario to make parameter recommendations for

other use cases than continuous data delivery. In particular, we evaluate typical unit

sizes from 56KB up to 512KB per request. One might say that the same results apply

for unit sizes as for chunk sizes of BitTorrent[110]. However, BitTorrent assumes full

download of large content of several hundred megabytes, whereas we assume first that

the consumed content is smaller and that a unit is played immediately after reception

(progressive download). Since consumers of videos are very sensible regarding delay,

this is a very good scenario to make recommendations for more general purposes if

using MASH.

7.3.1. Settings

We apply the content model as already described in Section 6.5. A client selects

tags out of a set of predefined tags and creates a request. The request is sequential

and matches a playback duration of 30s with a playback bitrate of 200 Kbit/s. So,

a unit size of 512KB results in 2 units per request. Additionally, a client adjust its

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 111

⌘0 ⌘ ↵ ✏ m c t
512KB 1.31 3.26 0.49 0.01 0.01 10% 0.08
256KB 1.23 2.99 0.45 0.03 0.01 10% 0.03
128KB 1.36 3.46 0.49 0.03 0.45 10% 0.58
56KB 1.98 0.32 0.41 0.53 0.59 10% 0.28

Table 7.1.: Parameter settings

taste to a currently watched unit with a probability of 10%. We further introduce a

deadline for each unit to be delivered, and we set it to 40ms, which is the desirable

delay between two frames. If a deadline is missed, no further hormones for that unit

are created to stop attracting content.

At system startup a network of 100 nodes is generated with a link speed of 1 Mbit/s.

We assume that the provided storage space of each node is strictly limited to 900MB.

So we set up the system with approximately 1% of a node’s provided storage is filled

with units (which follow a Zipf-like distribution regarding their tags). This ensures

the same storage size for all unit size scenarios. The number of units is unit size

dependent, where the following numbers of units are generated: 16100 for 56KB,

7100 for 128KB, 3600 for 256KB, 1800 for 512KB. In a scale-free network the 10

nodes with the highest number of connections create more units, which results in

17710 for 56KB, 7800 for 128KB, 3950 for 256KB, 1980 for 512KB. We use hormone-

ranking replication in combination with hormone clean-up and replacement. A unit

can be deleted if another unit with the same content is placed on a neighboring node.

We use the genetic algorithm as described in Section 6.3 and list the actual parameters

in Table 7.1. As input for the genetic algorithm a connected Erdős-Rényi random

graph of 100 nodes was chosen and a unit size of 512KB, the request playback length

is reduced to 10s (i.e. 2 units per request). The resulting parameter set obviously

prioritizes the 512KB scenario, but showed good results for all unit sizes. We therefore

took this parameter set as starting point for the other unit sizes and started the

genetic algorithm again. All parameter sets seem to be similar, except the 56KB

parameter set, because in this scenario the clean-up threshold is never reached.

7.3.2. Results

We evaluate the di↵erent file sizes regarding delay. We concentrate on the inter-

request delays and omit the delay of the first unit of a request (startup-delay), which

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 112

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

CD
F

delay in ms

56KB
128KB
256KB
512KB

Figure 7.2.: Inter-request delay distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

hi
t

ra
te

simtime in s

56KB
128KB
256KB
512KB

Figure 7.3.: Hit rate of di↵erent unit sizes developed over simulated time

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 113

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

5,0%

re
qu

es
t f

ai
le

d
ra

te

Figure 7.4.: Boxplot with 1.5 inter quantile whiskers of the deadline misses

is obviously unit size dependent. Furthermore, we analyze the rate of failed requests

and the hit rate.

First, we analyze the random network scenario and then compare it to the scale-free

scenario. In Figure 7.2 the inter-request delay is presented. It can be seen that the

512KB scenario shows the best delay, but the delay flattens, which indicates a high

delay jitter. The highest delay is experienced in the beginning of the simulation,

where the units are not placed optimally yet. The delay stabilizes within the first

100 to 200 seconds. For larger units, the placement takes longer than for small units,

and therefore the delay jitter is larger for 512KB and 256KB. The 128KB scenario

seems to be exactly between the 256KB and the 56KB scenarios. It shows the low

delay of the larger unit sizes and the low delay jitter of the small unit sizes. It

generates faster more replicas than in the 56KB scenario and results therefore in a

lower delay. Additionally, the migration threshold m of the 128KB scenario lets units

remain longer on nodes.

In Figure 7.3 the hit rate development during the simulation time is depicted. The

placement of the units evolves to a very high hit rate up to 90%, thus, in 90% of

the cases the units are already at the node, where they are requested. The 128KB

units even have a slightly higher hit rate than the 56KB units, because at startup

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 114

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

CD
F

delay in s

56KB
128KB
256KB
512KB

Figure 7.5.: Inter-request delay distribution

more replicas of the 128KB units are created. By the time the clean-up mechanism

balances the number of replicas and therefore also the hit rate remains stable. The

di↵erence of the 512KB units to the other unit sizes is during the first hundred

seconds more than 20%, which shows how long it actually takes to place the units.

Finally, we compare the scenarios regarding their failed request rate. A request is

failed if the deadline of each unit of the request is missed. In Figure 7.3.2 one can

see the results. All scenarios show the same median of failed requests, which is about

0.5%. However, the di↵erences can be seen in the variance of the results. Here, the

56KB scenario shows the best results, since only a few requests fail in the beginning.

The 256KB scenario has a large variance of failed requests, although having a low

delay. The reason is the clean-up mechanism, which deletes too many replicas at a

certain point of the simulation. This increases for a short time the deadline misses

and therefore also the variance of the request failed rate is changed. An adaptive

threshold for the clean-up should be considered.

In the following we evaluate the scale-free scenario with the same parameter sets as

before. In such a network some of the nodes have more workload to handle than

other nodes, but on the other hand provide twice storage space of normal nodes. We

call these nodes hubs. In such a system the unit size can have a large impact on its

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 115

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

hi
t

ra
te

simtime in s

56KB
128KB
256KB
512KB

Figure 7.6.: Hit rate of di↵erent unit sizes in a scale-free network

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

Figure 7.7.: Boxplot with 1.5 inter quartile whiskers of the deadline misses in a scale-
free network

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 116

performance. In Figure 7.5 it is shown that the inter request delay di↵ers from the

random network scenario. The performance increases if the additional storage space

on the hub nodes can be exploited to create more replicas and if these replicas are not

deleted by the clean-up mechanism. The 56KB scenario can take this characteristic

as an advantage and therefore its delay is the lowest. The other unit sizes reach a

similar delay, but the 256KB unit size does not lead to a high delay jitter such as in

the random network case. That the 56KB unit size performs best is also shown in

the hit rate comparison in Figure 7.6. The 56KB units lead to an hit rate increase

up to 95%, whereas the hit rate of the 512KB unit size decreases. The request failed

rate doubles for all unit sizes except for the 56KB units. The variance of the 512KB

units shows that there are request misses up to 3%. The 256KB units lead regarding

the median to a lower failed rate than the 128KB unit sizes, however, the variance of

the 256KB units is higher. The reason is that in the 128KB scenario more replicas

can be created on the hub nodes.

7.4. Summary and Discussion

In this chapter we introduced MASH, a middleware for content delivery, which targets

dynamic networks by providing robustness, adaptability and scalability. As a basis

we used our proposed hormone-based delivery algorithm and defined interfaces for

connecting the delivery to users and to the network. We conducted a case study

that shows the applicability of the middleware in a real scenario. We applied the

study to random and scale-free network topologies. The parameter sets collected in

this case study make MASH widely applicable. However, one of the most critical

parameters for content delivery, the chunk size, has to be application dependent.

For making recommendations on this parameter we used the performed case study

to evaluate typical unit sizes from 56KB to 512KB. It is noteworthy that MASH

works with all sizes and the placement of units stabilizes by the time. However,

performance di↵erences might have an impact on the quality of the application.

For scale-free network topologies chunk sizes of 56KB showed the best results. The

typical structure with high degree nodes supports the small chunk sizes. In a random

network 128KB chunk sizes perform better, because of longer travel paths and time

spent on the nodes. In multimedia applications it is further advisable to use smaller

units, because the user experiences larger gaps if large units are lost. In general

if the content to deliver is small, it is useful to use small chunk sizes. Another

point is the size of the metadata. In our case study metadata size is negligible and

CHAPTER 7. ARTIFICIAL HORMONE SYSTEM MIDDLEWARE 117

therefore the management e↵ort limited. If content with large metadata information

has to be delivered, the performance might be di↵erent and larger unit sizes are

recommendable.

8. Conclusions and Future Work

In the context of the Self-organizing Multimedia Architecture Project (SOMA), this

thesis covers delivery solutions for non-sequential media access in dynamic networks.

Non-sequential media access can be seen as a composition of di↵erent multimedia

parts (video units) that can be consumed in parallel, sequential or mixed parallel

and sequential. For the composition definition and for the description of the deliv-

ery of such compositions a formalism has been introduced, which is referred to as

VideoNotation (ViNo). It has been shown that this description language can be ap-

plied to many use cases, such as the definition of video presentation, the definition of

requests and the description of video delivery. ViNo is capable of describing provided

and required QoS and based on that to perform simple calculations for supporting

system designers in their decisions. This has been shown by comparing simulations

of content delivery network with ViNo calculations.

The delivery of non-sequential media brings new challenges. Typical caching policies

for videos are not valid anymore, because non-sequential media does not follow the

traditional sequential consumption pattern. It is not defined what is the beginning

and the end of non-sequential media. Therefore, new caching techniques were intro-

duced and evaluated. By assuming that some combinations of units are more popular

than others, the caching technique calculates a popularity rank of the current unit

and if this is popular enough it is cached. The hit rate and delay evaluations showed

the applicability of the popularity rank caching.

However, popularity is a global measure. If non-sequential media has to be delivered

in dynamic networks, the delivery has to be adaptive, robust and scalable and with-

out global control. Self-organizing algorithms have these attributes per definition and

therefore the main part of this thesis concentrates on self-organization. We applied

a typical design technique for self-organizing algorithms by abstracting phenomena

found in nature. The proposed approach is inspired by the human endocrine system.

It combines search and transport with the help of hormones. Hormones are created

and spread over the network indicating the demand for specific content. The content

119

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 120

routes through the network towards a higher hormone concentration, where the high-

est concentration is found at the requester. Negative feedback is implemented by the

evaporation of hormones and by deletion of hormones if content is available on the

current node. As a basis for the algorithm an unstructured overlay is assumed. The

nodes only know their neighbors and therefore all decisions are performed locally.

The local decisions force the placement of content according to the needs of the

client. This is shown by delay stabilization after a few seconds, if the system starts

with random placement. The algorithm is further QoS aware, since a node can decide

how many hormones should be spread to which neighbor, thus guiding the content

over the best path. If an intermediate node fails, the content may be routed over

alternative paths.

If a peer-to-peer overlay is assumed, the search space can get large and may have a bad

impact on the delay. Additionally, content may disappear if nodes fail. Therefore,

we investigated di↵erent replication techniques to leave replicas on the distribution

path. The replicas reduce the delay for future requests of intermediate path nodes.

One goal of the replication strategy was to e�ciently use the provided storage space.

We compared existing replication techniques with new techniques based on local pop-

ularity and hormone knowledge. We adapted the caching policy introduced before to

aggregate the hormone rank within the neighborhood. If the demand for the content

is high enough it will be replicated. However, the replica utilization in combination

to the delay was low, therefore clean-up mechanisms were applied to increase the

e�ciency of the replicas.

It has been shown that the algorithm helps to deliver and to place non-sequential

media e�ciently and QoS-aware in a dynamic system. In combination with replica-

tion and clean-up units place themselves in the right places. The algorithm considers

limited storage space, is adaptive in case of peer churns or other influences in the

network, works in random and scale-free network topologies and copes with di↵erent

user and request models.

In [3] we identified a number of requirements for a SOMA delivery sub-layer.

• A compliant delivery should be aware of non-sequential video access. It should

use this knowledge in order to make the delivery process e�cient.

• Since content is produced and consumed at di↵erent places by di↵erent clients

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 121

in a very dynamic way, it is common that nodes fail. The content, however,

still has to be accessible. Therefore, the delivery model has to be robust.

• Although the content is divided into small units, temporal constraints have still

to be fulfilled. Thus, the content has to be delivered according to a given QoS

By the application of our hormone-based algorithm all of these requirements are

met. We further integrated the delivery algorithm into a middleware (MASH) that

provides an interface to the application and the network and thus can be seen as the

distribution layer of SOMA. A case study on di↵erent unit sizes allows for recom-

mendations for the delivery of content di↵erent from videos and photos.

In conclusion this thesis showed that the characteristics of self-organizing algorithms

are advantageous for non-sequential media delivery. The simple rules implemented

by each node help to cope with the complexity of a dynamic scenario. However,

in systems where there is no need for adaptation to a new situation, self-organizing

mechanisms can be ine�cient. Beyond the advantages of self-organizing systems of

being robust, adaptive, and independent of global control, however, this could be

also disadvantageous [10]. Self-organizing systems are hard to control and often their

actions are hard to predict. A simple change from outside can cause either no e↵ects

or large e↵ects. Another problem is trust. Because of the unpredictability one would

never accept a self-organizing safety system, e.g., in a car.

From these considerations a number of research questions are matter of future work:

• To allow free usage of ViNo, we left the definition of its semantics open. How-

ever, to improve the usability of ViNo di↵erent patterns should be investigated

that can be used out of the box.

• We used di↵erent client models and modeled their taste and request generation

based on our assumptions. We want to further evaluate the interaction behavior

of the SOMA use cases to get new client models and evaluate their e↵ects on

the delivery.

• The Long Night of Research o↵ered the possibility of collecting consumption

data. Visitors provided videos and photos of booths and talks they were in-

terested in. We want to build a map of interestingness to conclude for future

events how di↵erent topics should be arranged to attract the most visitors.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 122

Additionally, we can find out where hot spots emerge and investigate their

e↵ects on the delivery.

• Parts of the algorithm are implemented for a real setting - see SOMA use

case World Games. However, a realization of a mobile application that uses

the middleware is still open. Although the visitors at our use cases were very

interested in providing and consuming content, an evaluation of acceptance is

part of future work.

• Another point is multimedia streaming. We assumed that the playback-bu↵er

has the size of one unit, i.e., the full unit has to be downloaded to be played.

Non-sequential media might require di↵erent bu↵er sizes than traditional mul-

timedia streaming scenarios.

• We consider a homogeneous network of nodes, except for the scale-free net-

work setup all nodes have the same role. One question is therefore, how the

self-organizing algorithm adapts to heterogeneous capacities and capabilities of

nodes. An overlay adaptation might be necessary.

• In the context of mobile systems energy consumption is an important topic.

One could compare the energy e�ciency of the proposed hormone-based algo-

rithm with similar algorithms.

• The middleware should be applied to a number of di↵erent case studies to

show its wide applicability. The middleware can be developed to a product

by implementing it as a mobile application, e.g., on platforms like Android,

iPhone, etc.

• Self-organizing algorithms are hard to apply because most of them need a

precise configuration to work. In this thesis a genetic algorithm is used to

find a fitting parameter set. However, there are some parameters for which

typical settings exist, e.g., thanks to parameter studies from other researchers.

To evaluate the e↵ects of these parameters visualization could help. For the

artificial hormone system such a visualization might contain the development of

hormone concentrations in a network and the corresponding unit movements.

• In this thesis artificial hormone systems were used for task allocation and con-

tent delivery. Artificial hormone systems promise to be a new niche of bio-

inspired algorithms. Although there are surveys on bio-inspired algorithms,

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 123

researchers that want to apply them have to rely on their experience to decide

which algorithm to choose.

9. List of Publications

1. A. Sobe and L. Böszörmenyi, “Towards self-organizing multimedia delivery,”

Tech. Rep. 1, Klagenfurt University, TR/ITEC/12/2.08, 2008

2. A. Sobe and L. Böszörmenyi, “Non-sequential Multimedia Caching,” in 2009

First International Conference on Advances in Multimedia (MMedia 2009),

(Colmar, France), pp. 158–161, IARIA/IEEE, July 2009

3. A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Towards a Self-organizing Repli-

cation Model for Non-sequential Media Access,” in Proceedings of the 2010

ACM workshop on Social, adaptive and personalized multimedia interaction

and access (SAPMIA 2010), (Florence, Italy), pp. 3–8, ACM, 2010

4. A. Sobe, L. Böszörmenyi, and M. Taschwer, “Video Notation (ViNo): A Formal-

ism for Describing and Evaluating Non-sequential Multimedia Access,” IARIA

International Journal on Advances in Software, vol. 3, no. 12, pp. 19–30, 2010

5. L. Böszörmenyi, M. del Fabro, M. Kogler, M. Lux, O. Marques, and A. Sobe,

“Innovative Directions in Self-organized Distributed Multimedia Systems,”Mul-

timedia Tools and Applications, Springer, vol. 51, no. 2, pp. 525–553, 2010

6. A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Replication for Bio-inspired De-

livery in Unstructured Peer-to-Peer Networks,” in Ninth Workshop on Intellin-

gent Solutions for Embedded Systems (WISES 2011), (Regensburg, Germany),

p. 6, IEEE, 2011

7. A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Storage Balancing in Self-

organizing Multimedia Delivery Systems,” arxiv e-print 1111.0242; TR/ ITEC/

01/ 2.13, p. 16, Nov. 2011

8. A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Artificial Hormone Systems as

Middleware for Content Delivery,” in International Workshop on Self-Organizing

Systems IWSOS 2012, submitted, p. 12, 2012

125

A. ViNo EBNF Specification

The following ViNo specification [1] was created by using ANTLR a LL(*) parser

generator [112]. Since special signs are not allowed in ANTLR, we used < Q for Q.

This EBNF has been extended to allow the usage wildcard units. These units are

marked by ’?’ and can be used like any other unit. Wildcard units can be specified

by applying sequential operators in combination with further characteristics, e.g.,

QoS, tags, etc..

SEQ : ’<’;

PAR : ’||’;

NUMBER : (’0’..’9’);

CHARS : (’a’..’z’|’A’..’Z’);

STRING : (CHARS)+;

VALUE : (NUMBER)+;

NAME : ’?’| CHARS (’.’|’-’|NUMBER|CHARS)*;

OP : ’=’|’>=’|’<=’|’<’|’>’;

spec : SEQ ’_’ (CHARS|STRING) OP (VALUE|NAME|NUMBER)

(’,’ (CHARS|STRING) OP (VALUE|NAME|NUMBER))*;

unit : NAME;

primitive : unit | group;

par : (PAR primitive)+;

seq : (SEQ primitive)+;

seqq : (spec primitive)+;

pargroup : ’[’ primitive par ’]’;

seqgroup : ’(’ primitive (seq|seqq) ’)’;

127

APPENDIX A. VINO EBNF SPECIFICATION 128

group : pargroup | seqgroup;

comp :(primitive (par | seq| seqq)?)* EOF;

B. Interface Specification

During the work on the use cases of SOMA the interfaces to the composition/decomposition

layer and the infrastructure layer have been defined.

Interface to the Application

In Appendix A the ViNo language specification has been defined. ViNo is the basis for

the interface to an application. The corresponding ViNo parser implementation translates

textual ViNo representations to Java and C# (Mono and Microsoft .Net).

To combine the delivery with the composition layer of SOMA, of a sample interface is

defined in the following. The implementation is done in C# and to support inter-process

communication .NET Remoting is used. The composition layer sends requests to the de-

livery layer and is notified if a requested unit is available for presentation, or if the request

has been completed.

Thus, two interfaces are needed. First, one that allows sending requests and one that

enables the callback. The middleware provides a method to receive a request. The client

has to pass its callback Interface. The client identification allows the middleware to support

several clients at once (proxy setting). In the following Figures B.1 and B.2 the interfaces

are depicted.

Figure B.1.: Interface for notifying the composition layer if a unit or a request is
completed

129

APPENDIX B. INTERFACE SPECIFICATION 130

Figure B.2.: Request interface at the middleware to be used by the composition layer

Figure B.3.: Node representation as interface to the network layer

Interface to the Network

The interface to the network has to provide the notion of a node. A node has to know its

neighbors and should be able to send units and hormones to the neighbors. Furthermore, a

notification mechanism is needed to indicate that a message arrived. The overlay building

mechanism and peer churn handling should be transparent to the middleware.

The implemented basic network interface is shown in Figure B.3. The send method passes

a Message object to a neighbor. A Message contains a list of hormones or a unit, i.e., the

path to a physical file. For QoS-based delivery the QoS weight has to be calculated and

stored in the collection (Dictionary) of neighbors. With the method get neighbors all

connections are updated and returned to the middleware. An event is thrown if a Message

arrived.

Bibliography

[1] A. Sobe, L. Böszörmenyi, and M. Taschwer, “Video Notation (ViNo): A Formalism

for Describing and Evaluating Non-sequential Multimedia Access,” IARIA Interna-

tional Journal on Advances in Software, vol. 3, no. 12, pp. 19–30, 2010.

[2] A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Towards a Self-organizing Replication

Model for Non-sequential Media Access,” in Proceedings of the 2010 ACM workshop

on Social, adaptive and personalized multimedia interaction and access (SAPMIA

2010), (Florence, Italy), pp. 3–8, ACM, 2010.

[3] L. Böszörmenyi, M. del Fabro, M. Kogler, M. Lux, O. Marques, and A. Sobe, “In-

novative Directions in Self-organized Distributed Multimedia Systems,” Multimedia

Tools and Applications, Springer, vol. 51, no. 2, pp. 525–553, 2010.

[4] M. del Fabro, K. Schö↵mann, and L. Böszörmenyi, “Instant Video Browsing: a

Tool for fast Non-sequential Hierarchical Video Browsing,” in USAB 2010, HCI in

Work and Learning, Life and Leisure, LNCS, vol. 6389/2010, (Klagenfurt, Austria),

pp. 443–446, Springer, 2010.

[5] M. del Fabro and L. Böszörmenyi, “The Vision of Crowds : Social Event Summariza-

tion Based on User-Generated Multimedia Content,” in ACM CHI 2011 Workshop

Data Collection By The People For The People, no. 1, (Vancouver, Canada), p. 3pp.,

ACM, 2011.

[6] A. Sobe and L. Böszörmenyi, “Non-sequential Multimedia Caching,” in 2009 First

International Conference on Advances in Multimedia (MMedia 2009), (Colmar,

France), pp. 158–161, IARIA/IEEE, July 2009.

[7] A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Replication for Bio-inspired Delivery

in Unstructured Peer-to-Peer Networks,” in Ninth Workshop on Intellingent Solutions

for Embedded Systems (WISES 2011), (Regensburg, Germany), p. 6, IEEE, 2011.

[8] A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Storage Balancing in Self-organizing

Multimedia Delivery Systems,” arxiv e-print 1111.0242; TR/ ITEC/ 01/ 2.13, p. 16,

Nov. 2011.

131

Bibliography 132

[9] D. Hausheer, P. Nikander, V. Fogliati, K. Wünstel, M. Callejo, S. Jorba, S. Spirou,

L. Ladid, W. Kleinwächter, B. Stiller, M. Behrmann, M. Boniface, C. Courcoubetis,

and L. Man-Sze, “Future Internet Socio-Economics - Challenges and Perspectives,”

in Towards the Future Internet, pp. 1–11, IOS Press, 2009.

[10] F. Heylighen, “The Science of Self-organization and Adaptivity,” in The Encyclopedia

of Life Support Systems, pp. 1–26, EOLSS.net, 2002.

[11] T. Klingberg and R. Manfredi, “Gnutella Protocol Specification 0.6: http://rfc-

gnutella.sourceforge.net,” 2002.

[12] F. Pletzer and B. Rinner, “Distributed Task Allocation for Visual Sensor Networks: A

Market-based Approach,” in Workshop on Socio-Economics Inspiring Self-Managed

Systems and Concepts (Seismyc), pp. 59–62, IEEE, 2010.

[13] M. del Fabro and L. Böszörmenyi, “Video Scene Detection Based On Recurring Mo-

tion Patterns,” in the Second International Conference on Advances in Multimedia,

MMedia 2010, June 2010, (Athens, Greece), IARIA/IEEE, 2010.

[14] S. Wieser and L. Böszörmenyi, “Flocks: Interest-Based Construction of Overlay

Networks,” in 2010 Second International Conferences on Advances in Multimedia

(MMedia 2010), (Athens, Greece), pp. 119–124, IARIA/IEEE, 2010.

[15] M. Lux, M. Kogler, and M. del Fabro, “Why Did You Take this Photo: A Study

on User Intentions in Digital Photo Productions,” in Proceedings of the 2010 ACM

workshop on Social, adaptive and personalized multimedia interaction and access

(SAPMIA 2010), (Florence, Italy), pp. 41–44, ACM, 2010.

[16] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-Peer Content Dis-

tribution Technologies,” ACM Computing Surveys, vol. 36, pp. 335–371, Dec. 2004.

[17] A. Tanenbaum and M. Van Steen, Distributed Systems: Principles and Paradigms.

Prentice Hall PTR, 2nd ed., 2006.

[18] J. Buford, H. Yu, and E. K. Lua, P2P Networking and Applications. Morgan Kauf-

mann, 2009.

[19] J. Li, “On Peer-to-Peer (P2P) Content Delivery,” in Peer-to-Peer Networking and

Applications, vol. 1, pp. 45–63, Springer, Jan. 2008.

[20] X. Li and J. Wu, “Searching Techniques in Peer-to-Peer Networks,” in Handbook of

Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-to-Peer Networks,

pp. 613–642, Auerbach Publications, 2006.

Bibliography 133

[21] D. Tsoumakos and N. Roussopoulos, “Analysis and Comparison of P2P Search Meth-

ods,” in Proceedings of the 1st international conference on Scalable information sys-

tems - InfoScale ’06, (New York, USA), pp. 25–es, ACM, 2006.

[22] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication in Unstruc-

tured Peer-to-Peer Networks,” in Proceedings of the 16th international conference on

Supercomputing, (New York, USA), pp. 84–95, ACM, 2002.

[23] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A Local Search Mechanism

for Peer-to-Peer Networks,” in Proceedings of the eleventh international conference on

Information and knowledge management - CIKM ’02, (New York, New York, USA),

p. 300, ACM, 2002.

[24] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-Peer Systems,” in Pro-

ceedings 22nd International Conference on Distributed Computing Systems (DCS),

pp. 23–32, IEEE Computer Society, 2002.

[25] B. Yang and H. Garcia-Molina, “E�cient Search in Peer-to-Peer Networks,” in Pro-

ceedings of the International Conference on Distributed Computing Systems (ICDCS),

(Vienna, Austria), IEEE, 2002.

[26] D. Tsoumakos and N. Roussopoulos, “Adaptive Probabilistic Search for Peer-to-Peer

Networks,” in Proceedings Third International Conference on Peer-to-Peer Comput-

ing (P2P), pp. 102–109, IEEE Computer Society, 2003.

[27] T. Lin, P. Lin, H. Wang, and C. Chen, “Dynamic Search Algorithm in Unstructured

Peer-to-Peer Networks,” IEEE Transactions on Parallel and Distributed Systems,

vol. 20, pp. 654–666, May 2009.

[28] V. Cholvi, P. Felber, and E. Biersack, “E�cient Search in Unstructured Peer-to-

Peer Networks,” European Transactions on Telecommunications, vol. 15, pp. 535–548,

Nov. 2004.

[29] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Split-

Stream: High-bandwidth Multicast in Cooperative Environments,” in Proceedings

of the nineteenth ACM symposium on Operating systems principles (SOSP), (New

York, USA), pp. 298–313, ACM, 2003.

[30] V. Padmanabhan and K. Sripanidkulchai, “The Case for Cooperative Networking,”

Peer-to-Peer Systems, pp. 178–190, 2002.

[31] K. Mayer-Patel, “Systems Challenges of Media Collectives Supporting Media Col-

lectives with Adaptive MDC,” Proceedings of the 15th international conference on

Multimedia - MULTIMEDIA ’07, p. 625, 2007.

Bibliography 134

[32] M. Schiely and P. Felber, “CROSSFLUX: An Architecture for Peer-to-Peer Medias

Streaming,” Emerging Communication, vol. 8, pp. 342–358, 2006.

[33] B. Biskupski, M. Schiely, P. Felber, and R. Meier, “Tree-based Analysis of Mesh

Overlays for Peer-to-Peer Streaming,” in Proc. of the 8th IFIP International confer-

ence on Distributed Applications and Interoperable Systems (DAIS ’08), pp. 126–139,

Springer, 2008.

[34] B. Cohen, “BitTorrent Protocol Specification (URL:

http://www.bittorrent.org/beps/bep 0003.html),” 2003.

[35] B. Li and H. Yin, “Peer-to-Peer Live Video Streaming on the Internet: Issues, Exist-

ing Approaches, and Challenges,” IEEE Communications Magazine, vol. 45, pp. 94–

99, June 2007.

[36] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing BitTorrent for

Supporting Streaming Applications,” in Proceedings 25TH IEEE International Con-

ference on Computer Communications, (INFOCOM)., pp. 1–6, IEEE, 2006.

[37] X. Hei, C. Liang, J. Liang, and Others, “Insights into PPLive: A Measurement Study

of a Large-Scale P2P IPTV System,” in International Word Wide Web Conference

(WWW). IPTV Workshop, (Edinburgh, Scotland), 2006.

[38] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, D. Zhang, and A. Ja↵e,

“Contracts: Practical Contribution Incentives for P2P Live Streaming,” in Proceed-

ings of the 7th USENIX conference on Networked systems design and implementation,

pp. 6–6, USENIX Association, 2010.

[39] A. Begen, T. Akgul, and M. Baugher, “Watching Video over the Web: Part 1:

Streaming Protocols,” Internet Computing, IEEE, vol. 15, no. 2, pp. 54–63, 2011.

[40] H. Schwarz and M. Wien, “The Scalable Video Coding Extension of the H.264/AVC

Standard,” IEEE Signal Processing Magazine, no. March, pp. 135–141, 2008.

[41] F. Heylighen and C. Gershenson, “The Meaning of Self-organization in Computing,”

in IEEE Intelligent Systems, pp. 72–75, 2003.

[42] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and

E. Bonabeau, Self-organization in Biological Systems. Princeton University Press,

2003.

[43] W. Ashby, “Principles of the Self-organizing System,” Principles of Self-organization,

vol. 6, no. 2000, pp. 255–278, 1962.

Bibliography 135

[44] W. Elmenreich, R. D’Souza, C. Bettstetter, H. de Meer, and H. D. Meer, “A Sur-

vey of Models and Design Methods for Self-organizing Networked Systems,” in Self-

Organizing Systems: 4th IFIP TC 6 International Workshop, IWSOS 2009, Zurich,

Switzerland, December 9-11, 2009, Proceedings, p. 37, Springer-Verlag New York Inc,

2009.

[45] O. Babaoglu, A. Montresor, T. Urnes, G. Canright, A. Deutsch, G. a. D. Caro,

F. Ducatelle, L. M. Gambardella, N. Ganguly, M. Jelasity, and R. Montemanni,

“Design Patterns from Biology for Distributed Computing,” ACM Transactions on

Autonomous and Adaptive Systems, vol. 1, pp. 26–66, Sept. 2006.

[46] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli, “Case Studies for Self-

organization in Computer Science,” Journal of Systems Architecture, vol. 52, pp. 443–

460, Aug. 2006.

[47] F. Dressler and O. B. Akan, “A Survey on Bio-Inspired Networking,” Computer

Networks, vol. 54, pp. 881–900, Apr. 2010.

[48] M. Dorigo, M. Birattari, and T. Stutzle, “Ant Colony Optimization,” IEEE Compu-

tational Intelligence Magazine, vol. 1, pp. 28–39, Nov. 2006.

[49] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a Colony

of Cooperating Agents.,” IEEE transactions on systems, man, and cybernetics. Part

B, Cybernetics, vol. 26, pp. 29–41, Jan. 1996.

[50] M. Dorigo and L. Gambardella, “Ant Colony System: A Cooperative Learning Ap-

proach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary

Computation, vol. 1, pp. 53–66, Apr. 1997.

[51] G. D. Caro, “AntNet: Distributed Stigmergetic Control for Communications Net-

works,” Journal of Artificial Intelligence Research, vol. 9, pp. 317–365, 1998.

[52] N. Franks and A. Sendova-Franks, “Brood Sorting by Ants: Distributing the Work-

load over the Work-surface,” Behavioral Ecology and Sociobiology, vol. 30, pp. 109–

123, Mar. 1992.

[53] C. Melhuish, O. Holland, and S. Hoddell, “Collective Sorting and Segregation in

Robots with Minimal Sensing,” in 5th International Conference on the Simulation of

Adaptive Behaviour, 1998.

[54] A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An Epidemic Model for Infor-

mation Di↵usion in MANETs,” Proceedings of the 5th ACM international workshop

on Modeling analysis and simulation of wireless and mobile systems - MSWiM ’02,

p. 54, 2002.

Bibliography 136

[55] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance Modeling of Epidemic

Routing,” Computer Networks, vol. 51, pp. 2867–2891, July 2007.

[56] J. Holland, Adaptation in Natural and Artificial Systems. The University of Michigan

Press, Ann Arbor, 1975.

[57] M. Srinivas and L. Patnaik, “Genetic Algorithms: A Survey,” Computer, vol. 27,

pp. 17–26, June 1994.

[58] O. Babaoglu, T. Binci, M. Jelasity, and A. Montresor, “Firefly-inspired Heartbeat

Synchronization in Overlay Networks,” in First International Conference on Self-

Adaptive and Self-Organizing Systems (SASO 2007), pp. 77–86, IEEE, July 2007.

[59] D. Dasgupta, “Advances in Artificial Immune Systems,” IEEE Computational Intel-

ligence Magazine, vol. 1, pp. 40–49, Nov. 2006.

[60] L. De Castro and F. Von Zuben, “Artificial Immune Systems: Part I - Basic Theory

and Applications,” tech. rep., Universidade Estadual de Campinas, 1999.

[61] A. Forestiero, C. Mastroianni, and G. Spezzano, “Building a Peer-to-peer Informa-

tion System in Grids via Self-organizing Agents,” 2007 2nd Bio-Inspired Models of

Network, Information and Computing Systems, vol. 6, pp. 125–140, Dec. 2007.

[62] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image

search,” in Computer Vision, 2009 IEEE 12th International Conference on, no. Iccv,

pp. 2130–2137, IEEE, 2009.

[63] A. Forestiero, C. Mastroianni, and G. Spezzano, “QoS-based Dissemination of Con-

tent in Grids,” Future Generation Computer Systems, vol. 24, pp. 235–244, Mar.

2008.

[64] E. Michlmayr, Ant algorithms for self-organization in social networks. PhD thesis,

Technical University Vienna, Austria, 2007.

[65] K.-H. Yang, C.-J. Wu, and J.-M. Ho, “AntSearch: An Ant Search Algorithm in

Unstructured Peer-to-Peer Networks,” 11th IEEE Symposium on Computers and

Communications (ISCC’06), no. 1, pp. 429–434, 2007.

[66] N. Ganguly, L. Brusch, and A. Deutsch, “Design and Analysis of a Bio-inspired

Search Algorithm for Peer-to-Peer Networks,” in Self-Star Properties in Complex

Information Systems, pp. 358–372, Springer, 2005.

[67] M. Lux, O. Marques, K. Schö↵mann, L. Böszörmenyi, and G. Lajtai, “A Novel

Tool for Summarization of Arthroscopic Videos,” Multimedia Tools and Applications,

vol. 46, pp. 521–544, Sept. 2009.

Bibliography 137

[68] D. Bulterman and L. Rutledge, SMIL 3.0: Flexible Multimedia for Web, Mobile

Devices and Daisy Talking Books. Springer, 2008.

[69] K. Nahrstedt and J. Jin, “QoS Specification Languages for Distributed Multimedia

Applications: A Survey and Taxonomy,” Multimedia, IEEE, vol. 11, pp. 74–87, July

2004.

[70] J. Altmann and P. Varaiya, “INDEX Project: User Support for Buying QoS with

Regard to User’s Preferences,” in Sixth International Workshop on Quality of Service

(IWQoS’98), pp. 101–104, IEEE, 1998.

[71] X. Gu, “An XML-based Quality of Service Enabling Language for the Web,” Journal

of Visual Languages & Computing, vol. 13, pp. 61–95, Feb. 2002.

[72] S. Frolund and J. Koistinen, “Qml: A Language for Quality of Service Specification,”

tech. rep., HP Technical Reports HPL-98-10, 1998.

[73] I. Foster and C. Kesselman, “The Globus Project: A Status report,” in Proceedings

Seventh Heterogeneous Computing Workshop (HCW’98), pp. 4–18, IEEE Comput.

Soc, 1995.

[74] S. Shenker, R. Braden, and D. Clark, “Integrated Services in the Internet Architec-

ture: An Overview,” IETF Request for Comments (RFC), vol. 1633, 1994.

[75] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture

for Di↵erentiated Service,” IETF Request for Comments (RFC), vol. 2475, 1998.

[76] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation

Protocol:(RSVP),” IETF Request for Comments (RFC), vol. 2205, 1997.

[77] G. S. Blair and J.-B. Stefani, Open Distributed Processing and Multimedia. Addison-

Wesley Longman Publishing Co., Inc., 1998.

[78] O. Lampl, E. Stellnberger, and L. Böszörményi, “Programming Language Con-

cepts for Multimedia Application Development,” Modular Programming Languages,

vol. 4228, pp. 23–36, 2006.

[79] O. Lampl and L. Böszörmenyi, “Adaptive Quality-Aware Programming with Declar-

ative QoS Constraints,” in IASTED International Conference on Internet and Mul-

timedia Systems and Applications (M. Roccetti, ed.), IASTED, 2008.

[80] J. Le Boudec and P. Thiran, “Network Calculus: A Theory of Deterministic Queuing

Systems for the Internet,” LNCS, vol. 2050, p. 274p., 2001.

Bibliography 138

[81] D. Pandit, Quality of Service Performance Analysis based on Network Calculus. PhD

thesis, Technische Universität Darmstadt, Germany, 2006.

[82] G. Pallis and A. Vakali, “Insight and Perspectives for Content Delivery Networks,”

Communications of the ACM, vol. 9, no. 1, pp. 101–106, 2006.

[83] A. Vakali and G. Pallis, “Content Delivery Networks: Status and Trends,” Internet

Computing, IEEE, vol. 7, no. 6, pp. 68–74, 2003.

[84] K. Stamos, G. Pallis, A. Vakali, D. Katsaros, A. Sidiropoulos, and Y. Manolopoulos,

“CDNsim: A Simulation Tool for Content Distribution Networks,” ACM Transac-

tions on Modeling and Computer Simulation (TOMACS), vol. 20, no. 2, pp. 1–40,

2010.

[85] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation (K. Wehrle,

M. Günes, and J. Gross, eds.), pp. 35–59, Springer Berlin / Heidelberg, 2010.

[86] S. Podlipnig and L. Böszörmenyi, “A Survey of Web Cache Replacement Strategies,”

ACM Computing Surveys, vol. 35, pp. 331–373, Dec. 2003.

[87] J. Yu, C. T. Chou, Z. Yang, X. Du, and T. Wang, “A Dynamic Caching Algorithm

based on Internal Popularity Distribution of Streaming Media,” Multimedia Systems,

vol. 12, pp. 135–149, July 2006.

[88] S. Chen, B. Shen, S. Wee, and X. Zhang, “Adaptive and Lazy Segmentation based

Proxy Caching for Streaming Media Delivery,” Proceedings of the 13th international

workshop on Network and operating systems support for digital audio and video -

NOSSDAV ’03, p. 22, 2003.

[89] L. Guo, S. Chen, Z. Xiao, X. Zhang, P. Ave, and F. Park, “DISC: Dynamic Interleaved

Segment Caching for Interactive Streaming,” 25th IEEE International Conference on

Distributed Computing Systems (ICDCS’05), pp. 763–772, 2005.

[90] Y. Zhao, D. L. Eager, and M. K. Vernon, “Scalable On-Demand Streaming of Non-

linear Media,” IEEE/ACM Transactions on Networking, vol. 15, pp. 1149–1162, Oct.

2007.

[91] C. Kofler and M. Lux, “Dynamic Presentation Adaptation based on User Intent

Classification,” in Proceedings of the seventeenth ACM international conference on

Multimedia, (New York, New York, USA), pp. 1117–1118, ACM, 2009.

[92] W. Tang, Y. Fu, and L. Cherkasova, “Medisyn: A Synthetic Streaming Media Service

Workload Generator,” in Proceedings of the 13th international workshop on Network

Bibliography 139

and operating systems support for digital audio and video - NOSSDAV ’03, pp. 12–21,

ACM, 2003.

[93] L. Rushton, The Endocrine System. Chelsea House, 2004.

[94] U. Brinkschulte, M. Pacher, and A. Von Renteln, “Towards an Artificial Hormone

System for Self-organizing Real-time Task Allocation,” Software Technologies for

Embedded and Ubiquitous Systems, pp. 339–347, 2007.

[95] L. Rong, “Multimedia Resource Replication Strategy for a Pervasive Peer-to-Peer

Environment,” Journal of Computers, vol. 3, pp. 9–15, Apr. 2008.

[96] K. Herrmann, “Self-organizing Replica Placement - A Case Study on Emergence,”

First International Conference on Self-Adaptive and Self-Organizing Systems (SASO

2007), pp. 13–22, July 2007.

[97] F. Heylighen, “Evolution, Selfishness and Cooperation,” Journal of Ideas, vol. 2,

no. 4, pp. 70–76, 1992.

[98] M. Satyanarayanan, V. Bahl, and R. Caceres, “The Case for VM-based Cloudlets in

Mobile Computing,” Pervasive Computing, 2009.

[99] A. Sobe, W. Elmenreich, and L. Böszörmenyi, “Artificial Hormone Systems as Mid-

dleware for Content Delivery,” in International Workshop on Self-Organizing Systems

IWSOS 2012, submitted, p. 12, 2012.

[100] W. Elmenreich and G. Klingler, “Genetic Evolution of a Neural Network for the

Autonomous Control of a Four-wheeled Robot,” in Sixth Mexican International Con-

ference on Artificial Intelligence, Special Session, pp. 396–406, IEEE, 2007.

[101] H. Yamamoto, D. Maruta, and Y. Oie, “Replication Methods for Load Balancing on

Distributed Storages in P2P Networks,” The 2005 Symposium on Applications and

the Internet, pp. 264–271, 2005.

[102] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A Distributed Anony-

mous Information Storage and Retrieval System,” in Designing Privacy Enhancing

Technologies, pp. 46–66, Springer, 2001.

[103] E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-to-Peer Net-

works,” in ACM SIGCOMM Computer Communication Review, vol. 32, pp. 177–190,

ACM, Oct. 2002.

[104] E. Leontiadis, V. Dimakopoulos, and E. Pitoura, “Creating and Maintaining Repli-

cas in Unstructured Peer-to-Peer Systems,” in Euro-Par 2006 Parallel Processing,

pp. 1015–1025, Springer, 2006.

Bibliography 140

[105] D. Eppstein and J. Wang, “A Steady State Model for Graph Power Laws,” Arxiv

e-print cs/0204001, 2002.

[106] A. Renteln and U. Brinkschulte, “The Artificial Hormone System - An Organic Mid-

dleware for Self-organizing Real-time Task Allocation,” in Organic Computing – A

Paradigm Shift for Complex Systems, ch. 4.4, pp. 369–384, Springer Berlin / Heidel-

berg, 2011.

[107] S. Balasubramaniam, D. Botvich, J. Mineraud, W. Donnelly, and N. Agoulmine,

“BiRSM: Bio-inspired Resource Self-management for all IP-networks,” Network,

IEEE, vol. 24, no. 3, pp. 20–25, 2010.

[108] G. Tempesti, F. Vannel, P. Mudry, and D. Mange, “A Novel Platform for Complex

Bio-inspired Architectures,” in IEEE Workshop on Evolvable and Adaptive Hardware,

2007. WEAH 2007., pp. 8–14, IEEE, 2007.

[109] P. Harsh, R. Chow, and R. Newman, “Gray Networking: A Step towards Next

Generation Computer Networks,” in Proceedings of the 2010 ACM Symposium on

Applied Computing, pp. 1323–1328, ACM, 2010.

[110] P. Marciniak, N. Liogkas, A. Legout, and E. Kohler, “Small is not Always Beautiful,”

in Proceedings of the 7th international conference on Peer-to-peer systems, pp. 9–9,

USENIX Association, 2008.

[111] A. Sobe and L. Böszörmenyi, “Towards self-organizing multimedia delivery,” Tech.

Rep. 1, Klagenfurt University, TR/ITEC/12/2.08, 2008.

[112] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages.

Pragmatic Bookshelf, 2007.

	List of Tables
	List of Figures
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Contributions
	Outline

	The Context: Self-Organizing Multimedia Architecture - SOMA
	Interfaces to the SOMA Layers
	Use Cases
	SOMA World Games
	Anniversary Festival at the Alpen-Adria University Klagenfurt - UniSommer
	The Long Night of Research - Die lange Nacht der Forschung

	Background
	Content Distribution in Peer-to-Peer Networks
	Basic Concepts
	Search in Unstructured Peer-to-Peer Networks
	Content Delivery Applications

	Self-Organization
	Applications of Bio-inspired Self-organization
	Specific Applications for Content Delivery

	Describing and Calculating the Multimedia Lifecycle
	Related Work
	Presentation
	Transport

	The Video Notation (ViNo)
	Simple examples
	Introducing QoS
	Simple Examples with QoS
	Introducing Wildcards

	Applicability of ViNo for Describing Content Delivery Networks
	Applicability of ViNo for Requests and Video Presentation
	Summary and Discussion

	Non-sequential Multimedia Caching
	Related Work
	Flexible Caching
	Evaluation
	Scenario 1: Two Competing User Groups
	Scenario 2: Two Groups, Two Replacement Strategies
	Scenario 3: Four Groups

	Summary and Discussion

	Bio-inspired Self-Organizing Multimedia Delivery
	Introduction and Related Work
	Algorithm Description
	Parameter Settings
	Application in a Proxy Network
	Evaluation Settings
	Results
	Discussion

	Replication Strategies for Bio-inspired Delivery in Peer-to-Peer Networks
	Existing Replication Strategies
	Proposed Replication Strategies
	Evaluation Settings
	Results
	Discussion

	Storage Balancing by Introducing Clean-up Mechanisms
	50 Nodes Random Network
	Impact of Peer Churn
	1,000 Nodes Scale-free Network
	Discussion

	Summary

	Artificial Hormone Systems as a Middleware for Content Delivery
	Related Work
	Artificial Hormone System Middleware - MASH
	Case Study
	Settings
	Results

	Summary and Discussion

	Conclusions and Future Work
	List of Publications
	ViNo EBNF Specification
	Interface Specification

