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Abstract

Unmanned aerial vehicles (UAVs) have been recently deployed in various civilian
applications such as environmental monitoring, aerial imagery, and surveillance.
Small-scale UAVs are of special interest for first responders since they can rather
easily provide bird’s eye view images of disaster areas. For such UAVs the number of
images and the positions where to capture them are predefined due to limitations in
flight time, communication bandwidth and local processing. The main goal of this
thesis is to develop methods for mosaicking of individual aerial images taken from
homogeneous or heterogeneous sensors on small-scale UAVs. The mosaicking of im-
ages taken in such scenarios are challenging as compared to panoramic construction
or other mosaicking methods such as satellite image mosaicking. When flying with
UAVs at a relatively low altitude (below 100m), non-planar objects on the ground
make the feature matching and image registration more di�cult. In addition, other
artifacts such as dynamic scene, lens distortion, and heterogeneous sensors makes
the mosaicking procedure more di�cult.

In this thesis we focus on producing orthorectified and incremental mosaics from
low-altitude aerial images. The orthorectification is important in order to preserve
the relative distances in the mosaic. On the other hand, the incremental mosaicking
means to update the real-time mosaic while individual images are being added.
We present two methods to construct such mosaics. The first method combines
the metadata of the images such as GPS positions and the UAV orientations with
the image processing techniques to construct the mosaic. The second method does
not exploit any metadata and only uses the images. By this method we find and
mitigate the sources of errors, in the process of incremental mosaicking, to achieve
an orthorectified mosaic. Unlike some other mosaicking approaches we avoid any
global optimization because of the high computational complexity. Furthermore,
the global optimization methods require all images at once while in our incremental
mosaicking we do not reposition any of the the previously mosaicked images.

Eventually we demonstrate some novel methods for multispectral aerial imagery
with thermal and visual (also referred to as RGB) cameras. We show how to register
the images of di↵erent spectrums and how to improve the quality of this interspectral
registration. The contribution of this part includes (i) the introduction of a feature
descriptor for robustly identifying correspondences in images of di↵erent spectrums,
(ii) the registration of image mosaics, and (iii) the registration based on depth maps.
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CHAPTER

1 Introduction

In recent years, images have become extremely important in our daily life. No matter
whether presenting in a conference, broadcasting news or writing on web-pages, it
bores people when there is no image to visualize the concepts. Although vision is
the most important sense of human in terms of range and speed, the brain is not
able to process all the visual information and details in a glance. Human eyes see a
continuous chain of events, while a captured image freezes a moment in time. Most
of us have heard the adage “a picture is worth a thousand words”. It means that
images can contain and convey complex concepts and information. They are used
to explain di↵erent phenomena or events, since we can study and process them later
in time. Thus, images are being used ubiquitously in di↵erent fields such as mobile
phones, medical (e.g., X-ray and microscopic images), remote sensing (e.g., aircraft
and satellite images), astronomy (e.g., telescope images), underwater photography,
art, and advertisement.

In this thesis we focus on a specific field of imagery, called aerial imagery, with
many applications such as management of natural disaster, monitoring the environ-
ment, and surveillance. The first aerial images were taken from balloons, however,
with advances of technology the aerial imagery techniques have exploited advanced
aircrafts. In our research, we use small-scale unmanned aerial vehicles (UAVs) to
take aerial images from low altitudes (below 100m). In this way, we provide a re-
cent information about a target area, with a relatively low cost. Capturing images
from low altitude provides more detailed information of a target area. Flying in low
altitudes, on the other hand, needs more individual images to cover a large area. In
case of multiple images, it is easier to extract the required data if we first combine
the information from di↵erent images. One way of combining these information is
to align or mosaick them together. Image mosaicking have been in practice since
long ago, before the invention of digital images [74]. Initially, it started by manually
aligning the images like pieces of a puzzle. The need for mosaicking (e.g., construct-
ing topographic maps) expanded over time with the advent of digital images and
satellite imagery. Eventually, more sophisticated and reliable mosaicking methods
came along to automatically produce image mosaics.

1
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In our work we survey the process of aerial image mosaicking and present di↵erent
methods to construct an accurate mosaic. This mosaic is comprised of individual
images taken from low-altitude UAVs with di↵erent sensors. It is intended to provide
the user the desired information regarding a target area. Google Maps 1 and Bing
Maps 2 are samples that provide similar mosaics, but from higher altitude and lower
temporal resolution.

1.1 Motivation

UAVs are widely used in the military domain. Advances in technology, material
science, and control engineering made the development of small-scale UAVs possible
and a↵ordable. Such small-scale UAVs with a total weight of approximately 1 kg
and a diameter of less than 1 m are getting prominent in civilian applications and
pose new research questions. These UAVs are equipped with sensors such as ac-
celerometers, gyroscopes, and barometers to stabilize the flight attitude and global
positioning system (GPS) receivers to obtain position information. Additionally,
UAVs can carry payloads such as visual and infrared (IR) cameras or other sensors.
Figure 1.1 shows such UAVs with di↵erent sensors.

Thus, UAVs enable us to obtain a bird’s eye view of an area which is helpful in
many applications such as environmental monitoring, surveillance and law enforce-
ment, border control, farmland and crop monitoring, object detection, construction
sites assessment, and disaster management [45, 43]. In such scenarios we can not
rely on a fixed infrastructure and therefore the available information (e.g., maps)
may no longer be valid. The overall goal, hence, is to provide a quick and ac-
curate overview of the a↵ected area, typically spanning hundreds of thousands of
square meters. This overview image is refined and updated over time and can be
augmented with additional information such as detected objects or the trajectory
of moving objects. When covering large areas at reasonable resolution from such
small-scale UAVs, the overview image needs to be generated from dozens of indi-
vidual images. Moreover, a number of UAVs equipped with cameras is employed
instead of a single UAV to cope with the stringent time constraints and the limited
flight time. The UAVs—flying at low altitudes of up to 100 m—provide images of
the target area which are mosaicked to an accurate overview image. This process is
refereed to as image mosaicking which is a noteworthy application of aerial imagery
for further information retrieval from the target area.

In this thesis we describe di↵erent methods and their trade-o↵s for generating
mosaics in order to surveil a certain area. We present di↵erent approaches which
allow to quickly mosaick the individual images and refine the alignment over time
as more images are available. Note that in sensitive cases of surveillance each image
might have critical details which need to be retained even after the image is placed

1
http://maps.google.com/

2
http://www.bing.com/maps/

http://maps.google.com/
http://www.bing.com/maps/
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(a) MD4-200 with a visual camera. (b) AscTec Pelican with an FLIR
Photon 640 thermal camera.

(c) AscTec Pelican
with an FLIR Tau-2
thermal camera.

Figure 1.1: Di↵erent UAVs used for acquiring thermal and visual images.

in a mosaic. In cases where UAVs are supposed to fly and take images without any
loop in their route (e.g., border control, road construction and object following) the
problem of mosaicking and orthorectification gets more challenging. In our methods
we cope with the limitations of small-scale UAVs. We also consider the multispectral
aerial imagery with heterogeneous sensors.

1.2 Problem statement

We aim to utilize small-scale UAVs to construct an overview image of a target
area with di↵erent sensors (visual or thermal cameras). To construct this overview
image we obtain a set of individual images based on a pre-planned mission. The
accuracy of the constructed overview image by mosaicking the individual images is
of significant importance. In most of the applications we need our mosaic to be
orthorectified (relative distances are preserved) and georeferenced (the location in
terms of coordinate systems is established). In this thesis we will explain how to
achieve such a result considering the following limitations: limited payload, limited
flight-time (since they are battery powered), limited flight altitude, and varying
weather condition. These limitations force UAVs to just take images at individual
predefined locations. This causes di↵erent angles of view looking to the same scene
which intensifies the problem of mosaicking with non-planar objects.

Considering the mentioned scenario we address and solve the following three
problems:

• How to exploit the metadata (data from inertial measurement unit (IMU) and
GPS) in mosaicking of aerial image taken by small UAVs? The metadata per
se are not su�cient for mosaicking. Therefore we explore the possibility of
exploiting the metadata and the image processing to improve the mosaicking.
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• How to produce orthorectified mosaics without using the metadata? We aim
to discover the sources of errors in image mosaicking and mitigate them. In
this approach we are not relying on image metadata or any global optimization
method. Yet, we aim to produce orthorectified mosaics even with low overlap
ratios and no loop(s) in the image sequences (cp. Section 2.3.3).

• How to perform a robust interspectral registration between images taken from
heterogeneous sensors (e.g., thermal and visual cameras)? The images from
such di↵erent types of sensors contain di↵erent characteristics and features.
We aim to find the common features and correspondences between these im-
ages in order to register them together.

1.3 Contribution

The main contribution of this thesis is three-fold:

• First, we show how to increase the orthorectification by using a hybrid method
of combining UAV metadata with image processing. Since the conventional
mosaicking approaches are computationally expensive, we identify their bot-
tlenecks and by exploiting the metadata such as GPS and IMU we reduce
their complexity. In our hybrid approach we use the GPS data to find the
adjacent images and their approximate positions in the final mosaic. We also
approximate the orientation of the camera by using the IMU data. This helps
us to rectify the images for final mosaicking. The contribution of this part has
been achieved mutually with my colleague Daniel Wischounig-Strucl and the
results are published in [79] and are also issued in a patent application [49].

• Second, we focus on image processing without considering the metadata. We
construct an incremental mosaic while preserving the orthorectification and
accuracy as much as possible. Most of the existing works handle the accumu-
lated error by global optimization (which tries to distribute the accumulated
error), local optimization, and blending algorithms to make the mosaic visu-
ally appealing. Instead, we study the sources of error, and we show how to
minimize these accumulated errors. This work is published in [77]. Exploit-
ing a reference plane to mitigate the mosaicking error is issued in a patent
application [48].

• The final contribution of these thesis concentrate on the registration of thermal
and visual images, which includes:

– proposition of a general method for lens distortion correction of the ther-
mal cameras (published in [76]),

– introduction of feature descriptors for robustly identifying correspon-
dences between images of di↵erent spectrums,
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– registration of image mosaics,

– registration based on depth maps.

In more detail, we introduce a robust feature along the edge and demonstrate
the improvement of identifying corresponding points based on this feature in
the general case. We further propose two methods to improve the registration
of low-altitude aerial images. The first method exploits visual and thermal
image mosaics, whereas the second method exploits the depth map of the
scene to perform feature extraction and registration.

We have implemented and tested all these approaches in our UAV system. Even-
tually, we perform a quantitative evaluation over di↵erent image registration or mo-
saicking methods. Additional minor contributions within the scope of our project is
published in [47, 46].

1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 provides the pre-
requisites to follow the rest of the thesis. This background explains the camera
architecture, image acquisition techniques, aerial imagery, image mosaicking tech-
niques and our multi-UAV project. In Chapter 3 the state of the art in the fields of
aerial image mosaicking and interspectral image registration and their di↵erences to
our work are presented. In Chapter 4 we propose two methods for mosaicking aerial
images from small-scale UAVs. This chapter explains how to promptly generate
orthorectified mosaics, with or without metadata. Chapter 5 focus on interspec-
tral registration and performing multispectral mosaicking of aerial images. In other
words, aerial images from di↵erent spectrums (i.e., visual and thermal images) are
registered together.

The results and discussion over the mentioned topics are presented in Chapter 6.
It includes the evaluations of our methods, sample results of our mosaicking and
registration methods, quantitative metrics, and expansion of the discussion. The
thesis is concluded by Chapter 7 which summarizes the goals, contributions, results,
and the future work.



CHAPTER

2 Background

In this thesis we assume that the readers have basic knowledge of image acquisition
and image processing. However, we summarize some concepts which will be used
in the context of the thesis. This chapter explains the concepts of optics and image
acquisition in a nutshell and describes the basics of image mosaicking in more details.

2.1 Cameras and digital imaging

In general, the electromagnetic waves emitted from an object make that object
visible to the sensor which is made for that type of radiation. Figure 2.1 shows
variations of di↵erent electromagnetic radiations. In the scope of our work we only
use images acquired from visible light or IR radiation.

The early images were produced by letting the light emitted from a scene to
pass through a hole (aperture) into a light-proof box or chamber. The rectilinear
propagation of the light creates the image of the scene on the opposite side of the box
or chamber. This is known as the basic description of a pinhole camera, also known
as camera obscura. Later it was perfected by a converging lens and the capability
of image recording, which led to what we know as conventional camera.

Cameras are convenient sensors which are made to capture and record a specific
range of electromagnetic radiation. For instance, a visual camera (also referred to
as RGB) records the visible spectrum shown in Figure 2.1. The output of such
recording is an images which represents a specific scene captured prior in time.
Image acquisition process is susceptible to errors similar to other measuring and
representing methods. Advances of technology introduced a numeric representation
of an image known as digital image. Since we have finite resources we represent
a digital image in a discrete way. This is done by using matrix I comprising the
intensity values in each element as image pixel. This matrix is two-dimensional
for grayscale images and three-dimensional for color images. In the form of pixel
representation, I(x, y) represents a grayscale digital image, while I(x, y, b) represents
a color image, where parameter b 2 {1, 2, 3} implies the red, green or blue band of

6
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Figure 2.1: Electromagnetic spectrum.

the visible light. More detailed descriptions of this topic can be found in digital
imaging textbooks such as [7, 68].

2.1.1 Infrared imaging

Visual images are the most popular type of images, because they represent the true
colors seen by the human eye. Nonetheless, IR images have their own advantages.
Since IR radiation has a longer wavelength in comparison with visible light (cp.
Figure 2.1), it can penetrate better in fog or smoke. Furthermore, the IR radiation
from heat makes it possible to sense human or any object with higher temperature
than environment, even at night. Infrared radiation range starts with the wavelength
of 0.7µm and extends up to 1mm, which is divided into three di↵erent categories:

• Near infrared (NIR), 0.78� 3µm

• Mid infrared (MIR), 3� 50µm

• Far infrared (FIR), 50� 1000µm

Aside from visual cameras in this thesis we utilize thermal cameras as our aerial
sensors, which operate in MIR. Two samples of small FLIR 1 thermal cameras are
shown in Figures 1.1(b) and 1.1(c). Thermal cameras on average have far less
resolution as compared to visual cameras. More detailed descriptions of this topic
can be found in infrared imaging textbooks such as [17, 70].

1
http://www.flir.com/

http://www.flir.com/
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2.1.2 Lens distortion

Unfortunately, all camera lenses produce a type of distortion in which straight lines
appear curved. Cameras with wider lens angles or field of view (FOV) show higher
radial distortion. Brown’s distortion model [6] formulates the radial and tangential
distortion including the principal point estimation. Let P = (x, y) be a normalized
point in image reference system, the undistorted point Pu, using a 6th order radial
and 2nd order tangential model can be acquired by
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2.2 Remote sensing

Remote sensing is the process of obtaining information about objects or phenomena
from a remote location without any physical contact. In modern usage, the term
is used in the concept of sensing the electromagnetic radiation from the objects on
earth through the sensors mounted on airborne or spaceborne platforms. Although
satellite imagery has covered a large portion of remote sensing, utilizing small-scale
UAVs for remote sensing is growing rapidly. UAVs, commonly known as drones, are
aircrafts without human pilot on board. Instead, they are controlled either remotely
by human pilots or autonomously by predefined planned missions. Based on their
structure, size and capabilities, they are classified to di↵erent groups. They can be
fixed-wing like airplanes or rotary-wing which can maneuver easier. Remote sensing
by UAV is cheaper and easier to deploy. It can facilitate many applications of remote
sensing such as surveillance, agricultural monitoring, construction monitoring, and
disaster management.

2.3 Image mosaicking

An image mosaic is an image which is built from a set of smaller individual images.
Image mosaicking consist of the steps necessary for constructing such mosaics and
includes:

1. Finding adjacent (neighboring) images. Figure 2.2 shows a sample of 3
images to be mosaicked and their adjacency graph. Each image represent a
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Figure 2.2: Sample three images to be mosaicked. In adjacency graph shown in red,
images are the vertices and adjacent images are connected with an edge.

vertex (node) of the graph and the vertices are connected by an edge if the
corresponding images are adjacent (have overlap). The adjacency of two image
can be determined in di↵erent ways such as using image processing tools or
using the metadata. For instance, two images can be tagged as adjacent if
their GPS data show a relative distance less than a threshold.

2. Finding the correspondences between images and registration. The
first step for registering images together is to find their correspondences. It can
be done by feature-based methods as shown in Figure 2.3(a) or by direct (pixel-
based) methods as shown in Figure 2.3(b). In Figure 2.3(c) the di↵erences of
the intensity values between two images in the overlapping area is visualized.
The brighter the color, the higher the deviation of the registration at those
areas is.

3. Aligning those images. In this step the transformations are calculated.
The transformations (e.g., translation, similarity, a�ne) are used to transform
all images into one coordinate system and align them. Figure 2.4(a) shows a
sample of image alignment.

4. Stitching them together. The final step is to stitch the aligned images and
construct a seamless mosaic. Figure 2.4(b) depicts such mosaic.

The direct method of registration considers all pixels and measures the correla-
tion between two image pixels. Although this method can be optimized (e.g., by
exploiting image pyramids), it usually performs slow. In addition, it is not robust
against scale, rotation, and in general a�ne transformation.

On the other hand, the feature-based alignment methods are faster and more
robust. Considering images I

n

, I
m

, feature-based and pairwise (considering only one
pair at a time) mosaicking is typically performed with the following steps:
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(a) Feature-based registration between images 1 and 2.

(b) Pixel-based registration between images 2 and
3. Di↵erent possible alignments are checked until
the maximum correlation is achieved.

(c) Visualizing the pixel intensity di↵er-
ences in the overlapping area between
images 2 and 3.

Figure 2.3: Finding the correspondences between images and registering them to-
gether.

(a) Aligning the images. (b) Stitching all images together.

Figure 2.4: Final mosaicking steps.
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• Correcting the internal geometric distortion. Brown’s distortion model
[6] can tackle the radial and tangential distortion including the principal point
estimation.

• Feature extraction and image registration. Di↵erent methods can be
used to extract features which is later used for image registration (e.g., by us-
ing scale-invariant feature transform (SIFT) [36], speeded up robust features
(SURF), or Harris corner[20]). Features extracted from the new unregistered
image are matched with the previously registered image. Traditionally cor-
respondences are determined by computing the similarity between descriptor
vectors associated to each point. Figures 2.5 to 2.8 show some samples of
feature matching by SIFT and SURF methods. As shown in these figures,
di↵erent parameters and thresholds a↵ect the position and total number of
the features. Assume x̃

n

and x̃
m

are sample feature points (in homogeneous
coordinates) respectively in images I

n

and I
m

. The feature matching function
R(x̃

n

, x̃
m

) shows the correspondences (matching pairs), which in this thesis
we refer to it as the registration function.

• Defining the projection model. A projection model defines how to project
an image of a three-dimensional scene onto a planar surface. Projection models
are explained in Section 2.3.2. In the scope of our work for simplicity we mainly
assume a planar model, since we mostly fly over areas with a dominating
ground plane. Clearly, there might be non-planar objects on the ground which
we will discuss in Section 4.2.2.

• Defining the appropriate transformation. Based on di↵erent scenarios
we can choose between di↵erent existing transformations such as translation,
similarity, or projective transformation (homography). The transformation (in
homogeneous coordinates) from the coordinates of image I

n

to the coordinates
of image I

m

is defined by H̃
I

n

,I

m

. H̃ is a 3 ⇥ 3 matrix which represents the
relative rotation, scale, translation and projection. By definition we have
H̃
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= H̃�1
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,I

n

.

• Removing outliers and calculating the transformation function. In
statistics, outliers (as opposed to inliers) are observations that are markedly
deviated from the rest of the data. In our research, an outlier is a feature point
with a deviation more than a threshold ✏ from its matched feature point after
transformation. RANdom SAmple Consensus (RANSAC) and least median
of squares (LMS) are usually used to remove the outliers and find the best
fitting transformation parameters. Each iteration of RANSAC estimates a
transformation while trying to find the maximum set of inliers as a subset of
all matched pair-points while the equation

kd
i

k = kH̃
I

n

,I

m

x̃
m

i

� x̃
n

i

k  ✏ (2.2)
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(a) Total number of matches = 35. (b) Number of inliers = 7.

Figure 2.5: Sample of SIFT feature matching with a peak-selection threshold 0.02.

(a) Total number of matches = 542. (b) Number of inliers = 55.

Figure 2.6: Sample of SIFT feature matching with a peak-selection threshold 0.0001.

holds true, where i is the index of the inlier, ✏ is a threshold which varies
based on application, d shows the disparity vector between points x̃

n

i

and
their estimated corresponding position and H̃ is the optimized transforma-
tion matrix to change the coordinates between two images. The iteration is
repeated for a predetermined number of cycles and the final solution is the
sample homography and set of the points with the largest number of inliers.

• Transformation and alignment. In this step we transform the new image
to the coordinates of previously registered image and perform the resampling
(by using interpolation). Note that sometimes image registration is also con-
sidered as a part of this step, because in some sources, image registration is
not only mapping the correspondences but also transforming all data into one
coordinate system.

• Mosaic construction. Finally, in order to build the incremental mosaic, we
merge the transformed image with the mosaic constructed so far.

2.3.1 Panorama vs. mosaic

Although the terms panorama and mosaic are used interchangeably, we define them
in di↵erent concepts. Panorama is an extension of FOV while mosaic is an extension
to point of view (POV). Figures 2.10 and 2.9 depict this concept.
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(a) Total number of matches = 105. (b) Number of inliers = 34.

Figure 2.7: Sample of SURF feature matching with a blob-response threshold 1.

(a) Total number of matches = 582. (b) Number of inliers = 134.

Figure 2.8: Sample of SURF feature matching with a blob-response threshold 0.001.

(a) Panorama is extension of FOV.
Camera rotates around its optical
center.

(b) A sample panoramic image.

Figure 2.9: Structure of image panorama.
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Figure 2.10: Structure of image mosaic as an extension to POV.

Most of panoramic images are taken in a way that the camera rotates around
its optical center. Since the camera does not change the location, all the images are
taken from the same point of view and it mitigates the problem of parallax. However
panoramic construction has it own challenges to find the appropriate projection
model based on the type of rotation of the camera, type of the scene and the intended
shape to warp the panorama to. On the other hand, mosaics are built by aligning
and stitching the images which are taken from di↵erent points of view (e.g., aerial
images taken by moving UAVs). Figure 2.4 also depicts a mosaic, since the aerial
images are taken from di↵erent UAV picture-points.

2.3.2 Projection models

The projection models define how to project an image of a three-dimensional scene
onto a two-dimensional (planar) surface. Converting di↵erent coordinate systems
needs an appropriate projection model based on application. In image mosaicking
we have usually a dominant ground plane of the earth and therefore we can use
a planar projection. Though, the most appropriate projection for aerial imagery
would be the parallel projection. Because, in this type of projection we have the
nadir-view for each individual object or pixel. In other words a parallel projection
is equivalent to a perspective projection with an infinite focal length. To get as
close as possible to a parallel projection, in real world, either we need a quite planar
ground or we need more number of picture-points from nadir-view.

Spherical projection is mainly used in cases such as panoramic image construc-
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tion when the camera rotates around its optical center. Warping the images into
spherical coordinate models appropriately this type of image acquisition. When in
a panoramic image the camera is rotated around it axis, the cylindrical projection
is the most appropriate type.

2.3.3 Loop in image sequence

As explained in Section 2.3, we assign an adjacency graph to a set of images, where
images are the vertices and images with overlap (adjacent images) are connected
with an edge. Now we define the term loop in the image sequence. We say there is
a loop in a set of images if there is a simple cycle in its adjacency graph. Likewise
we say there is no loop in the image sequence if its adjacency graph is a forest.
For instance the three images shown in Figure 2.2 have a short loop, since their
adjacency graph has a loop of length 3. Images with high overlap ratio usually have
such short loops. If the first image and the third image did not have any overlap
(were not adjacent), then it would be a loop-free sequence. In Chapter 6, we show
a sequence of images with a loop of length 37 (Figure 6.3).

2.3.4 Optimization methods and seamless mosaicking

Given a set of images with their inlier points in the pairwise overlapping area, global
alignment (global optimization) is the process of finding the appropriate parameters
and homographies which minimize the registration and disparity errors between all
pairs of images. The term is generalized to bundle adjustment [67] when the process
is done in three dimension. When the number of images (n) increases, the number
of distinct pairs (n(n � 1)/2) grows quadratically. Thus, minimizing the error by
considering all pairs of images becomes more complex. Heuristic methods are alter-
natives to simplify the optimization process. The global optimization methods are
useful when there is a loop in the image sequence. Without loop(s), the mosaicking
process reduces to a simple pairwise mosaicking and the global optimization does
not improve the image mosaicking at all.

Once the global optimization is done, the local optimization methods are per-
formed to reduce the local displacement and registration errors. Parallax removal
and deghosting are samples of local optimization. Image gain correction and ex-
trapolation are two samples of other methods for improving the visual quality of the
images.

2.4 Multi-UAV project

This work was performed as part of the project Collaborative Microdrones (cDrones) 2.
The basic idea of the project is to deploy multiple small-scale UAVs to support first

2
http://uav.aau.at/

http://uav.aau.at/
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Figure 2.11: System architecture of our multi-UAV project.

responders in disaster assessment and disaster management. In particular we use
commercially available quadrocopters since they are agile, easy to fly and stable in
the air due to their on-board sensors such as GPS and IMU. Each UAV is equipped
with a camera. Figure 2.11 describes the system architecture of the project.

The intended application can be sketched as follows: The operator first specifies
the areas to be observed on a digital map and defines the quality parameters for
each area [45]. Quality parameters include the spatial and temporal resolution of the
generated overview image, and the minimum and maximum flight altitude, among
others [43].

Based on the user’s input, the system generates plans for the individual UAVs
to cover the observation areas [44]. Therefore, the observation areas are partitioned
into smaller areas covered by a single picture taken from a UAV flying at a certain
height. The partitioning has to consider a certain overlap of neighboring images
which is required by the stitching process. Given a partitioning we can discretize
the continuous areas to be covered to a set of so-called picture-points. The picture-
points are placed in the center of each partition at the chosen height. The pictures
are taken with the camera pointing downwards (nadir-view).

The mission planner component generates routes for individual UAVs such that
each picture-point is visited taking into account the UAV’s resource limitations. The
images together with metadata (i.e., the position and orientation of the camera)
are transferred to the base-station during flight where the individual images are
stitched to an overview image. Figure 2.12 illustrates samples of mission planing
and aerial image acquisition within the scope of the project. The restricted areas
(e.g., buildings and dangerous areas) are marked as obstacles. After planning is
finished, the mission is executed. The UAVs take o↵ fully autonomously, fly the
specified routes and send the pictures to the ground station.

Mosaicking the individual images and constructing an overview image is the final
step of the project. In our research, we are not considering any type of global or
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(a) GUI showing new images over outdated back-
ground.
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(b) Sample mission showing re-
stricted areas and planned routes.

Figure 2.12: User interface and mission planing.

local optimization for image mosaicking. The main reason is to save the compu-
tational power and present a real-time incremental mosaic. Another reason is that
the global optimization needs enough pairwise overlap and presence of loop in the
image sequence, while these prerequisites may not hold in our scenarios. Local opti-
mization and other methods which aim to produce a visually appealing mosaic are
not also appreciated. Because these procedures sometime remove some information
which may be important for surveillance, detection or monitoring purposes.

Additionally, various applications within the scope of the project are introduced.
These applications include object detection and tracking, multi-UAV area coverage
to help the first responders for disaster management, construction site monitoring,
and advertising. Sample images, videos and demonstrations are available on the
project web-page 3.

3
http://uav.aau.at/

http://uav.aau.at/
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3 State of the art

It is important to understand the challenges of aerial image mosaicking which are
mostly determined by the type of the imagery. Important aspects to consider include
the following questions:

• Are the images taken from satellites or at lower altitudes?

• What type of sensors are used and what is the di↵erence of the wavelengths
between di↵erent electromagnetic bands?

• What is the noise level and resolution of the achieved images?

• Is image metadata available?

• Are the images taken at the same time?

• Are the images taken from same point of view?

• How large is the overlap between images?

• What is the dominant transformation between images (relative translation,
scale, rotation and perspective)?

• Is the scene flat and how to project a three-dimensional scene to an image?

• What are the quality of service (QoS) requirements (resolution, orthorectifi-
cation, georeferencing, state of visual appealing and being seamless, etc.)?

By considering the mentioned aspects, we present the related works in di↵erent fields
of aerial images mosaicking and interspectral image registration.

18
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3.1 Related work in aerial image mosaicking

Much research has been done in the area of mosaicking of aerial imagery and surveil-
lance over the past years. Many approaches have been proposed ranging from using
low-altitude imagery of stationary cameras and UAVs to higher altitudes imagery
captured from balloons, airplanes, and satellites. High-altitude imagery and on-
ground mosaicking such as panoramic image construction are not in our area of
interest since they deal with di↵erent challenges. In this thesis we are focused on
aerial images obtained from low-altitude UAVs. A huge number of aerial image
mosaicking approaches rely on medium to large UAVs. These UAVs have more ca-
pabilities in aspects of their computational power, data transmission rate, payload
capacity, accuracy of measurement devices, and flight time. Based on these pa-
rameters a variety of approaches are proposed for mosaicking of images taken from
UAVs.

There has been a breakthrough regarding the seamless mosaicking in past years
by exploiting robust feature extraction methods [82, 61, 3], depth maps [27, 8], 3D
reconstruction of the scene, image fusion, and many other approaches (e.g., [63, 57]).
However, few researchers have compared di↵erent mosaicking methods (e.g., [2]).
Figure 3.1 shows a sample stitching of five sequential images generated by a SURF
feature-based algorithm [3]. In this mosaic the images are aligned well but the
obvious drawback is that the transformation performed on the images leads to a
distortion in scales and relative distances. Such a traditional feature-based approach
is di�cult for our case because the generation of an orthorectified and georeferenced
image is hardly possible due to the scale and angle distortions as well as the error
propagation over multiple images. The non-planar surface is one of the main reasons
for this distortion, i.e., by using corresponding points at di↵erent elevation levels for
the image registration. In principle, it is possible to improve the mosaicking result
by using metadata, global alignment and bundle adjustment [57, 15, 58], but we need
to know either accurate IMU data of the UAV’s camera or accurate corresponding
feature pairs.

A challenge of low-altitude imagery and mosaicking for surveillance purposes is
finding an appropriate balance between seamless stitching and georeferencing un-
der consideration of processing time and other resources. Many approaches have
been proposed to tackle these problems. Examples include the wavelet-based stitch-
ing [80], image registering in binary domains [18], automatic mosaicking by 3D recon-
struction and epipolar geometry [35], exploiting known ground reference points for
distortion correction [42], IMU-based multispectral image correction [25], combin-
ing GPS, IMU and video sensors for distortion correction and georeferencing [5] and
perspective correction by projective transformation [81]. Some of these approaches
di↵er from ours in a sense that they consider higher altitude [5, 18, 35, 42, 81], while
others use di↵erent types of UAVs such as small fixed-wing aircrafts [32, 25, 23].
These aircrafts show less georeferencing accuracy caused by higher speed and de-
gree of tilting (higher amount of roll and pitch). Zhu et al. [84] performed an
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Figure 3.1: Mosaicking five images using SURF features. The path borders (red
lines) are supposed to be almost parallel. This type of error accumulates over mul-
tiple images if not compensated.

aerial imagery mosaicking without any 3D reconstruction or complex global regis-
tration. The di↵erence of their approach is that they used the video stream which
was taken from an airplane. Huang et al. [23] performed also a seamless feature-
based mosaicking using a small fixed-wing UAV, but no georeferencing assessment
was conducted. Roßmann and Rast [50] also used small-scale quadrocopters. Their
mosaicking results are seamless but lacking georeferencing. No details about the
mosaicking approach are presented.

Schultz et al. [55] use a digital elevation model to mosaic images taken from an
airplane. Hruska et al. [22] introduce an appropriate platform for small UAVs to
be able to provide high resolution and georeferenced images by exploiting GPS and
IMU. Afterwards they perform change detection by comparing di↵erent temporal
images of a target area. In their work they remark the importance of internal
geometric distortion correction but do not explain how it is used in mosaicking.
Zhou [83] uses the video stream from a UAV (weight 10 kg) equipped with di↵erential
GPS, with an error range of a few centimeters, and real-time transmitter of video for
further mosaicking purposes on the base-station. Xiang and Tian [75] also mention
the role of high precision internal geometric distortion correction in georeferenced
mosaic construction in addition to exploiting GPS and IMU. Agarwala et al. [1] cope
with the problem of producing multi-viewpoint panoramas of long, roughly planar
scenes but on the ground (e.g. the facades of buildings along a city street). They use
Markov Random Field optimization to construct a composite from arbitrarily shaped
regions of the source images, rather than building the panorama from strips of the
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source images. They also consider a higher pairwise overlap (with approximately 1m
distance between two picture-points) and the dominant plane of the photographed
scene is defined by the user input.

3.2 Related work in interspectral image registra-
tion

Registering images acquired from heterogeneous sensors is not as simple as homo-
geneous image registration. Consider that two sensors record di↵erent ranges of
electromagnetic spectrum from the same scene at the same time. Usually with
larger wavelength distance between these two electromagnetic bands, the similarity
between images decreases. In this case there is less mutual information and the prob-
ability of failure by conventional registration methods (cp. Section 2.3) increases.
There is no ultimate solution for the problem of interspectral registration, since
images from di↵erent spectrums may completely show di↵erent characteristics and
features. However, many successful interspectral registrations have been performed
by narrowing down the scope of the work (e.g., exploiting some prior knowledge
about the images).

A few researches have focused on jointly registering thermal and visual images
for the purpose of disaster site reconnaissance [52, 51]. Many early interspectral
registration techniques have been employed to register the di↵erent bands of satellite
images. Fonseca and Costa [14] propose an automatic satellite image registration
based on wavelets. They mainly focus on the registration of images taken from the
same sensor. Mahdi and Farag [37] propose a cooperative parallel optimization based
on a genetic algorithm to match the di↵erent bands of multispectral satellite images.
For time e�ciency, their method demands a parallel implementation of the genetic
algorithms and a supervisor process. Hong and Zhang [21] describe an automated
registration technique by combining the feature-based and area-based matching for
high resolution satellite images. They employ wavelet-based feature extraction and a
relaxation-based image matching technique to reduce the local distortions caused by
terrain relief. Although they manage to speed up the registration, they only consider
the registration of panchromatic with multispectral images which are both almost
in the same spectral range. H. Kim and M. Kim [29] focus mainly on the problem
of parallax removal caused by di↵erent viewpoints. They improve the registration
by correcting the terrain relief using a rigorous sensor model with precise sensor
parameters and ellipsoidal height information extracted from digital elevation model
(DEM). Kern and Pattichis [28] propose a robust interspectral registration using
mutual-information models. The shape of the mutual-information surface is related
to the frequency-domain characteristics of the imagery. Therefore, this mutual-
information is used to iteratively optimize a target function and find the appropriate
registration parameters. Lee [33] performs a coarse-to-fine multispectral satellite
image registration. He uses the SURF method for fast initial feature extraction and
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handling the possible di↵erences in scale and orientation. He then applies the Harris
operator to extract more features. However, Teke [65] suggests to use the SURF
feature extraction method to perform the whole process of the registration. Teke’s
method is simply taking advantage of the SURF parameters in cases when there are
no rotation (Upright-SURF) or no scale di↵erences (Scale-restricted SURF) between
two images.

Satellite remote sensing is not the only field where interspectral registration plays
a critical role. Medical imaging, object or face detection, surveillance and UAV
remote sensing are other fields which are rapidly growing and fusion of di↵erent
sensors become very handy. Schaefer et al. [53] perform multi-modal (thermal and
visual) medical image registration and overlay. By exploiting prior knowledge of the
human body they segment both images to find the matching body area. The authors
of [31, 69] also exploit prior knowledge about the human face to register and fuse
the thermal and visual face images. Istenic et al. [24] register the thermal and visual
images of the facades of the buildings. Since most of the buildings are comprised of
straight lines, they perform a hough transform over the images to extract those lines
as the mutual features. Likewise, Coiras et al. [9] and Segvic [71] rely on having
su�cient straight lines or structured polygons as a prerequisite for the registration.
Du et al. [10] present an algorithm for automatic registration of the NIR and visual
image sequences taken by a UAV. Since both cameras are mounted on a single UAV
(i.e., the relative orientation is fixed), the computation of the extrinsic parameters
of the cameras prior to flight is less expensive. Unlike all the mentioned works
which are based on individual images for registration, Joo et al. [26] perform the
registration by using sequence of the frames with moving objects. They first extract
the moving region of each image as the target area, then they perform the matching
and registration over that region. Despite the advantage of the method in some
aspects, obviously the method fails in absence of the moving objects.

3.3 Di↵erences to state of the art

In this section, we accent the di↵erences between our work and state of the art by
answering the questions from the beginning of this chapter.

In our work we focus on images taken from low-altitude (below 100m) UAVs. As
mentioned in Sections 1.2 and 2.4, we consider limitations such as inaccurate position
and orientation information, non-nadir-view (tilt of camera), and limited resources.
These limitations pose new challenges compared to other remote sensing scenarios
such as satellite and airplane imagery. In high-altitude imagery, more sophisticated
and accurate sensors (such as IMU, GPS, and laser scanners) are being used. In our
work, we do not merely rely on GPS and IMU data, because these metadata are
typically unreliable for small-scale UAVs. However, we consider both mosaicking
methods either with or without exploiting the metadata.

Our methods do not rely on any prior knowledge about the scene and are able to
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deal with images with completely di↵erent spatial resolution, temporal resolution,
scale, orientation, and a low amount of overlap. The scene is not necessarily flat
and may include non-planar objects. When flying with UAVs at a relatively low
altitude, non-planar objects on the ground make the feature matching and image
registration more di�cult. Taking images at individual predefined picture-points,
causes di↵erent angles of view looking to the same scene and this intensifies the
problem of non-planar objects. Yet, many other works for the purpose of real-time
monitoring of wide areas rely on a single point of view. Most of these works focus
on object detection and tracking by using moving cameras around a fixed center.
In these cases, algorithms for active tuning of intrinsic camera parameters [39] or
algorithms for background extraction and robust estimation of the displacements
between consecutive frames [38] are of high importance.

In our work, we use both visual and thermal cameras. By thermal we mean a mid-
wave infrared (MWIR) camera which is more challenging compared to NIR cameras.
The thermal images are analog which have higher noise ratio compared to digital
visual images. The thermal cameras that we use have 640⇥512 px spatial resolution.
The resolution of digital images vary between 300⇥ 400 px and 3000⇥ 4000 px. The
resource limitations bound the spatial resolution, although the higher resolution is
beneficial to most of the mosaicking projects. In some scenarios, we have to send the
images e�ciently (first the lowest resolution and, if possible, enhance it later) over
the limited wireless network [73]. The images are taken mainly at di↵erent points
in time. The temporal resolution range from seconds to years. The image overlap
ratio is in the whole range of 0� 100%.

Unlike most of the mosaicking methods we do not aim to produce a visually ap-
pealing mosaic. For instance, deghosting method (cp. Section 2.3.4) removes a ghost
object because of its local inconsistency (e.g., object moves or changes over time).
This improves the visual quality, while the removed information may be useful for
the goal of the project. Hence, in the scope of our work (e.g., disaster management,
surveillance, and overview map construction), we preserve the image integrity in the
final mosaic. Besides, the mosaics are orthorectified and georeferenced.

So far we have mentioned the di↵erences to state of the art by emphasizing on
underlying assumptions of aerial imagery. At this point we explain the di↵erences
in the approaches and the methods for mosaicking. In our research, we consider an
incremental system of mosaicking in which the images are added over the time and
the previously mosaicked images are not repositioned. That is another reason that
a global optimization is useless, since we do not have access to all images from the
beginning. We also explore the quality of a loop-independent mosaicking. In other
words, we study how to perform mosaicking is situations without any loop in the
image sequence. In case of multispectral mosaicking, we introduce a robust feature
descriptor for the purpose of interspectral registration. By this descriptor we extract
mutual scale- and rotation-invariant features between visual and thermal images. In
addition, we exploit the 3D structure of a scene to extract features which can be
used for interspectral registration.
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4 Orthorectified mosaicking
of UAV images

Orthorectification is the process of removing the e↵ects of image perspective and
distortion for the purpose of creating a geometrically correct image. An orthorec-
tified image has a uniform scale and the relative distances are preserved. It can
be used to measure the distances and angles accurately. Orthorectified images are
widely used in virtual maps such as Google Earth, Bing Maps, etc. In this sec-
tion we introduce some approaches to construct orthorectified mosaics from images
taken form small-scale UAVs. As mentioned earlier in Section 2.4, providing an
orthorectified mosaic in real time is the main goal for most of the scenarios in our
project. The global optimization methods (cp. Section 2.3.4) are computationally
expensive and they are only useful in presence of loops in the image sequence (cp.
Section 2.3.3). The nature of our project urges the images to be taken at individ-
ual picture-points which cause a lower overlap ratio between them. With a smaller
overlap ratio between images the global optimization methods become less e↵ective.
Furthermore, in cases of monitoring in which the image sequence is without loop(s)
(e.g., monitoring pipelines or straight roads), we may not obtain an orthorectified
and georeferenced mosaic due to the accumulation of the errors. In such scenarios we
first present a hybrid method which combines the metadata with image processing
to mosaick the images incrementally. Second we find the sources of error in pairwise
mosaicking process and mitigate them.

4.1 Incremental mosaicking with a hybrid approach

This approach combines metadata-based and image-based stitching methods in or-
der to overcome the challenges of low-altitude and small-scale UAV deployment such
as non-nadir-view, inaccurate sensor data, non-planar ground surfaces, and limited
computing and communication resources. For the generation of the overview image
we preserve georeferencing as much as possible, since this is an important require-
ment for many applications. Our mosaicking method has been implemented on our
UAV system and evaluated based on a quality metric.

24
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The idea is to first place the new images based on the cameras position and orien-
tation information on the already generated overview image. In the next step, we use
image-based methods to correct for inaccurate position and orientation information
and at the same time improve the visual appearance.

4.1.1 Problem definition and challenges

The major goal is to generate an overview image O
n

of the target area given a set
of n consecutive images {I

i

|i = 1 . . . n}. The overview image can be iteratively
constructed by

O
i

= Merge(O
i�1

, I 0
i

), (4.1)

where O
0

is an empty background (e.g., a zero matrix), I 0
i

is the transformed image
of I

i

by homography H̃
I

i

,I

0
i

and the Merge function combines the transformed image
to the overview image.

This mosaicking can be described as an optimization problem, in which we need
to find H̃

I

i

,I

0
i

in a way that it maximizes our quality function �(O
i

). This quality
function, based on our system scenario, balances the visual appearance and the geo-
referencing accuracy. While in some applications it is more important to have a
visually appealing overview image, other applications may require accurate georef-
erencing in the overview image. We use a quality function that is a combination of
the correlation between overlapping images and relative distances in the generated
overview image compared to the ground truth. This quality function is explained in
Section 6.1.1 in details.

In the following we summarize the most important challenges for solving our
problem using images from low-flying, small-scale UAVs:

Low-altitude and non-planar surface. When taking images from a low alti-
tude the assumption of a planar surface is no longer true. Objects such as buildings,
trees, and cars cause high perspective distortions in images. Without a common
ground plane, the matching of overlapping images requires depth information. Im-
age transformations exploiting correspondences of points at di↵erent elevations may
result in severe matching errors.

Non-nadir-view. Due to their light weight small-scale UAVs are vulnerable
to wind influences requiring high-dynamic control actions to achieve a stable flight
behavior. Even if the on-board camera position is actively compensated, a perfect
nadir-view of the images cannot be provided.

Inaccurate position and orientation information. The UAV’s auxiliary
sensors such as GPS, IMU, and altimeter are used to determine its position and ori-
entation. However, such auxiliary sensors in small-scale UAVs provide only limited
accuracy which is not comparable with larger aircrafts. As consequence, we can not
rely on accurate and reliable position, orientation and altitude data of the UAV.
Hence, we have to deal with this inaccuracy in the mosaicking process.

Resource limitations. In our application the resources such as computation
power and memory on-board the UAVs and also on the ground station are very
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limited. In disaster situations it is usually not possible to have a huge computing
infrastructure available. The base-station typically will consist of notebooks and
standard desktop PCs. But at the same time, we want to present the overview
image as quick as possible.

Incremental refinement. The individual images are taken from multiple UAVs
in an arbitrary order. An incremental approach is needed to present the user the
available image data as early as possible while the UAVs are still on their mission.
The more images are taken the better the overview image gets. This also means
that a new image may require to adjust the position of already processed images to
improve the overall quality.

4.1.2 Mosaicking approach

As described in Section 4.1.1 we must find the appropriate transformation H̃
I

i

,I

0
i

for
each image I

i

captured at a picture-point in order to solve our mosaicking prob-
lem. There are two basic approaches for computing these transformations: The
metadata-based approach exploits auxiliary sensor information to derive the position
and orientation of the camera which is then used to compute the transformations.
In this case we assume that auxiliary sensor data (i.e., GPS, IMU, altitude, and
time) is provided for each captured image. The image-based approach only exploits
image data to compute the transformations. In this section we first present the
basic approaches considering the challenges of small-scale UAVs and then describe
our hybrid approach which enhances metadata-based alignment with image-based
alignment. The presented approaches vary in their resource requirements and their
achieved results. Thus, they fit nicely to our problem domain.

Position-based alignment

A very simple and naive approach is to align the images based on the camera’s po-
sition. Hence, for image alignment the world coordinates of the camera are mapped
to corresponding pixel coordinates in the generated overview image. Defining the
origin of the overview image of the observed target area as o

world

= (lat, lon, alt)T

in world coordinates, all image coordinates are related to this origin on the local
tangent plane (LTP) by approximation to the earth model WGS84.

Given the camera’s position we compute the area covered by the picture in world
coordinates relative to the origin taking into account the camera’s intrinsic param-
eters. The relative world coordinates are directly related to the pixel coordinates
in the generated overview image. An example of the resulting overview image is
depicted in Figure 4.1(a) utilizing the placement function given in Equation 4.1.
The transformation H̃

I

i

,I

0
i

is reduced to a simple translation (with two degrees of
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freedom) for each image, i.e.,

H̃
I

i

,I

0
i

=

2

4
1 0 T

x

0 1 T
y

0 0 1

3

5 , (4.2)

where T
x

and T
y

show the translation components (displacement in x and y direc-
tions) in the coordinates of the overview image. In this approach we assume reason-
ably accurate position information and a nadir-view but do not take into account
the camera’s orientation. The scale di↵erences introduced by altitude di↵erences is
not compensated with this approach.

Position- and orientation-based alignment

A more advanced approach is to extend the naive position-based alignment by com-
pensating the camera’s orientation deviation (i.e., roll, pitch, yaw angles). The
placement function of the individual images to generate the overview image is the
same as in Equation 4.1. But instead of considering only translation, we use a
perspective transformation H̃

I

i

,I

0
i

with eight degrees of freedom, i.e.,

H̃
I

i

,I

0
i

=

2

4
h
11

h
12

h
13

h
21

h
22

h
23

h
31

h
32

1

3

5 . (4.3)

If we assume a nadir-view (i.e., zero roll and pitch angles) the transformation H̃
I

i

,I

0
i

is reduced to a similarity transformation with four degrees of freedom, i.e.,

H̃
I

i

,I

0
i

=

2

4
s cos(✓) �s sin(✓) T

x

s sin(✓) s cos(✓) T
y

0 0 1

3

5 , (4.4)

where the scalar s represents the scale and ✓ represents the rotation angle.

Image-based alignment

Image-based alignment can be categorized into (i) pixel-based, and (ii) feature-
based methods (cp. Section 2.3). The idea is to find transformations H̃

I

i

,I

0
i

and
consequently the position of each new image which maximizes the quality function

�(Merge(O
i�1

, I 0
i

)). (4.5)

This quality function can be constructed using pixel-based or feature-based ap-
proaches. The pixel-based approaches are computationally more expensive because
the quality function is computed from all pixels in the overlapping parts of two
images. Feature-based approaches try to reduce the computational e↵ort by first
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(a) Position-based alignment. (b) Position- and orientation-based
alignment.

(c) Image-based alignment using SIFT
features.

Figure 4.1: Results of basic image mosaicking approaches. The red triangle depicts
the distances to compute the spatial accuracy. The units are given in pixels.

extracting distinctive feature points and then match the feature points in overlap-
ping parts. Depending on the chosen degree of freedom the resulting transformation
ranges from a similarity transformation to a perspective transformation. The quality
function � will be explained later in this section and will be used for the evaluation
purposes in Chapter 6.

The benefit of this approach is that the generated overview image is visually
more appealing. On the other hand, the major disadvantages are that the search
space grows with the number of images to be mosaicked and the images may get
distorted (cp. Figure 3.1).
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Hybrid approach

By hybrid approach we propose a combination of metadata-based and image-based
methods. The idea is to first place the new images based on the camera’s position
and orientation information on the already generated overview image. In the next
step, we use image-based methods to correct for inaccurate position and orientation
information and at the same time improve the visual appearance. Since we already
know the approximate position of the image from the camera’s position we can
reduce the search space significantly. Thus, we split the transformation H̃

I

i

,I

0
i

into

two transformations whereas the H̃
pos,I

i

,I

0
i

represents the transformation based on the

camera’s position and orientation and H̃
img,I

i

,I

0
i

represents the transformation which
optimizes the alignment using the image-based method. We find the transformations
H̃

pos

and H̃
img

which maximize the quality function

�(Merge(O
i�1

, I 0
i

)),

where

8
<

:

I 0
i

= T (I
i

, H̃
pos,I

i

,I

0
i

, H̃
img,I

i

,I

0
i

)
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]}
�(O

n

) = ↵ · �
spat
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n

) + (1� ↵) · �
corr

(O
n

)
,

(4.6)

and T is a function which transforms image I
i

to image I 0
i

based on combination
of H̃

pos

with H̃
img

. The combining process is done by using simulated annealing
optimization method [30] and search for the target transformation which maximizes
our quality function �. Although simulated annealing usually performs slow, we
exploit the image pyramids to compensate for this flaw. The total quality function �
is a weighted combination of �

spat

and �
corr

(0  ↵  1). �
spat

represents the accuracy
of spatial distances while �

corr

shows the correlation in areas of overlapping images,
which is a measure for the seamlessness of the mosaicking. The weight ↵ is set based
on application. In other words, a large value for ↵ emphasizes on preserving the
relative distances, while a small value emphasizes on visual appealing of a mosaic.

We limit the search space to a reduced set of possible positions based on the
expected inaccuracy of position and orientation information. The total error range
in the hybrid approach defines the search space in order to find the estimated po-
sition. By estimating the appropriate image position we compensate for the total
error (GPS and camera tilting errors). Figure 4.2 helps to understand this concept
better. We search inside this possible error range to find the best estimated position
which maximizes our quality function best. In fact considering a case without any
GPS error and considering all views completely nadir, the hybrid algorithm will be
reduced to a simple position-based approach.

With this proposed approach we can generate an appealing overview image with-
out significant perspective distortions and at the same time maintain the relative
distances in the georeferenced overview image. Moreover, this approach can cope
with inaccurate position and orientation information of the camera and thus avoid
stitching disparities in the overview image.
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Figure 4.2: The red line shows the GPS error range (the real position is in this
range). The green line shows the tilting error range. The sum of this two errors give
us the total positioning error

4.2 Loop-independent mosaicking

In this section we survey thoroughly the problem of orthorectified and incremental
image mosaicking of a sequence of aerial images in absence of loop(s) (cp. Sec-
tion 2.3.3) in the image sequence. Since the metadata (acquired by IMU or GPS
sensors) in small-scale UAVs are not reliable, they are only used to mitigate the
mosaicking errors. Most of other approaches have been exploiting the global opti-
mization to distribute the accumulating error (cp. Section 2.3.4). Without loop in
the image sequences, no global optimization can be performed. However, the result-
ing mosaic can be improved if the errors are diminished by studying their sources.
Mostly the UAV aerial image mosaicking is a↵ected by the following three important
sources of error:

1. a weak homography as a result of using unleveled ground control points (GCPs)
for image registration,

2. a poor camera calibration and image rectification, and

3. deficiency of a well-defined projection model (cylindrical, planar, etc.) and
consequently an inappropriate transformation model.

We investigate the influences of using a depth map to find the features from the
same plane, geometric distortion correction and combining the appropriate choice
of projection and transformation model for the mosaicking. We further quantify
the improvement of orthorectification in mosaics by mitigating those errors and
demonstrate the improvement on real-world mosaics.
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4.2.1 Problem definition

Imagine a case where we want to generate an incremental mosaic of consecutive
images taken by UAVs without any loop, knowing the typical pairwise mosaicking
explained in Section 2.3. The challenge is how to preserve the orthorectification as
much as possible without exploiting any metadata (e.g., GPS or IMU). Consider
O

n

as the overview image of the target area given a set of n consecutive images
{I

i

|i = 1 . . . n}. The overview image can be iteratively constructed the same way as
explained in Equation 4.1.

This mosaicking can be described as an optimization problem, in which we need
to set the parameters in a way that it maximizes our orthorectification quality
function ⌘. One way of constructing such a quality function is using a metric which
evaluates the deformation of an image in di↵erent directions (horizontal, vertical
and diagonal) compared to a reference image,

⌘ =
4

P
4

i=1

max(l

i

,l

0
i

)

min(l

i

,l

0
i

)

, (4.7)

where l
i

are the length of width, height, and two diagonals of each target image,
and l0

i

are the length of width, height, and two diagonals of the reference image. In
fact, by this metric we calculate the harmonic mean of horizontal, vertical, and two
diagonal deviation ratios.

In our work we combine di↵erent existing pairwise stitching methods and com-
pare the resulting mosaics in terms of relative distances. Hence, we decide how to
set the parameters to obtain the optimal result. Note that although we narrowed
down the scope of our scenario, it is possible to simply merge the result with other
approaches such as using metadata or global optimization. Though the global opti-
mization methods are more e�cient when either there are more than two viewpoints
for most of the regions or in existence of a loop in the image sequences.

4.2.2 Major sources of error in pairwise mosaicking

In order to use our metric and compare di↵erent mosaics we need a known and
well-defined ground truth. For illustration we lined up a set of printed chess-board
patterns plus some non-planar objects that we put over and around those patterns
along the scene. Then we use a camera with fixed custom settings (e.g., in our
case focal length= 28mm, exposure time= 1/500 s) and take consecutive images
manually from top view with approximately 70% of overlap. By setting a low focal
length and consequently a wider angle of view we increase the overlap ratio which
leads to more matched feature and inliers. But note that in this case we also
encounter a higher geometric distortion. In this way we can simulate the imaging
from UAVs to a good extent.

We tested di↵erent existing algorithms and parameters that are used for im-
age mosaicking such as internal geometric distortion correction algorithms, feature
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extraction methods (SIFT, SURF, and Harris corner) with di↵erent parameters,
projection and transformations models, and manual feature selection. Among all,
there are three main parameters that a↵ect the pairwise aerial image mosaicking
more than the others namely

1. using unleveled features or GCPs for image registration,

2. internal geometric distortion, and

3. choice of projection and transformation model.

In the following we discuss these parameters and quantify them based on our
simulation data-set. In an ideal mosaic all chess-boards should have the same size
and shape (⌘ = 1).

Using unleveled features for image registration

Most of the existing mosaicking algorithms are originally built for panorama con-
struction which consider all images are taken almost from the same spot. In this case
the depth variation of the scene is not a problem (except small motions of camera
or failure to rotate the camera around its optical center, which is usually handled
by a parallax removal algorithm [64]). But in our aerial imagery scenario we take
the images from significantly di↵erent points of view. As a result, non-planar fea-
tures produce a disparity when matching features from corresponding images. The
disparity vector d of each transformed feature implies the vector from the expected
feature point toward the estimated feature point d = (x� x̂, y � ŷ).

These disparities impact the transformation estimation procedure as explained
in Equation 2.2. To reduce this e↵ect we need to extract the depth information to
extract only the features from the same elevation level which later will be used for
image homography. Some depth map construction algorithms use the whole image
information (pixels), but we just use the displacement of feature points to speed up
the process. Sample disparity vectors from a set of stereo images taken by a UAV
are shown in Figure 4.3(a). In order to visualize the corresponding information
from these disparity vectors we depict a rough depth map in Figure 4.3(b). The
false-color depth map image, DM, is constructed using
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where the last two equations represent the augmented vectors to convert the homo-
geneous coordinates back to the Cartesian coordinates; d represents the disparity
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(a) Disparity vectors shows the displacement
of transformed feature points from their ex-
pected positions.

(b) A rough depth map is depicted by inter-
polating the disparity vectors.

Figure 4.3: Depth information from stereo vision.

vector as displacement between point x
n

and its estimated position x̂
n

; i is the in-
dex of the inliers among all corresponding feature points. All color components are
normalized to fit in the image intensity range. In other words, the normalized x
and y components of the disparity vector are used as the red and blue components
of the depth map, and the green component of the depth map is the normalized
magnitude of the disparity vector. The missing pixels of the depth map image is
estimated by interpolation.

We remove features with magnitude of disparity vector kd
i

k larger than a thresh-
old ✏

d

. This threshold varies based on height variation of the objects on the ground
and flying altitude. In our scenario, we calculate this threshold (in pixels) as follows:

✏
d

=

⇠
maximum height variation

minimum flight altitude
⇥ 50

⇡
, (4.9)

where the height variation and the altitude are relative to the dominant ground plane
and ✏

d

� 1. For example, we set the threshold to 5 pixels if we have a maximum
height variation of 4m and the flight height of 40m. Note that at the first glance it
might look similar to setting the RANSAC threshold small, but in that case we might
also reject some inliers just because of their small displacement which slows down
or even fails the convergence of RANSAC, especially in cases with low amount of
overlap. Figure 4.4(f) shows a resulting mosaic of our test model without considering
the depth information while in Figure 4.4(e) we see the result with taking the depth
into account.
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(a) Mosaic of raw (distorted) images.

(b) Mosaic after 2nd order radial distortion correction.

(c) Mosaic after 4th order radial distortion correction.

(d) Mosaic after 4th order radial plus tangential distortion correction.

(e) Mosaic after 6th order radial plus tangential distortion correction.

(f) Mosaic after 6th order radial plus tangential distortion correction
but no depth consideration.

Figure 4.4: Resulting mosaic of 21 sequential images with di↵erent distortion cor-
rection and depth consideration parameters. Note that the ⌘ values under the first,
middle and last chess-board show the corresponding rectification quality.



CHAPTER 4. ORTHORECTIFIED MOSAICKING OF UAV IMAGES Page 35

Internal geometric distortion

In this section we present the influence of di↵erent orders of geometric distortion
correction (cp. Section 2.1.2) over the resulting mosaic of 21 consecutive images
obtained as described for our test scenario. Figures 4.4(a) to 4.4(e) depicts the
results under various distortion correction parameters (the depth information is al-
ready considered). The pairwise stitching is performed from left to right. This gives
us a visual understanding how much the polynomial orders in distortion correction
procedure a↵ects the mosaicking.

Projection and transformation model

As we mentioned earlier, the planar projection model is an appropriate model for
UAV imaging over a plane ground. Choosing the planar model demands a projective
transformation to correct the perspective distortion of images taken while the cam-
era was tilted. On the other hand, the projective transformation is quite susceptible
to errors and a small deviation will spread after a number of images. Substituting
the projective transformation with similarity transformation might help significantly
to produce a more orthorectified mosaic, especially in cases in which the first two
steps (considering the leveled features by using depth map and correcting the lens
distortion accurately) did not manage to restrain the error propagation. The only
drawback of using similarity transformation is that it might lead to small seams in
pairwise mosaicking which can be ignored if UAV has almost a nadir-view. In Fig-
ure 4.5(b) every other image is considered for mosaicking which reduces the overlap
ratio. As ⌘ values in Figures 4.5(a) and 4.5(c) show, using similarity transformation
reduces the deformation.

4.3 Summary on orthorectified mosaicking

In this chapter we first proposed a hybrid approach for mosaicking by combining
the metadata with image processing. With this method we improve the quality of
a mosaic by georeferencing and maintaining the orthorectification in incremental
mosaicking. In each step we initially pose the new image inside the overview image
based on the metadata information. Then we adjust and tune the position and
orientation of the image within a possible range by using the pairwise image mo-
saicking explained in Section 2.3. Sample results and the quality metric is presented
in Section 6.1.

We also have shown without using the metadata it is possible to improve the
quality of mosaicking. We studied the sources of errors in the process of pairwise and
loop-independent mosaicking. We discovered that using leveled features for homog-
raphy estimation, accurate lens distortion correction and choosing the appropriate
transformation and projection model produce more accurate and orthorectified mo-
saics. Mosaics in Figure 4.6 are constructed with this method. Both mosaics include
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(a) Using similarity in Figure 4.4(e).

(b) Taking every other image in Figure 4.4(e) which reduces the overlap ratio.

(c) Taking every other image in Figure 4.4(e) and using similarity.

Figure 4.5: Resulting mosaic of 21 sequential images with di↵erent transformation
model. ⌘ is the rectification quality.
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(a) Mosaic of 24 visual images. (b) Mosaic of 14 thermal images.

Figure 4.6: Loop-independent, incremental and pairwise mosaicking results.

loops in their image sequences, although no optimization method is used (mosaick-
ing is loop-independent). A seamless mosaic by this method means that the first
and the last image of the loop are aligned well, which is a result of orthorectified
mosaicking. A quantitative comparison and sample improved results are presented
in Section 6.2.
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5 Multispectral mosaicking

Over the years, the use of thermal cameras and capturing images at di↵erent spec-
tral bands has been expanded. Initially mainly used by military and government
agencies for surveillance and security, the thermal camera technology has now mi-
grated to many other exciting areas. A rapidly developing area for thermal cameras
is multispectral aerial imagery based on small UAVs (cp. Figures 1.1(b) and 1.1(c)).
A fundamental problem in multispectral imagery is the registration of the individual
images captured of the same scene but at di↵erent spectral bands. In case of fixed
sensors or camera settings, registration is easier because the intrinsic and extrinsic
parameters of the cameras can be determined. Hence the relative geometric mapping
between the cameras is known, and the transformation for the image alignment can
be computed based on purely geometric information. Registration becomes more
challenging when this relation is not known. In this case, information of the images
must be exploited, i.e., registration basically relies on the identification of robust
correspondences between individual images.

In this chapter we first propose a general method for the lens distortion correc-
tion of thermal cameras. Then we present three robust methods of feature extraction
for the purpose of interspectral image registration. Our first method extends exist-
ing robust feature extraction methods to make it wider applicable for interspectral
image registration. The other two methods extract additional features in presence
of multiple pairs of thermal and visual images. Both methods are advantageous for
the registration of low-altitude aerial images.

5.1 Thermal lens distortion correction

Compensating the lens distortion is a very important prerequisite for successful mul-
tispectral image processing. While the lens distortion correction is a well established
field in visual images (e.g., [4, 6]), it is mostly uncharted territory for thermal imag-
ing. The only thermal lens calibration method we could find was proposed by Rudol
and Doherty [51]. Their approach is hard to re-implement since they make use

38
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of specially built and not-readily available components. In contrast, the approach
proposed by us require only a printed calibration pattern and IR radiation (most
conveniently generated by a heat lamp).

Using methods already developed for the lens calibration of visual cameras might
not be useful for thermal cameras because:

• Patterns used for visual cameras do not emit any IR radiation per se, and
consequently may not be visible to thermal sensors,

• Lenses used for thermal cameras are di↵erent than ones used for visual imaging
(considering the shape, material, etc.).

In order to take advantage of the readily available calibration tools we adopt the
work-flow of the visual lens calibration method which consists of the following steps:

1. acquire a picture (or pictures) of a calibration pattern,

2. detect relevant features of the pattern, and

3. calculate intrinsic and extrinsic parameters of the lens based on features ex-
tracted in previous point, mathematical models of the lens and known prop-
erties of the used pattern (such as straight or parallel lines, right angles, etc.).

The calibration method presented here replaces the steps 1 and 2 that are tailored
to thermal imaging. For the remaining steps we can apply the visual lens calibra-
tion methods based on chess-board patterns (e.g., camera calibration toolbox for
matlab [4]).

5.1.1 Proposed method setup

In our method we aim to make the conventional chess-board pattern visible for the
thermal cameras by radiating the IR light over the pattern. In a chess-board pattern,
the black squares absorb more radiation and therefore heat up more than the white
squares. Hence, we are able to sense the reflected IR radiation by thermal sensors.
In first step we heat up a normal chess-board pattern printed on an A0 1 paper with
IR radiation. We use a IR radiating lamp which can be precisely controlled. The
main problem with the IR lamps is that their field of operation is not wide enough
to heat up the whole pattern uniformly. The reason that we have chosen such a big
pattern is that the minimum focus distance of our thermal lens is 2m (For detailed
description of the test rig see Section 5.1.4).

The following idea has been implemented to resolve that issue. A fixed thermal
camera takes series of images while the IR emitting lamp is moved across the pattern.
Then images are analyzed and the final image is assembled from pieces of those
input images with highest contrast. This procedure will be explained in detail in
the Section 5.1.2.

1dimensions: 841⇥ 1189mm (ISO 216)



CHAPTER 5. MULTISPECTRAL MOSAICKING Page 40

(a) A sample frame out of all set of frames. (b) The weight function over the correspond-
ing frame.

Figure 5.1: Extracting the target area.

5.1.2 Maximum contrast image assembly

The input of the assembly is series of images {I
i

|i = 1 . . . n} taken exactly from the
same area as explained in the Section 5.1.1. Figure 5.1(a) shows a sample frame of
thermal image while the pattern is partially heated up by IR radiation.

In order to extract the position of the squares in chess-board we perform the
following steps over the set of frames:

• First we need to crop a region of each frame which has the required information.
In other words, since the IR light heats up only a part of the pattern we need to
extract that specific area. As you can see in Figure 5.1(a) inside this target area
the chess-board pattern has more contrast and therefore it produces a more
clear edge at each square as compared to other regions. Since the bimodality
of the chess-board is a good characteristic of this area we use the metric [78]
which favors an image intensity histogram with two peaks where intra-peak
variance is small and inter-peak distance is large
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C ⇢ I is the subregion of I which we measure the bimodality over. µ
()

and
�
()

show the mean and the variance, respectively. We partition each image
into a grid. The size of the grid depends on the size of the black and white
squares. To avoid aliasing we obey the Nyquist sampling rate so that the
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(a) Sample integration of 92 individual frames. (b) The result after adaptive thresholding.

Figure 5.2: Constructed integration of frames.

minimum grid size is twice the size of each black or white square. Afterwards
we compute the metric over each subregion C

ij

of the grid. Figure 5.1(b) shows
the corresponding weight function which is constructed using
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• In the second step we integrate all frames together and construct a single frame
with maximum contrast, by

O =

P
i

I
i

· '(I
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'(I
i

)
. (5.3)

A sample integration of 92 individual frames is shown in Figure 5.2(a).

5.1.3 Relevant feature detection

Since the images obtained from the assembly described in the previous section are
not characterized by very sharp/precise edges, usual visual camera lens calibration
methods cannot be yet used. In this stage we describe the process of extracting
precise and robust features which can be fed to standard chess-board calibration
algorithms.

Using the integrated image from the previous step we continue with the following
operations:
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(a) The binary image after erosion. (b) The binary image after dilation.

Figure 5.3: Constructed integration of frames.

• Since we know an ideal chess-board pattern should be bimodal, we convert our
obtained result to a binary image. Due to the intense variation of the gain level
in thermal cameras and also because of the non-uniform IR heating ratio, the
constructed integration also has a non-uniform contrast in its di↵erent parts.
In this case it would be impossible to separate the black and white squares
from each other by using a global thresholding. Instead we utilize a quick
local adaptive thresholding algorithm proposed by Wellner [72]. The result of
thresholding is shown in Figure 5.2(b).

• We define the robust features out of the obtained chess-board pattern. In most
of the calibration methods features of choice are corners of the chess-board.
As mentioned before the thermal camera may sense the conducted heat from
black square to its adjacent pixels and therefore the size of the black squares
might become larger than its original size. To avoid this error we mark the
center of squares as our features. The center extraction is done by performing
first a dilation and erosion over the binary image in a way that we obtain a
explicitly distinguished blobs instead of black and white squares as can be seen
in Figure 5.3.

• To approximate the center of the squares we need to find the center of the
mass of blobs obtained in the previous step. Initially we need to distinguish
between individual blobs. In order to do that, we perform a simple contour
detection based on method proposed by Suzuki [62]. Desired output of this
step is a list of individual contours corresponding to all blobs which is fed to
the second step.

• Each contour, which is a list of points defining the outer border of the blob,
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(a) The convex hull around the eroded blobs. (b) The convex hull around the dilated blobs.

Figure 5.4: Bounding the blobs by convex hulls.

is processed separately. The smallest convex hulls that include all the points
of each contour are calculated. The samples of such convex hulls are shown in
Figure 5.4. In these samples, some rows/columns of squares on each margin
have been removed by our software to avoid the marginal errors.

• Finally, we calculate the centroid of each blob within its convex hull. Since all
pixels have the equal mass, the center of mass is calculated simply by averaging
over all pixel locations of each blob: (µ(X), µ(Y )). The projection of these
centers over the chess-board pattern is shown in Figure 5.5.

5.1.4 Detailed test rig setup

• Our test were carried out with a thermal camera of the type FLIR Photon
640 2. It is a MWIR camera operating in a 7.5 � 13.5µm wavelength range,
with a noise equivalent di↵erential temperature (NEdT) of < 50mK. The
resolution of the camera in analog PAL mode is 640 ⇥ 512 px. The images
have been acquired through analog interface of the camera, by a consumer
video grabber card.

• The camera lens is 25mm, f\1.4 with a FOV of 36� x 29�. It has a minimum
focus distance of 2m.

• The calibration pattern is a chess-board printed on an A0, 100 g/m2, matte
paper, for their superior radiation absorbance/emittance properties. It has

2
http://www.flir.com/cvs/cores/uncooled/products/photon640/

http://www.flir.com/cvs/cores/uncooled/products/photon640/
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(a) Centers of eroded squares. (b) Centers of dilated squares.

Figure 5.5: Square centers visualized as circles.

been attached to a flat wall. The size of the black and white squares are
38⇥ 38mm.

• Camera has been mounted on a tripod, 2.5m from a calibration pattern. It
was positioned so the pattern is fitted within the FOV in a way that the optical
axis is along the center of the pattern.

5.2 Interspectral registration

In this section we address the robust registration of visual and thermal images cap-
tured by di↵erent sensors. In this interspectral registration the alignment of the
images is typically based on the following steps: (i) extraction of features in the
individual images, (ii) matching the corresponding feature points and identifying
inliers between those feature points, and (iii) computing the transformations for
aligning the individual images. Figure 5.6 shows the schematic description of our
work flow for interspectral image registration. Images of di↵erent spectrums include
rather distinct information. In general, the larger the band di↵erence between the
captured images, the more likely the dissimilarity of the features increases. In this
section we focus on extracting robust features which can be used for the identifi-
cation of correspondences. We evaluate the feature point matching of thermal and
visual images in general cases and concentrate the registration evaluation on low-
altitude aerial images captured by small-scale UAVs. For such small-scale UAVs the
number of images and the positions where to capture them are predefined due to
limitations in flight time, communication bandwidth, and local processing [43]. In
our experience, these images put strong requirements on the registration because of
the strong variations in overlap, scale, rotation, point of view, and structure of the
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Figure 5.6: Interspectral registration pipeline, showing the work flow and di↵erent
methods we use.

scene.

5.2.1 Analysis of existing feature extraction methods

As previously described, feature extraction is a fundamental step for registration.
Although most of the conventional feature extraction methods (such as edge detec-
tion or corner detection) can be used to identify the mutual information between
visual and thermal images, constructing an appropriate descriptor for finding match-
ing pairs is not so simple. As an example, Figure 5.7 shows the utilization of the
Harris operator [20] over a pair of visual and thermal images. This figure demon-
strates the di↵erences in the corners extracted in the visual and thermal images.
Moreover, the correlation-based matching (or fine-tuning) of the corners fails be-
cause of the di↵erent intensity pattern and the rotation di↵erence between the two
images. In general, the task of matching and removing the outliers and finding the
homography becomes challenging in presence of relative rotation and scale between
images.
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(a) Harris corners in the visual image. (b) Harris corners in the thermal image.

Figure 5.7: The result of Harris operator over a pair of visual and thermal images.

A multi-scale Harris operator and some other scale-invariant, rotation-invariant,
illumination-invariant, and a�ne-invariant feature extraction and matching methods
have been proposed [19, 11, 40, 34] to cope with this limitation. However, the
methods with a well-defined robust local descriptor, such as SIFT and SURF, are
gaining more attention. Equation 5.4 describes how the SIFT method detects the
keypoint locations.

D(x, y, �) = (G
(

x, y, k�)�G(x, y, �)) ⇤ I(x, y),
where G(x, y, �) = 1

2⇧�

2 e
�(x2+y

2)

2�2
(5.4)

The di↵erence of the Gaussian is used as an approximation for the scale-normalized
Laplacian of Gaussian, �2r2G. The target keypoints are obtained by calculating
the di↵erences between di↵erent scales of Gaussian blur over each octave and then
by finding the local extrema based on comparing each sample point with its eight
neighbors in the current image and its nine neighbors in the scale above and below.
Since this method was initially designed for the registration of the images taken from
homogeneous sensors, it fails if the parameters are not adjusted in the appropriate
way. In other words, when comparing a pair of thermal and visual images taken
from the same scene, we may receive matching keypoints at di↵erent scale levels
even if the images have exactly the same scale ratio. By experiment, we realized
that a larger number of scales in the SIFT method improves the registration quality
but performs slower because more features needs to be extracted. A detailed study
regarding the scales of the SIFT method has been performed by Morel and Yu
[41]. If the initial octave is set to �1, feature extraction starts with a double-sized
image and consequently obtains more keypoints. In practice, however, the increased
image size does not a↵ect the registration quality because there are almost no very
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(a) SIFT features with 43 scale
levels and Euclidean distance
threshold 1.2 for matching.

(b) SURF features with sampling
step 1 and initial lobe 1.

(c) Alignment and fusion.

Figure 5.8: Registration of a thermal and visual pair by using SIFT and SURF.

small features in most of the low-resolution thermal images. Nevertheless, setting a
lower threshold for the multiplier coe�cient of the Euclidean distance of the feature
vectors is advantageous for calculating the matching pairs because the matching
requirements are not so strict in case of di↵erent sensors. Figure 5.8(a) shows an
example registration result using the SIFT feature extraction with 43 scale levels
and an Euclidean distance threshold of s = 1.2 for matching. The default parameter
setting does not lead to a successful registration.

SURF analyzes the di↵erent scale levels by up-scaling the box filter size rather
than iteratively reducing the image size. In this way the performance is highly
improved. The keypoint identification is based on an approximation of the deter-
minant of Hessian—instead of the Laplacian of Gaussian in the SIFT descriptor.
Figure 5.8(b) shows the same pair of images registered by SURF.

Both methods achieve approximately a 50% successful registration rate by ad-
justing their parameters based on each scenario. In our data-set we have tested dif-
ferent pairs of satellite images, images of human, images of the nature and surveil-
lance, images taken from UAVs, and images from facade of buildings. We show
detailed results of this data-set in Section 6.4.1. Also with the fixed parameters
(described in Figure 5.8) both methods achieve a similar performance. Figure 5.8(c)
shows a sample aligned and fused result. In all our experiments, we have used
RANSAC [12] and least median of squares (LMS) to remove the outliers (among
all matched pair-points) and calculate the appropriate similarity transformation be-
tween images.

5.2.2 Robust features along the edge (RFAE)

Despite the acceptable performance of SIFT and SURF for interspectral image reg-
istration, they have failed in some scenarios in which mutual patterns are clearly
available. Apparently both descriptors are inherently designed to emphasize the
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(a) Successful registration by ex-
tracting the features along the
edge.

(b) Overlaying the registration on
the original image pair.

(c) Alignment and fusion.

Figure 5.9: Registration of a thermal and visual pair by using scale-invariant features
along the edge.

patterns of the gradient changes around a specific keypoint. Note that in di↵er-
ent sensors, and more specifically considering thermal and visual sensors, we often
record a completely di↵erent intensity value for each specific target region. This
characteristic a↵ects the matching between the descriptors.

To overcome this problem some authors extract line structures from the images
to identify matching points [9, 71, 24]. The main limitation of these methods is
that they require a su�cient number of straight lines. Our approach extends this
idea and extracts the edge structures in the images. It uses then SIFT or SURF to
identify feature descriptors in the extracted binary edge image. This preserves the
scale-, rotation-, and illumination-invariant characteristics. In our experiments we
have used the Sobel operator as an approximation for the intensity gradient in the
images, i.e.,
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To extract the edges, the resulting image is converted to binary by a cuto↵ threshold.
Since the approximation of the gradient becomes bimodal, we reduce the sensitivity
of the descriptors to the change of gradient in a neighborhood. Finally, the SIFT
and SURF operate the di↵erence of Gaussian or determinant of Hessian over this
binary image. In case of SIFT the di↵erence of Gaussian along the edges is defined
as

D
E

(x, y, �) = (G(x, y, k�)�G(x, y, �)) ⇤B � S(I(x, y), ✓), (5.6)

where B is the binary operator based on the threshold ✓ and S is the Sobel operator
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constructed as explained in Equation 5.5. Figure 5.9 shows the registration of a
pair of thermal and visual images taken from a building facade using our method.
Note that the registration using merely the SIFT or SURF features failed. A re-
maining question is how to define the appropriate threshold, ✓, for the conversion
to the binary edge image. This threshold can be estimated by a statistical analysis
of di↵erent sensors or di↵erent image types. In our experiments, we extract the
edges with three di↵erent threshold values (✓ 2 {0.2, 0.4, 0.6}). We choose a pair
(one threshold for the thermal image and one threshold for the visual image) for
registration which maximizes our quality metric (cp. Section 6.4.1).

5.2.3 Interspectral registration by multiple thermal-visual
image pairs

So far we have considered the general case of registering thermal and visual images.
In this section we focus on registering low-altitude aerial images captured by small-
scale UAVs. Due to the payload limitations these aerial robots are typically not able
to carry both type of cameras. Figure 1.1 shows two UAVs with di↵erent thermal
camera models mounted. For these scenarios we improve the robustness of the
registration by two methods. The first method exploits entire visual and thermal
mosaics. The second method uses depth information to extract additional features
for the registration.

Registration of mosaics.

As previously discussed, the robust features along the edge (RFAE) method does
not always improve interspectral registration. Figure 5.10 shows an example where
RFAE did not improve the registration of two image pairs (i.e., I

V1 with I
T1 and I

V2

with I
T2). The reason is that there are insu�cient salient border lines and edges

which are visible in both image types. As indicated with green lines in Figure 5.10,
one pair (I

V1 with I
T1) can be weakly registered with 7 SURF feature matches.

Here we present a new method to exploit the image mosaics to strengthen the
interspectral registration. The mosaicking of aerial images taken from an identical
sensor is based on the homography H corresponding to the perspective transforma-
tion between each pair of images (cp. Section 2.3). Thus, pairwise registration can
be seen as an initial step for mosaicking. Registration within a specific spectrum
(identical sensor) is typically more robust and can be achieved even with a limited
pairwise overlap. As shown in Figure 5.10, the visual image I

V2 is transformed to the
coordinates of the visual image I

V1 by homography H̃
I

V2 ,IV1
. Similarly, the thermal

image I
T2 is transformed to the coordinates of the thermal image I

T1 by homography
H̃

I

T2 ,IT1
. By knowing one of the interspectral registration parameters, for example

the corresponding pair points between images I
V1 , IT1 shown as R(x̃

V1 , x̃T1), we can
calculate the corresponding pair points between images I

V2 , IT2 by
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Figure 5.10: Interspectral registration by using multiple pairs.

R(x̃
V2 , x̃T2) = R(H̃

I

V1 ,IV2
x̃
V2 , H̃I

T1 ,IT2
x̃
T2), (5.7)

where x̃, H̃ are the points and the homography in homogeneous coordinates, respec-
tively.

The interspectral registration between large mosaics can be done in two di↵erent
ways. The first way is to generalize the approach shown in Figure 5.10 over multiple
pairs. No matter if the registration fails in some pairs, the mosaics can be regis-
tered as long as some of the thermal and visual images are registered. However, this
method needs to consider all corresponding points, both within the homogeneous
and the heterogeneous image types, for the global optimization. In other words, we
need to find out the homographies which minimize the least mean squares (LMS)
of the disparity error between all pair points. This increases the complexity of the
homography estimation and the mosaic construction. Points that are considered in
multiple image pairs (when more than two images overlap) will be over-weighted
in this optimization. The knowledge of corresponding images, i.e., images with are
supposed to have some overlap, is also required for this method. The second way is
to first mosaic all the images from the same sensor and then register the two final
mosaics together. The thermal and visual mosaics shown in Figure 5.11(a) are reg-
istered with this approach. The drawback here is that handling large image mosaics
and large number of corresponding points is computationally expensive. In addi-
tion, errors in mosaicking homogeneous images a↵ect the interspectral registration
accuracy.
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(a) Registered correspondences. (b) Overlayed and fused images.

Figure 5.11: Interspectral registration of two mosaics each constructed from 25
individual images.

Exploiting the 3D structure

In scenarios where UAVs provide sparse pictures from di↵erent points of view, we
can exploit methods from stereo vision to extract depth information. In this section
we describe how depth information helps for the registration of thermal and visual
image mosaics. As explained in Section 4.2.2, we reveal depth information of a
scene by using stereo images of the same scene taken from di↵erent points. We first
calculate the disparity vectors from the displacement of all feature pairs in the two
stereo images. Figure 5.12(b) depicts these disparity vectors as the displacement
between two feature points after the alignment. Since this requires stereo images,
we can only obtain the disparity vectors over the overlapping area of images taken
from di↵erent positions. The magnitude of a disparity vector corresponds to the
relative height di↵erence of the corresponding feature point. The direction of the
vector determines whether the feature point is below or above the average altitude.
This helps us to construct a rough depth map as shown in Figure 5.12(c). The
false-color depth map image, DM, is constructed as explained in Section 4.2.2.

By extracting the depth map of the overlapping area in both thermal and visual
image pairs, we are able to register those images by registering their depth map.
Regardless of existence of any mutual pattern or similarity between visual and ther-
mal images, the depth information of a target scene provides a consistent mutual
information between two image types. An automatic registration based on SURF
features is shown by the green lines in Figure 5.12(c). We can generalize the depth
map construction from a pairwise depth map to a mosaic depth map. The disparity
vectors are constructed as explained in Equation 4.8.

An alternative to this 2D mosaicking is a 3D optimization by a full bundle
adjustment and estimating and reconstructing the 3D point positions [59, 16, 66].
The 3D models shown in Figure 5.13 are generated by such 3D reconstruction from
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(a) Visual and thermal im-
ages taken at initial UAV po-
sition.

(b) Disparity vectors de-
picted in the overlapping
area with images taken at a
di↵erent UAV position.

(c) Computed depth maps of the
overlap. The green lines indicate
the registration based on SURF.

Figure 5.12: Construction of the depth map from two image pairs by calculating the
disparity of the feature points. The upper row corresponds to the visual and the
lower row to the thermal images.
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(a) 3D model from 25 visual images. (b) 3D model from 25 thermal images.

Figure 5.13: 3D model reconstruction of the target area by using a full 3D bundle
adjustment.

the same 25 thermal and visual images as used in Figure 5.11. In general, a full
3D model reconstruction achieves higher accuracy with more images. Despite this
fact, we often face more challenging scenarios such as sparse images with limited
overlap. Furthermore, most of the thermal cameras mounted on small-scale UAVs
have a lower resolution as compared to visual cameras and provide an analog image.
These cameras often do not have a global shutter and correcting the lens distortion
is not straightforward (cp. Section 5.1). Hence, we typically see more noise in
the 3D models constructed from thermal images than from visual images. It is
therefore di�cult to register these 3D models which also may be di↵erent in scale
and orientation. Most of the existing point cloud or 3D-mesh registration methods
considers a high accuracy of the models [13, 56, 60].

Since we are more interested in 2D images and 2D registration, we perform a
mapping transformation to convert our 3D models to an equivalent depth map. We
first map all 3D points to a 2D plane ⇧, which is almost parallel to the ground
and the camera planes. This is performed by finding P

i⇧
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Figures 5.14(a) and 5.14(b) show such depth maps constructed from the visual
and thermal 3D models in Figure 5.13. The 3D reconstruction is much slower
compared to the fast depth map construction based on disparity. However, the depth
map images as results of 3D reconstruction methods are smoother. Figure 5.14(c)
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(a) Corr. depth map
of the Figure 5.13(a).

(b) Corr. depth map of
the Figure 5.13(b).

(c) Automatic registration done using the
SURF features.

Figure 5.14: Extraction of the depth maps from the 3D models of Figure 5.13.

depicts the automatic registration of the resulting depth maps by using the SURF
features. One obvious advantage of this registration method for thermal and visual
images is the robustness against the image di↵erences and spatial changes, since we
register the depth information and not the image details. This is especially useful
in cases with a high time di↵erence between two remote sensing activities, such as
registering images captured in di↵erent seasons of the year.
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6 Results and discussion

In this chapter we extend the discussion and evaluate di↵erent methods explained
in previous chapters. In Section 6.1 we construct a quality function to evaluate our
hybrid approach for incremental mosaicking. The results from this section are mu-
tual works with my colleague Daniel Wischounig-Strucl and are partially published
in [79, 49]. In Section 6.2 we depict some improvements as a result of mitigating
errors in loop-independent mosaicking. The result of this section is published in
[77]. In Section 6.3 we evaluate our method for lens distortion correction of a ther-
mal camera. We also show that in a real scenario by correcting the lens distortion
we improve the quality of the interspectral registration. The result of this section
is published in [76]. In Section 6.4 we extendedly evaluate the RFAE and other
methods for the purpose of interspectral registration.

6.1 Incremental mosaicking

In this section we compare the results of the hybrid mosaicking with the other three
approaches in Section 4.1.2. This evaluation mainly focuses on the geospatial accu-
racy and image correlation which are specified in our quality metric in Section 6.1.1.
We further compare the required computation times of all approaches which have
been implemented in Matlab on a standard PC running at 2.66GHz.

For the evaluation we use a rectangular round trip mission for which 40 picture-
points have been planned (cp. Figures 6.1, 6.2, and 6.3). Images have been captured
from a single UAV flying at an altitude of approximately 30m. The overlap among
adjacent images is about 60%. However, three images were lost in the real UAV
mission (cp. positions B, C, and D in Figure 6.3) which reduces the overlap in these
specific areas to approximately 20%. A subset of 8 images (cp. Figure 4.1) is used to
compare the mosaicking results of the three approaches explained in Section 4.1.2.

55
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6.1.1 Quality evaluation

To evaluate the quality of the di↵erent mosaicking approaches presented in Sec-
tion 4.1.2, the �

spat

and �
corr

in Equation 4.6 are defined as follows:

�
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=
1

m

mX

i=1

1

1 + |di� ˆ

d

i

d

i

|
,

�
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=
1

n

nX

i=1

1 + CC(Mask(O
i�1

, I 0
i

),Mask(I 0
i

, O
i�1

))

2
, (6.1)

CC(X, Y ) =
Covariance(X, Y )

�
X

�
Y

,

where Mask(I
n

, I
m

) represents a part of the image I
n

that has overlap with the
image I

m

, d
i

is the actual distance measured between two ground control points,
d̂
i

is the estimated distance extracted from overview image and m is the number
of considered distances. As it can be deduced from the Equations 4.6 and 6.1, �,
�
spat

and �
corr

are all in the range of (0, 1]. In our evaluations we set the weight ↵
used in Equation 4.6 to 0.5. As mentioned in Section 4.1.2, based on application,
a large value for ↵ emphasizes on preserving the relative distances, while a small
value emphasizes on visual appealing of a mosaic.

6.1.2 Metadata- and image-based approaches

In our evaluation the quality of mosaicking for the first 8 images of the round
trip mission �(O

8

) is calculated. In order to evaluate the spatial quality �
spat

(O
8

)
we chose a triangle, spanning significant points (P

3

, P
6

, P
11

) for simplified spatial
evaluation in the reduced set of eight images. In Table 6.1 the measured distances
(|P

3

P
6

|, |P
6

P
11

|, |P
3

P
11

|), the resulting spatial quality, and the correlation quality are
presented and combined according to Equation 6.1 to a final quality characteristic
to compare the presented approaches. As this table shows, the values of �

corr

(O
8

)
and �

spat

(O
8

) for the mosaics in Figure 4.1 are increasing by the complexity of the
approaches.

Metadata-based approaches (the position-based and the position- with orientation-
based approaches) are susceptible to the sensor errors. These errors appear as a
result of the either inaccurate sensors or weak time synchronization between image
and sensor. Such errors cause the misalignment in the mosaics. Figure 6.1 shows
the position-based mosaicking and Figure 6.2 shows the position- with orientation-
based mosaicking of our round mission. Image-based approaches, as presented in
Figure 4.1(c), show a good correlation quality. Although this approach usually
produces seamless mosaics, it su↵ers from the problem of error accumulation. In
Section 6.2 some results of this approach are shown.

The computation time for the whole set of 37 images in the scaled resolution
of 400 ⇥ 300 px took t

pos

= 17.31 s for position-based, t
pos+rot

= 18.33 s with rota-



CHAPTER 6. RESULTS AND DISCUSSION Page 57

Reference Pos Pos + Rot Image Hybrid

|P
3

P
6

| [m] 31 31.54 30.53 30.13 31.30
|P

6

P
11

| [m] 37.9 38.17 38.07 38.27 38.19
|P

3

P
11

| [m] 51.75 50.61 50.76 50.93 52.40
�
spat

(O
8

) [%] 95.3 96.1 94.6 96.9
�
corr

(O
8

) [%] 69.6 74.5 82.4 86.7
�(O

8

) [%] 82.4 85.3 88.5 91.8

Table 6.1: Spatial accuracy and quality parameters of the three basic and the hybrid
mosaicking approaches. The results are calculated for the first 8 images of the round
trip image sequence.

tion, and increased dramatically to t
image

= 459.20 s in the image-based alignment
approach.

6.1.3 Hybrid approach

We use the same round trip mission to evaluate the hybrid approach (Figure 6.3). As
shown we closed the loop of incremental mosaicking (without global optimization)
which implies that the mosaicking errors are not accumulated. The computation
time was t

hybrid

= 136.28 s for the whole set of images, which is significantly less
than the image-based approach. The total error range (cp. Figure 4.2) we have
used in Figure 6.3 is GPS

error

+ tan(↵)⇥ height ' 7m in real world distance at the
ground level, which is approximately equivalent to 1

4

of the image width.
In each image, the only point which has the complete orthogonal view is the

nadir point (the point directly under the camera). In a complete nadir-view, this
point is the center of the image. In other words, the camera looks to the border
of the image with the maximum angle and it only looks orthogonal to the nadir
point. It means that the orthogonality will be reduced when getting away from the
optical axis. Since we aim to get close to a parallel projection (cp. Section 2.3.2)
as much as possible, it gives us an idea that the middle parts of an images contain
more reliable data. Therefore, we make sure that the central part of each image
under each picture-point is not masked by the border parts of other images. It is
done by placing first a central cropped region of each newly added image over the
background, and then we place the rest of the image only if the background is empty.

In Figure 6.4, the upper graph shows the relation between correlation of the
overlapping parts of two adjacent images in di↵erent approaches. As we see the
hybrid approach shows the highest correlation as compared to the others; the lower
graph indicates the normalized distance between the estimated position and the
corresponding GPS position on each image in the hybrid approach (normalization
is done by dividing the distances by the image width). By comparing these two
graphs, we see that if the estimated position of an image is close to its indicated
GPS position it results in a higher correlation and vice versa.
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Figure 6.1: Mosaicking result of images taken from a round trip mission using the
position-based approach.
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Figure 6.2: Mosaicking result of images taken from a round trip mission using the
position- with orientation-based approach.
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Figure 6.3: Mosaicking result of images taken from a round trip mission using the
hybrid approach.
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Figure 6.4: The upper graph depicts a comparison between correlation of the over-
lapping parts of two adjacent images in di↵erent approaches; the lower graph shows
the normalized distance between the estimated position and the GPS position
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Figure 6.5: Comparison of orthorectification in di↵erent mosaics, built with di↵erent
methods.

6.2 Loop-independent mosaicking

In Section 4.2.1 we lined up a set of printed chess-board patterns to illustrate the
loop-independent mosaicking. Here we evaluate the a↵ect of di↵erent methods and
parameters on orthorectification in such mosaics. In our evaluation we consider the
lens distortion correction with di↵erent parameters, depth information of the scene,
and choice of the transformation model. In Figure 6.5 we use the metric ⌘ intro-
duce in Equation 5.1.2 to show how much each mentioned approach or parameter
a↵ects the mosaic integrity. As can be seen, using higher orders for radial distortion
correction, tangential distortion correction, considering the depth information, and
using similarity transformation, all are the factors which can hep us to persist the
correct size and preserve the relative distances along the incremental mosaicking
process. This a↵ect might not be sensed while using just a couple of images. As
shown in this chart, the di↵erence between the 4th order and the 6th order radial
distortion correction is not noticeable till the middle of the mosaic, but eventually
we can see that 6th order leads to a slightly better quality. It also implies that
similarity transformation significantly helps to mitigate the deformation error, since
it does not produce and propagate any projective deformation.

Now we show resulting mosaics of images taken by a UAV. In this scenario we
took 27 images with approximately 60% of pairwise overlap. Figure 6.6(a) depicts
the mosaicking result after 2nd order radial distortion correction without consider-
ing the depth information. Figures 6.6(b) and 6.6(c) show the corresponding mosaic
considering the loop-independent mosaicking with projective and similarity trans-
formations, respectively. As we expected and as shown in Figure 6.6, mitigating the
mentioned errors noticeably improves the orthorectification.
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(a) Images are mosaicked with 2nd order radial
distortion correction and without depth consider-
ation.

(b) Loop-independent mosaicking ap-
proach with projective transformation.

(c) Loop-independent mosaicking approach with similar-
ity transformation.

Figure 6.6: Resulting mosaic of 27 images taken from UAV.
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6.3 Thermal lens distortion correction

To evaluate our thermal lens distortion correction method we need to perform a
calibration over the outcome of our algorithm, which is a set of the extracted centers
of chess-board. To do that, we exploit the well-known MATLAB calibration toolbox
developed by Bouguet [4]. Most of the existing calibration methods are designed
in a way that they calculate the corners of chess-board pattern as their input. In
order to be able to feed the centers of the squares, we have modified the code in a
way that it accepts the output of our algorithm which is the centers of the squares.
Hence, we calculate the union of the centers of the squares obtained from erosion
and dilation (cp. Figure 5.5). The achieved result is shown in Figure 6.7(b). In
Figure 6.7(a) the automatic corner extraction result (from Bouguet toolbox) over
Figure 5.2(a) is depicted.

The main goal of our research was to construct a visible pattern for thermal
cameras which is possible to perform a calibration over it. This task is fulfilled since
the existing calibration toolbox accepts the previously mentioned corner extraction
result (cp. Figure 6.7(a)). The corresponding calibration result is shown in Table 6.2
and Figures 6.8(a) and 6.9(a).

The Brown distortion model (cp. Section 2.1.2) can tackle the radial and tan-
gential distortion which is used in our calibration method. But since the error
tolerance for 4th order of radial distortion and for all orders of tangential distor-
tion are higher than their distortion coe�cient so we ignore them. Hence, we only
consider the second order of the radial distortion including the principal point es-
timation which is usually su�cient for narrow fields of view such as our thermal
camera. The calibration result performed by our algorithm is depicted in Table 6.3
and Figures 6.8(b) and 6.9(b). By feeding our extracted center of squares to the
calibration toolbox with the same parameters we obtain a more accurate result in a
sense that the reprojection error depicted in Figures 6.9(a) has lower variance and
mean as compared to Figure 6.9(b). As shown in Tables 6.2 and 6.3, the average
pixel error (µ(X � X̂), µ(Y � Ŷ )) in our algorithm is (0.36, 0.38) while that of the
automatic corner detection method is (0.49, 0.51) .

Pixel error = (0.4872, 0.5059)
Focal length = (1297.26, 1402.28) +/- (559.4, 604.6)
Principal point = (291, 254.5) +/- (0, 0)
Skew = 0 +/- 0
Radial coe�cients = (-0.3906, 0, 0) +/- (0.3373, 0, 0)
Tangential coe�cients = (0, 0) +/- (0, 0)

Table 6.2: Intrinsic parameters and the error tolerance. Calibration with automatic
corner detection.

Here we show how lens distortion correction a↵ects a real case scenario. In our
practical scenario, we aim to register the thermal and visual aerial images taken
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(a) Set of corners extracted by MATLAB calibration toolbox [4].

(b) Set of all centers extracted by our algorithm.

Figure 6.7: We extract the centers of squares compared to conventional corner
detection.
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(a) Output of calibration with automatic corner detection.

(b) Output of calibration with our center of squares input.

Figure 6.8: Reprojection error over the pattern.
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(a) Output of calibration with automatic corner detection.

(b) Output of calibration with our center of squares input.

Figure 6.9: Chart of reprojection error.
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Pixel error = (0.3599, 0.3845)
Focal length = (1041.67, 1125.61) +/- (491.1, 530.6)
Principal point = (291, 254.5) +/- (0, 0)
Skew = 0 +/- 0
Radial coe�cients = (-0.2698, 0, 0) +/- (0.2548, 0, 0)
Tangential coe�cients = (0, 0) +/- (0, 0)

Table 6.3: Intrinsic parameters and the error tolerance. Calibration with our center
of squares input.

from the same scene by exploiting the UAVs shown in Figure 1.1. We made a test
set of some pairs of thermal and visual aerial images. This test set consists of both
distorted and undistorted aerial images. Hence, over each pair of images we extract
the matching feature points by using SURF feature extraction method. Afterwards
registration procedure is performed once over the raw (distorted) images and once
over the undistorted images (cp. Figure 6.10). Green lines in Figures 6.10(a) and
6.10(b) imply the corresponding feature points. In Figures 6.10(c) and 6.10(d) the
registered result after homography is shown.

To be able to quantify the improvement of the results after distortion correction,
we use the mean squared error (MSE) as our error function:

MSE(P̂ ) =

P
n

i=1

(p̂
i

� p
i

)2

n
(6.2)

where P = {p
i

|i = 1 . . . n} is the set of the feature points in the reference image,
P̂ is the estimation of P which is obtained by performing the homography over
the corresponding feature points of the transformed image and n is the number of
feature points. This error for raw images in Figure 6.10(a) with 38 feature points is
MSE = 13.2 , and for undistorted images in Figure 6.10(b) with 54 feature points
is MSE = 11.7. We have calculated this error with 5 di↵erent sets of feature points
over 4 pairs of images and the statistics shows that the MSE error when registering
the undistorted images is reduced in average by 17% as compared to raw image
registration. Obviously using a wider lens produces a higher barrel distortion and
consequently in that case the mean squared error will show a higher reduction after
distortion correction.

6.4 Evaluation of interspectral registration

This section presents further experimental results and discussions regarding inter-
spectral registration. First, we evaluate the performance of the RFAE wrt. other
feature extraction methods. Second, we extend the discussion on our registration
by exploiting images mosaics and depth maps.
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(a) Matched feature points over raw (dis-
torted) images.

(b) Matched feature points over undistorted
images.

(c) Registered after homography of raw (dis-
torted) images.

(d) Registered after homography of undis-
torted images.

Figure 6.10: Registration of thermal and visual aerial images.
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6.4.1 RFAE evaluation

The evaluation of the RFAE methods is based on a heterogeneous data-set of 84 im-
age pairs of di↵erent spectrums. This data-set consists of di↵erent types of satellite
images, images of human bodies, general surveillance images, and aerial images from
low-altitude UAVs. The resolution varies for visual images between 320 ⇥ 240 px
and 1047⇥ 1061 px and for thermal images between 320⇥ 240 px and 584⇥ 512 px.
The overlap ratio between the image pairs varies between 50% and 100%.

We performed the interspectral image registration over this data-set by using the
SIFT, SURF, upright SURF, RFAE, and combination of SURF with RFAE. We use
a quality metric to evaluate the extracted features for the purpose of interspectral
registration. Although the number of corresponding matched features (inliers) is
often used to evaluate a registration, it does not provide any information regarding
the distribution of the features. In our case, we use this number for acceptance or
rejection of a registration based on a threshold. If a registration is accepted, we
can use our quality metric to evaluate it or compare it with other methods. The
success level of a registration increases when there are su�cient inliers and they are
distributed uniformly over the image. Nevertheless, a metric which is modeling the
deviation from a uniform distribution (cp. [54]) is not appropriate for our case. Such
a metric is built to quantify the inhomogeneity, so that adding an additional point
very close to (or almost over) an existing point reduces the magnitude of the metric.
In our case the metric should not change if we add a point exactly over an existing
point and should increase slightly if we add a point in the close neighborhood of an
existing point.

Suppose that an optimal feature distribution for the purpose of registration de-
mands at least one feature point within a distance � to any random point in the
image, we construct our metric as follows:

Q =
|
S

i

{x : kx� f
i

k < �}|
A

⇥max
i,j

kf
i

� f
j

k
d

, (6.3)

where x represents a point in the image, f an inlier feature point in the image, i, j
indexes of the inliers, A the area of the image which is equivalent to the image reso-
lution in pixels and d is the length of the diagonal of the image. The denominators
of the fractions aim to normalize the metric to the range [0, 1]. The numerator of
the first fraction represents the aggregated area of all circles with radius � centered
at feature points. The first fraction of the equation implies the coverage ratio of
the feature points within the image. The remainder of the equation describes the
normalized maximum distance between all possible feature point pairs. This favors
the sparse features rather than dense features which is an important factor for a
successful registration. The Q value takes its maximum, 100%, if and only if we
have at least two features over the two far corners of the image and there exist no
circle with radius � in the image so that no feature falls inside this circle.

Defining the value for � depends on di↵erent factors such as image quality and



CHAPTER 6. RESULTS AND DISCUSSION Page 71

(a) SURF initial lobe=5, in-
liers=22, Q=17.2%.

(b) SURF initial lobe=3, in-
liers=38, Q=8%.

(c) SURF initial lobe=1, in-
liers=62, Q=16.6%.

Figure 6.11: Finding the initial lobe parameter of SURF which maximizes the Q
value.

(a) SIFT method with in-
liers=102 and Q=22%.

(b) SURF method with in-
liers=31 and Q=23%.

(c) RFAE method with in-
liers=59 and Q=12%.

Figure 6.12: Finding the best method which maximizes the Q value. In this example
SURF has a higher Q value.

resolution. In our experiments we set � to 10% of the image width. To accept
a registration we require at least 9 corresponding feature pairs (inliers). We set
the Q value to zero for unaccepted registrations. We use this metric primarily
for comparing di↵erent methods of registration over the same pair of images. For
instance we can use it to find the best parameters for an individual feature extraction
method (cp. Figure 6.11) or compare the registration performance between di↵erent
methods (cp. Figure 6.12). These samples also show that more inliers do not
necessarily result in an increase of the Q value. Note that the high Q value in
Figure 6.11(a) is caused by a single distant feature point, despite its small number
of inliers. The sparse feature distribution in Figure 6.12(b) achieves also a high Q
value with far less inliers than in Figure 6.12(a).

This metric is used to identify the best registration for each pair of images
and classify our data-set as shown in Table 6.4. The fractions shown in this table
represent the ratio of the number of acceptable registrations to all number of pairs.

Since satellite images have a relatively high overlap and are usually aligned quite
well with a fixed rotation and scale, most of the feature extraction methods suc-
ceed to register these images. In cases with high deviation between the spectral
bands (in which SURF, SIFT, and upright SURF failed with the registration), the
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SIFT SURF U-SURF RFAE SURF+
RFAE

Satellite (low deviation) 24/24 24/24 24/24 24/24 24/24
Satellite (high deviation) 7/10 6/10 9/10 10/10 10/10
Human 0/16 0/16 2/16 12/16 12/16
Surveillance 1/14 2/14 4/14 12/14 12/14
UAV 13/20 14/20 2/20 13/20 17/20

Table 6.4: Successful registration ratios based on di↵erent feature extraction meth-
ods and types of images.

SIFT SURF U-SURF RFAE SURF+
RFAE

Satellite (low deviation) 72% 66% 71% 53% 68%
Satellite (high deviation) 45% 41% 49% 46% 52%
Human 0% 0% 1% 8% 8%
Surveillance 1% 3% 4% 18% 19%
UAV 9% 10% 1% 6% 11%

Table 6.5: Average Q values based on di↵erent feature extraction methods and types
of images.

RFAE method performs better for registration as shown in Figure 6.13. The RFAE
method shows the highest improvement for images of human bodies. Figures 6.14
and 6.15 depict samples of such a thermal and visual image registration. A similar
improvement can be seen for surveillance scenarios (cp. Figures 6.16 and 6.17). The
interspectral registration of low-altitude aerial images has turned out to be more
challenging. Whenever a pair of aerial images does not share enough mutual edge
information, the RFAE method shows a weak performance. However, in cases with
more mutual edge information (such as Figures 6.18 and 6.19) RFAE dominated the
other methods. We therefore combine the RFAE and SURF methods and choose the
feature extraction method with highest Q value for the registration of the images.
As shown in the last column of Table 6.4, this combination chooses the best result
among RFAE and SURF and achieves the best overall registration performance.

Table 6.5 shows the average Q values of the same data-set used in Table 6.4.
Image pairs with high correlation (e.g., most of the satellite images) show a high Q
value. For these images, the success rate of registration by using standard methods
is higher rather than RFAE. The reason is that standard methods are able to ex-
tract more detailed features as compared to RFAE which extracts merely features
along the edges. On the other hand, RFAE is dominant when images have a high
deviation, yet with su�cient mutual edges. The average Q values corresponding
to images of surveillance or human bodies imply the better performance of RFAE.
Table 6.4 represents mainly the interspectral registration acceptance rate while Ta-
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(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 6.13: Registration between bands 1 and 4 of the Landsat satellite image of
Iowa state (image source: NASA/USGS).

(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 6.14: Registration of thermal and visual images of humans.

(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 6.15: Registration of thermal and visual images of humans.
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(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 6.16: Registration of thermal and visual surveillance images.

(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 6.17: Registration of thermal and visual surveillance images.

(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 6.18: Registration of thermal and visual aerial images taken from low-altitude
UAV.
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(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 6.19: Registration of thermal and visual aerial images taken from low-altitude
UAV.

ble 6.5 represents the quality of extracted features for the purpose of interspectral
registration.

6.4.2 Mosaic registration

As explained in Section 5.2.3, we are able to register two mosaics together as long
as there is one pair of images which can be registered among the entire mosaics.
Although we can achieve a higher accuracy when more image pairs are registered,
there is a general drawback in this type of registration. In most of the constructed
mosaics there is some deformation. This can be due to the di↵erent angles of imaging
from non-flat objects or some non-rigid transformations performed in mosaicking.
This problem in addition to the accumulated error near the borders sometime cause
some misalignment and ghosting e↵ect in the fusion as you can see in Figure 5.11(b).

6.4.3 Depth map registration

The registration of the depth map instead of the mutual image information is of-
ten more complex and computationally expensive (see Section 6.5 for more details).
However, there is an advantage in cases of aerial imagery with low temporal reso-
lution. To demonstrate this advantage we tested the registration of aerial images
taken in summer and winter (cp. Figure 5.11). The images taken in di↵erent sea-
sons exhibit a very high variation. As shown in Figure 6.20(a), images of the same
spectrum (i.e., thermal mosaic in winter and thermal mosaic in summer) can be
only weakly registered by standard SURF. On the other hand, by our depth map
method we were able to successfully register even the more complex scenario of in-
terspectral registration with a high image variation over time. Figure 6.20(b) shows
such successful registration between thermal winter mosaic and the visual summer
mosaic.
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(a) Weak registration between thermal mosaics
in summer and winter (same spectrum).

(b) Registration between thermal depth map in
winter and visual depth map in summer (inter-
spectral).

Figure 6.20: Registration between two set of aerial images taken in di↵erent seasons.

6.5 Further discussion

Although the methods and results for aerial image mosaicking presented in this thesis
are distinct and independent, it is possible to combine them together. The steps
explained in loop-independent mosaicking are applicable to all mosaicking methods,
since mitigating the sources of error is always recommended. It can be combined with
the hybrid approach or the multispectral mosaicking as a preliminary step. Note that
both mosaicking approaches we have presented here aim to provide orthorectified
mosaics, while the first approach (cp. Section 4.1) focus on georeferencing and the
second approach (cp. Section 4.2) focus on orthorectification in loop free images.
The evaluations show that our approach results in a higher correlation between
overlapping image regions and retains spatial distances with an error of less than
30 cm. The computation time for a set of 37 images is reduced by approximately
70% compared to an image-based mosaicking.

In interspectral registration methods and multispectral mosaic construction we
have mainly exploited our own mosaicking methods. The independence of these
methods makes it easier to combine them together. Figures 5.10 and 5.11 show
sample mosaics in which we used only the methods explained in this thesis. The com-
putational complexity of the interspectral registration between two mosaics (consid-
ering each mosaic from n individual images) is approximately n times more than
a single-pair registration. Using Matlab on a standard PC running at 2.66GHz,
we perform on average a single-pair registration in 2 s, while the registration of the
mosaics in Figure 5.11 is performed in 57 s.

The computation time for the depth map registration based on disparity vectors
(cp. Figure 5.12) is on average 4 times more than an equivalent single-pair registra-
tion. This is because to construct a pair of depth maps first we need to register two
pairs of images. Therefore, in total we perform 3 registrations and 2 depth map con-
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structions. However, the computational complexity of the depth map registration
based on a full bundle adjustment is much higher. For sample registration shown in
Figure 5.14, the computation time is about 2 hours.



CHAPTER

7 Conclusions and future
work

In this thesis we presented our system for mosaicking high-resolution overview im-
ages of large areas with high geometric accuracy from a set of images taken from
small-scale UAVs. Although much research has been done on mosaicking of aerial
imagery, the challenges in our application are significantly di↵erent since small-scale
UAVs flying at low altitude pose new problems. We propose a hybrid approach
that combines inaccurate information on the camera’s position and orientation, and
the image data. Thus, we can maintain geometric accuracy and at the same time
enhance the visual appearance. The evaluations show that the hybrid approach re-
sults in a higher correlation between overlapping image regions and also preserves
the relative distances. The computation time for a set of 37 images is reduced by
approximately 70% compared to an image-based mosaicking.

We also quantify the influence of di↵erent parameters such as sensor distortion
model, depth information of the scene, and the choice of projection and transforma-
tion models over sequential, pairwise and loop-free image mosaicking. Understand-
ing and comparing the sources of errors enables us to minimize those errors in a
way that increases the orthorectification in aerial image mosaicking. Using higher
polynomial orders in geometric distortion correction might not be noticeable in a
pair of images, but at some point in incremental image mosaicking it will show its
a↵ect. To retain the relative distances, similarity transformation, despite its lower
degree of freedom, is a good substitution for projective transformation if we have
almost a nadir-view of the camera. It is also shown how a simple depth map help
us to choose the appropriate feature points on the ground plane for an accurate
mosaicking.

Further, we have shown how to perform a robust interspectral image registration.
In general we proposed some methods to register two images sensed in di↵erent
spectrums, however we mainly focused on thermal and visual image registration.
First we presented a general method (RFAE) which exploits the existing scale-
invariant feature extraction methods such as SIFT and SURF in order to extract
the robust features along the edges. Based on experimental result, our approach have
shown a noticeable improvement in interspectral registration. Second we proposed
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two methods for increasing the robustness and extracting additional features in cases
with more than one pair of images. The latter scenario was studied with a focus
on the thermal and visual aerial images taken from low-altitude UAVs. In case
of multiple image pairs, we showed either we can use the image mosaics for the
interspectral registration or we can use depth maps of a target scene for the feature
extraction.

The future work and open issues in this field vary based on the approach:

• Di↵erent types of UAV may pose di↵erent challenges. With advances in tech-
nology and with higher processing power it is possible to process a larger num-
ber of images with higher resolution. Another possible scenario is to consider
aerial videos for mosaicking.

• In our hybrid approach the combination of two transformations from image-
based and metadata-based methods is performed by simulated annealing method.
The combination method can be studied and can be improved by comparing
to other heuristic methods.

• In our loop-independent mosaicking we have considered the scenarios with no
loop in the image sequence. One can extend our method of orthorectified mo-
saicking to combine with a heuristic method of global optimization in presence
of loop.

• In the process of interspectral registration, more complex features such as clas-
sified areas or object can be used. However this will increase the computational
complexity of the feature extraction and matching.

• At the system level, future works may focus on underlying architectures for
deployment of multi-UAV for the purpose of aerial imagery. This includes the
autonomous planning and deployment, communication structure, and optimal
coverage methods.
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Appendix

List of Abbreviations

DEM digital elevation model, p. 21

FIR far infrared, p. 7

FOV field of view, pp. 7, 12, 43, 44

GCP ground control point, pp. 30, 32

GPS global positioning system, pp. 2–4, 8, 15, 19, 20, 22, 25, 26, 29, 30, 57

IMU inertial measurement unit, pp. 3, 4, 15, 19, 20, 22, 25, 29

IR infrared, pp. 2, 6, 7, 38–41

MIR mid infrared, p. 7

MSE mean squared error, p. 68

MWIR mid-wave infrared, pp. 23, 43

NEdT noise equivalent di↵erential temperature, p. 43

NIR near infrared, pp. 7, 22, 23

POV point of view, p. 12

QoS quality of service, p. 18

RANSAC RANdom SAmple Consensus, pp. 11, 33, 47

RFAE robust features along the edge, pp. 49, 55, 68, 70–72, 78

SIFT scale-invariant feature transform, pp. 11, 31, 45–48, 70, 71, 78

SURF speeded up robust features, pp. 11, 19, 21, 31, 45, 47–49, 51, 53, 64, 70, 71,
75, 78

UAV unmanned aerial vehicle, pp. 1–5, 8, 12, 15–20, 22, 24–26, 29–32, 35, 38, 44,
47, 49–51, 55, 64, 78, 79
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